
1

Based on: [Parameterized Algorithms: §1.1, 2.2.1, 3.1]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 9.1 Fixed Parameter Tractability

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

2

Approaches to NP-Hard Problems

2

Approaches to NP-Hard Problems

• Exponential Algorithms , e.g. Backtracking

2

Approaches to NP-Hard Problems

• Exponential Algorithms , e.g. Backtracking

• Approximation Algorithms:
Trade solution quality for runtime

2

Approaches to NP-Hard Problems

• Exponential Algorithms , e.g. Backtracking

• Approximation Algorithms:
Trade solution quality for runtime

• Heuristics : empirically good, e.g., via benchmark instances

2

Approaches to NP-Hard Problems

• Exponential Algorithms , e.g. Backtracking

• Approximation Algorithms:
Trade solution quality for runtime

• Heuristics : empirically good, e.g., via benchmark instances

• Randomization: search for a needle in a haystack

2

Approaches to NP-Hard Problems

• Exponential Algorithms , e.g. Backtracking

• Approximation Algorithms:
Trade solution quality for runtime

• Heuristics : empirically good, e.g., via benchmark instances

• Randomization: search for a needle in a haystack

• Parameterized Algorithms
NEW

3

An Example: Vertex Cover

Def. (Recall)

Let G = (V , E) be an undirectred graph.
C ⊆ V is a vertex cover of G , when, for every edge
uv ∈ E , either u ∈ C or v ∈ C .

3

An Example: Vertex Cover

Def. (Recall)

Let G = (V , E) be an undirectred graph.
C ⊆ V is a vertex cover of G , when, for every edge
uv ∈ E , either u ∈ C or v ∈ C .

Prob. Minimum Vertex Cover
given:

Find:

Graph G

a minimum size vertex cover in G

3

An Example: Vertex Cover

Def. (Recall)

Let G = (V , E) be an undirectred graph.
C ⊆ V is a vertex cover of G , when, for every edge
uv ∈ E , either u ∈ C or v ∈ C .

Prob. Minimum Vertex Cover
given:

Find:

Graph G

a minimum size vertex cover in G

– optimization problem

3

An Example: Vertex Cover

Def. (Recall)

Let G = (V , E) be an undirectred graph.
C ⊆ V is a vertex cover of G , when, for every edge
uv ∈ E , either u ∈ C or v ∈ C .

Prob. Minimum Vertex Cover
given:

Find:

Graph G

a minimum size vertex cover in G

Prob.

– optimization problem

– decision problem

3

An Example: Vertex Cover

Def. (Recall)

Let G = (V , E) be an undirectred graph.
C ⊆ V is a vertex cover of G , when, for every edge
uv ∈ E , either u ∈ C or v ∈ C .

Prob. Minimum Vertex Cover
given:

Find:

Graph G

a minimum size vertex cover in G

Prob. k-Vertex Cover (k-VC)

Given:
Find:

graph G , number k

size ≤ k vertex cover in G when possible
(otherwise return “NO”)

– optimization problem

– decision problem

4

History

• one of the first problems shown to be NP-hard

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .)

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

• approximation:

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

• approximation:

maximal Matching provides a factor 2
approximation for VC.

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

• approximation:

maximal Matching provides a factor 2
approximation for VC.

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

• approximation:

maximal Matching provides a factor 2
approximation for VC.

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

• approximation:

maximal Matching provides a factor 2
approximation for VC.

• no arbitrarily good approx. is possible:

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

• approximation:

maximal Matching provides a factor 2
approximation for VC.

• no arbitrarily good approx. is possible:

There is no factor-1.3606 approx. for
vertex cover , assuming P 6= NP.

[Dinur & Safra, 2004]

4

History

• one of the first problems shown to be NP-hard
(SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• one of the six original NP-complete problems in the classic
book [Garey & Johnson, 1979]

• approximation:

maximal Matching provides a factor 2
approximation for VC.

• no arbitrarily good approx. is possible:

There is no factor-1.3606 approx. for
vertex cover , assuming P 6= NP.

