

Exact Algorithms

Sommer Term 2020

Lecture 9.1 Fixed Parameter Tractability

Based on: [Parameterized Algorithms: §1.1, 2.2.1, 3.1]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

• Exponential Algorithms , e.g. Backtracking

- Exponential Algorithms , e.g. Backtracking
- Approximation Algorithms: Trade solution quality for runtime

- Exponential Algorithms , e.g. Backtracking
- Approximation Algorithms: Trade solution quality for runtime
- Heuristics : empirically good, e.g., via benchmark instances

- Exponential Algorithms , e.g. Backtracking
- Approximation Algorithms: Trade solution quality for runtime
- Heuristics : empirically good, e.g., via benchmark instances
- Randomization: search for a needle in a haystack

- Exponential Algorithms , e.g. Backtracking
- Approximation Algorithms: Trade solution quality for runtime
- Heuristics : empirically good, e.g., via benchmark instances
- Randomization: search for a needle in a haystack
- Parameterized Algorithms

Def. (Recall) Let G = (V, E) be an undirectred graph. $C \subseteq V$ is a *vertex cover* of G, when, for every edge $uv \in E$, either $u \in C$ or $v \in C$.

Def. (Recall) Let G = (V, E) be an undirectred graph. $C \subseteq V$ is a *vertex cover* of G, when, for every edge $uv \in E$, either $u \in C$ or $v \in C$.

Prob.Minimum Vertex Covergiven:Graph GFind:a minimum size vertex cover in G

Def. (Recall) Let G = (V, E) be an undirectred graph. $C \subseteq V$ is a *vertex cover* of G, when, for every edge $uv \in E$, either $u \in C$ or $v \in C$.

Prob.Minimum Vertex Cover– optimization problemgiven:Graph GFind:a minimum size vertex cover in G

Def. (Recall) Let G = (V, E) be an undirectred graph. $C \subseteq V$ is a *vertex cover* of G, when, for every edge $uv \in E$, either $u \in C$ or $v \in C$.

Prob.Minimum Vertex Cover– optimization problemgiven:Graph GFind:a minimum size vertex cover in G

Prob.

- decision problem

Def. (Recall) Let G = (V, E) be an undirectred graph. $C \subseteq V$ is a *vertex cover* of G, when, for every edge $uv \in E$, either $u \in C$ or $v \in C$.

Prob.Minimum Vertex Cover– optimization problemgiven:Graph GFind:a minimum size vertex cover in G

Prob.k-Vertex Cover (k-VC)- decision problemGiven:graph G, number kFind:size $\leq k$ vertex cover in G when possible
(otherwise return "NO")

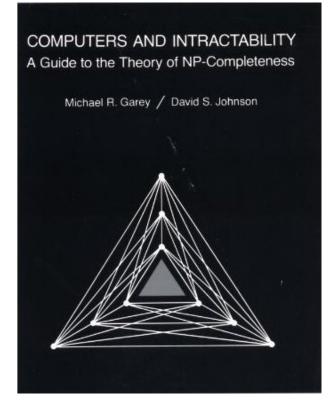
• one of the first problems shown to be NP-hard

• one of the first problems shown to be NP-hard $(SAT \leq_p CLIQUE \leq_p VC \leq_p \dots)$

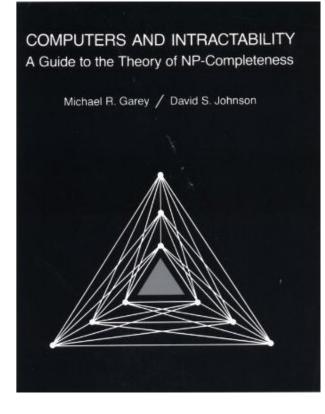
• one of the first problems shown to be NP-hard $(SAT \leq_p CLIQUE \leq_p VC \leq_p ...)$ [Karp, 1972]

- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book [Garey & Johnson, 1979]

- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book [Garey & Johnson, 1979]

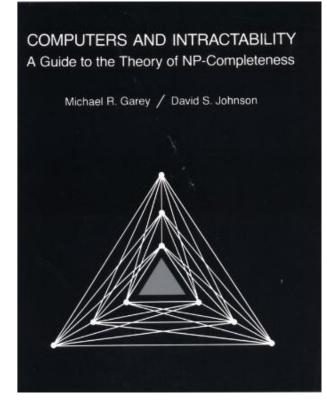


- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book [Garey & Johnson, 1979]
- approximation:

