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An Example: Vertex Cover

Def. (Recall)

Let G = (V , E ) be an undirectred graph.
C ⊆ V is a vertex cover of G , when, for every edge
uv ∈ E , either u ∈ C or v ∈ C .

Prob. Minimum Vertex Cover
given:

Find:

Graph G

a minimum size vertex cover in G

Prob. k-Vertex Cover (k-VC)

Given:
Find:

graph G , number k

size ≤ k vertex cover in G when possible
(otherwise return “NO”)

– optimization problem

– decision problem
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An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(
V
k

)
do

// check if C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“YES”, C )

return (“NO”, ∅)

Runtime.

∣∣∣(Vk )∣∣∣ =
(|V |

k

)
=
(
n
k

)
= O(nk) O(E ) = O(m)

O(nkm) This is not polynomial in the input
size (|G | = n + m; k) — k is not
constant as it is part of the input.

–
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A New Goal

Find an algorithm for k-VC with runtime:

O(f (k) + |I |c)
where f : N→ N is a computable function (indep. of I ),

I is a given instance, and c is a constant (indep. of I )

i.e., the runtime depends
– “somehow” on the Parameter k,
– polynomially on the size |I | of the input I .

difficulty of the instance

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

Remark.
The class FPT implicitly allows
us to replace + by · here.

=:O?(f (k))
ignore polynomial factors!

Remark. BruteForceVC does not have this runtime.
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Some Observations

For a graph G , VC C of G , and a vertex v outside of C ,
which which vertices must be in C ?

Obs. 1. For a graph G , VC C of G and vertex v ,
Either v ∈ C or N(v) ⊆ C .

For the decision problem k-VC,
what happens with vertices of degree > k?

Obs. 2. Each vertex of degree > k is in every k-VC.

What if |E | > k2 and every vertex has degree ≤ k?

Obs. 3. If |E | > k2 and ∆(G ) := maxv∈V deg v ≤ k,
then G has no k-VC.
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Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a
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Note. k-VC in G ⇔ k-VC in G ′.

G G ′

[proof omitted]
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Rule 3: Reduce Degree-3 Vertices

G [N(v)] has no edgesRule 3.1:

b

a

c

v b

a

c

Note. k-VC in G ⇔ k-VC in G ′.

G [N(v)] contains an edgeRule 3.2:
. . .

G G ′

[proof omitted]
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Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each
node of the search tree.

⇒ Runtime: O(nk + k2 · 1.38k) ⊆ O?(1.38k)

Preprocessing Kernelization in each node
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Summary

• k-VC can be solved in O(nk + 1.38kk2) time.

• parameterized complexity =
new approach to hard problems: kernelization, search trees,
. . .

• always a good idea look for parameterized analysis
as in FPT !

• Ideally:
“natural” problem P ∈ FPT ⇒ reasonable f (k).
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Books on the Topic

20061999 2006

Also, the textbook we are using:
Parameterized Algorithms
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Computational Complexity

• FPT-reduction

• Decision circuits: weft and depth

• Problem Classes:

• Example W [1]-complete problems

– k-IndependentSet
– k-Clique

Exercise: Show that these problems are in W[1]/W[2]

FPT W [1] W [2] . . . . . .

. . .

• Example of a W [2]-complete problem:
– k-DominatingSet
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