[Dinur & Safra, 2004]

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

∣∣∣(Vk)∣∣∣ =
(|V |

k

)
=
(
n
k

)
= O(nk)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

∣∣∣(Vk)∣∣∣ =
(|V |

k

)
=
(
n
k

)
= O(nk)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

∣∣∣(Vk)∣∣∣ =
(|V |

k

)
=
(
n
k

)
= O(nk)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

∣∣∣(Vk)∣∣∣ =
(|V |

k

)
=
(
n
k

)
= O(nk) O(E) = O(m)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

∣∣∣(Vk)∣∣∣ =
(|V |

k

)
=
(
n
k

)
= O(nk) O(E) = O(m)

O(nkm)

5

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C)

return (“NO”, ∅)

Runtime.

∣∣∣(Vk)∣∣∣ =
(|V |

k

)
=
(
n
k

)
= O(nk) O(E) = O(m)

O(nkm) This is not polynomial in the input
size (|G | = n + m; k) — k is not
constant as it is part of the input.

–

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

Remark.
The class FPT implicitly allows
us to replace + by · here.

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

Remark.
The class FPT implicitly allows
us to replace + by · here.

=:O?(f (k))

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

Remark.
The class FPT implicitly allows
us to replace + by · here.

=:O?(f (k))
ignore polynomial factors!

6

A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I),

I is a given instance, and c is a constant (indep. of I)

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

Remark.
The class FPT implicitly allows
us to replace + by · here.

=:O?(f (k))
ignore polynomial factors!

Remark. BruteForceVC does not have this runtime.

7

Some Observations

For a graph G , VC C of G , and a vertex v outside of C ,
which which vertices must be in C ?

7

Some Observations

For a graph G , VC C of G , and a vertex v outside of C ,
which which vertices must be in C ?

Obs. 1. For a graph G , VC C of G and vertex v ,
Either v ∈ C or N(v) ⊆ C .

7

Some Observations

For a graph G , VC C of G , and a vertex v outside of C ,
which which vertices must be in C ?

Obs. 1. For a graph G , VC C of G and vertex v ,
Either v ∈ C or N(v) ⊆ C .

For the decision problem k-VC,
what happens with vertices of degree > k?

7

Some Observations

For a graph G , VC C of G , and a vertex v outside of C ,
which which vertices must be in C ?

Obs. 1. For a graph G , VC C of G and vertex v ,
Either v ∈ C or N(v) ⊆ C .

For the decision problem k-VC,
what happens with vertices of degree > k?

Obs. 2. Each vertex of degree > k is in every k-VC.

7

Some Observations

For a graph G , VC C of G , and a vertex v outside of C ,
which which vertices must be in C ?

Obs. 1. For a graph G , VC C of G and vertex v ,
Either v ∈ C or N(v) ⊆ C .

For the decision problem k-VC,
what happens with vertices of degree > k?

Obs. 2. Each vertex of degree > k is in every k-VC.

What if |E | > k2 and every vertex has degree ≤ k?

7

Some Observations

For a graph G , VC C of G , and a vertex v outside of C ,
which which vertices must be in C ?

Obs. 1. For a graph G , VC C of G and vertex v ,
Either v ∈ C or N(v) ⊆ C .

For the decision problem k-VC,
what happens with vertices of degree > k?

Obs. 2. Each vertex of degree > k is in every k-VC.

What if |E | > k2 and every vertex has degree ≤ k?

Obs. 3. If |E | > k2 and ∆(G) := maxv∈V deg v ≤ k,
then G has no k-VC.

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

O(n + m)

timeG ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

O(n + m)

time

}

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

O(n + m)

time

}
O(m′ · (n′)k

′
) time

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

O(n + m)

time

}
O(m′ · (n′)k

′
) time

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}
O(m′ · (n′)k

′
) time

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}
O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k

′
) time

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}
O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k

′
) time

= O
(
n + m + k22kk2k

)

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}

Also:

O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k

′
) time

= O
(
n + m + k22kk2k

)

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}

Also: k-VC ∈ FPT !

O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k

′
) time

= O
(
n + m + k22kk2k

)

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}

Also: k-VC ∈ FPT !

O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k

′
) time

= O
(
n + m + k22kk2k

)
|I |1
︸ ︷︷ ︸

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}

Also: k-VC ∈ FPT !

O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k

′
) time

= O
(
n + m + k22kk2k

)
f (k)
︸ ︷︷ ︸

|I |1
︸ ︷︷ ︸

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

8

Algorithm [Buss 1993]

I) Reduce to the kernel of the instance

C = {v ∈ V | deg v > k}
if |C | > k then return (“NO”, ∅)

BussVC(Graph G , Integer k)

II) solve the reduced problem exactly

(vc, C ′) = BruteForceVC(G ′, k ′)

return (vc, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}

Also: k-VC ∈ FPT !

O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k

′
) time

= O
(
n + m + k22kk2k

)
f (k)
︸ ︷︷ ︸

|I |1
︸ ︷︷ ︸

G ′ = (V ′, E ′) := G [V \ (C ∪ L)]
k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated
vertices)

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G , k, ∅)

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

v N(v)

(G , k, ∅)

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

(G , k, ∅)

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

(G , k, ∅)

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

(G`, 0, C`)

...
leaf `

(G , k, ∅)

Leaves consist of nodes where k = 0;
they can be at different levels.

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

(G`, 0, C`)

...
leaf `

(G , k, ∅)

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

(G , k, ∅)

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

(G , k, ∅)

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

(G , k, ∅)

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

(G , k, ∅)

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

(G , k, ∅)

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

#nodes: T (k) ≤ 2 T (k − 1) + 1, T (0) = 1

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

(G , k, ∅)

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

#nodes: T (k) ≤ 2 T (k − 1) + 1, T (0) = 1

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

(G , k, ∅)

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

#nodes: T (k) ≤ 2 T (k − 1) + 1, T (0) = 1

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

(G , k, ∅)

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

#nodes: T (k) ≤ 2 T (k − 1) + 1, T (0) = 1

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

⇒ T (k) ≤ 2k+1 − 1 ∈ O(2k)

(G , k, ∅)

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

#nodes: T (k) ≤ 2 T (k − 1) + 1, T (0) = 1

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

⇒ T (k) ≤ 2k+1 − 1 ∈ O(2k)

(G , k, ∅)

⇒ Runtime:

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

9

Search Tree Algorithm

#nodes: T (k) ≤ 2 T (k − 1) + 1, T (0) = 1

Idea. Improve phase II using a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k
(G`, 0, C`)

...

If there is a leaf ` where E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

⇒ T (k) ≤ 2k+1 − 1 ∈ O(2k)

(G , k, ∅)

⇒ Runtime: O?(2k)

Tree-
height

Leaves consist of nodes where k = 0;
they can be at different levels.

YES:

NO:

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

What if we could always branch on a vertex v whose degree is
at least 4?

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

Tree-
height

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) =

Tree-
height

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

Tree-
height

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

Tree-
height

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

solve T (k) = zk − 1

Tree-
height

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

solve T (k) = zk − 1

Tree-
height

⇒ zk =

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

solve T (k) = zk − 1

Tree-
height

⇒ zk = zk−4 + zk−1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

solve T (k) = zk − 1

Tree-
height

⇒ zk = zk−4 + zk−1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

solve T (k) = zk − 1

Tree-
height

⇒ zk = · 1
zk−4

zk−4 + zk−1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

⇒ Characteristic polynomial: z4 = 1 + z3

solve T (k) = zk − 1

Tree-
height

⇒ zk = · 1
zk−4

zk−4 + zk−1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

⇒ Characteristic polynomial: z4 = 1 + z3

⇒ largest positive solution:

solve T (k) = zk − 1

Tree-
height

⇒ zk = · 1
zk−4

zk−4 + zk−1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

⇒ Characteristic polynomial: z4 = 1 + z3

⇒ largest positive solution: z ≈ 1.38 (branching value)

solve T (k) = zk − 1

Tree-
height

⇒ zk = · 1
zk−4

zk−4 + zk−1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

⇒ Characteristic polynomial: z4 = 1 + z3

⇒ largest positive solution: z ≈ 1.38 (branching value)

⇒ T (k) ∈ O(1.38k).

solve T (k) = zk − 1

Tree-
height

⇒ zk = · 1
zk−4

zk−4 + zk−1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assume: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

⇒ Characteristic polynomial: z4 = 1 + z3

⇒ largest positive solution: z ≈ 1.38 (branching value)

⇒ T (k) ∈ O(1.38k). How can we ensure deg v ≥ 4 ?

solve T (k) = zk − 1

Tree-
height

⇒ zk = · 1
zk−4

zk−4 + zk−1

11

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree > k

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

Reduce vertices of degree > k

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1:

Rule 2:

Reduce vertices of degree > k

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2:

Reduce vertices of degree > k

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2:

Reduce vertices of degree > k

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2:

Reduce vertices of degree > k

C = C ′ ∪ {w}

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2:

Reduce vertices of degree > k

C = C ′ ∪ {w}
k ′ = k − 1

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2: Reduce degree 2 vertices

v
w

u

Reduce vertices of degree > k

C = C ′ ∪ {w}
k ′ = k − 1

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2: Reduce degree 2 vertices

v
w

u

Reduce vertices of degree > k

C = C ′ ∪ {w}

uw

k ′ = k − 1

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2: Reduce degree 2 vertices

v
w

u

Reduce vertices of degree > k

C = C ′ ∪ {w}

uw

when uw is an edge,
put u and w in C ,
otherwise v ∈ C ,
and merge u, w .

k ′ = k − 1

11

Kernel Construction II

Previous version:

Rule K:
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

v w

Rule 2: Reduce degree 2 vertices

v
w

u

Reduce vertices of degree > k

C = C ′ ∪ {w}

uw

when uw is an edge,
put u and w in C ,
otherwise v ∈ C ,
and merge u, w .

k ′ = k − 1

k ′ = k − 1

k ′ = k − 2

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

vG

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

vG

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

G

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

G

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

G

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

G

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

G G ′

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

Note. k-VC in G ⇔ k-VC in G ′.

G G ′

[proof omitted]

12

Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

Note. k-VC in G ⇔ k-VC in G ′.

G [N(v)] contains an edgeRule 3.2:
. . .

G G ′

[proof omitted]

13

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each
node of the search tree.

13

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each
node of the search tree.

⇒ Runtime:

13

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each
node of the search tree.

⇒ Runtime: O(nk + k2 · 1.38k)

Preprocessing Kernelization in each node

13

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each
node of the search tree.

⇒ Runtime: O(nk + k2 · 1.38k)

Preprocessing Kernelization in each node

13

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each
node of the search tree.

⇒ Runtime: O(nk + k2 · 1.38k) ⊆ O?(1.38k)

Preprocessing Kernelization in each node

14

Summary

• k-VC can be solved in O(nk + 1.38kk2) time.

• parameterized complexity =
new approach to hard problems: kernelization, search trees,
. . .

• always a good idea look for parameterized analysis
as in FPT !

• Ideally:
“natural” problem P ∈ FPT ⇒ reasonable f (k).

15

Books on the Topic

20061999 2006

Also, the textbook we are using:
Parameterized Algorithms

16

Computational Complexity

• FPT-reduction

• Decision circuits: weft and depth

• Problem Classes:

• Example W [1]-complete problems

– k-IndependentSet
– k-Clique

Exercise: Show that these problems are in W[1]/W[2]

FPT W [1] W [2]

. . .

• Example of a W [2]-complete problem:
– k-DominatingSet

	Titel
	Approaches to NP-Hard Problems
	An Example: Vertex Cover
	History
	An Exact Algorithm for k-VC
	A New Goal
	Some Observations
	Algorithm \gy{} [Buss 1993]
	Search Tree Algorithm
	Degree-4 Algorithm
	Kernel Construction II
	Rule 3: Reduce Degree-3 Vertices
	Degree-4 Algorithm
	Summary
	Books on the Topic
	Computational Complexity