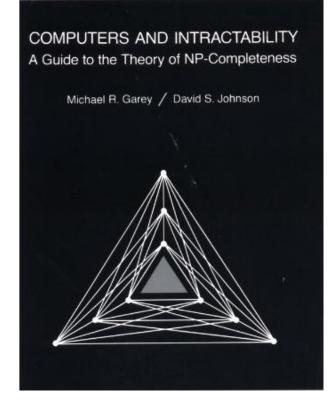


- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book
 [Garey & Johnson, 1979]
- approximation:

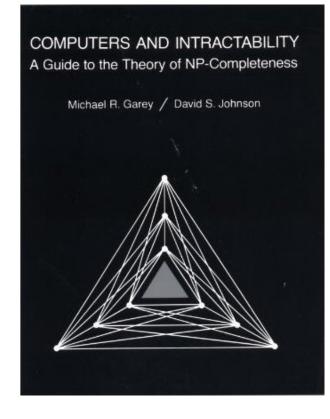
maximal Matching provides a factor 2 approximation for VC.



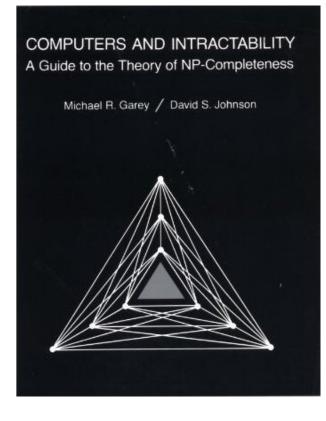
- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book
 [Garey & Johnson, 1979]
- approximation:
 maximal Matching provides a factor 2 approximation for VC.



- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book
 [Garey & Johnson, 1979]
- approximation:
 maximal Matching provides a factor 2 approximation for VC.

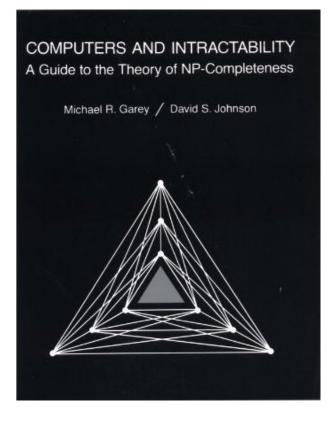


- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book
 [Garey & Johnson, 1979]
- approximation:
 maximal Matching provides a factor 2 approximation for VC.
- no arbitrarily good approx. is possible:

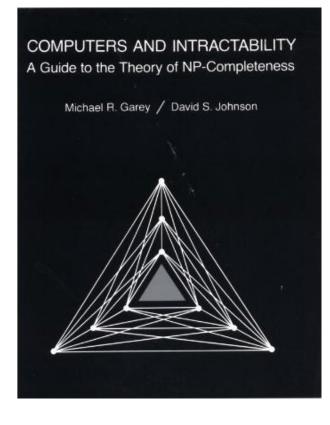


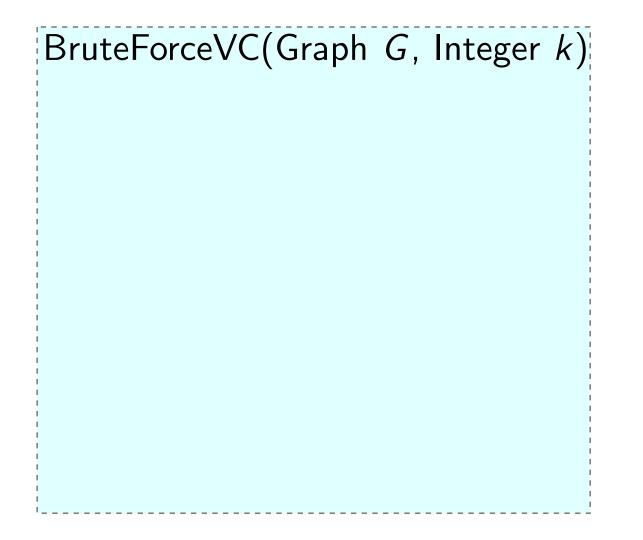
- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book
 [Garey & Johnson, 1979]
- approximation:
 maximal Matching provides a factor 2 approximation for VC.
- no arbitrarily good approx. is possible: There is no factor-1.3606 approx. for vertex cover

[Dinur & Safra, 2004]



- one of the first problems shown to be NP-hard (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- one of the six original NP-complete problems in the classic book
 [Garey & Johnson, 1979]
- approximation:
 maximal Matching provides a factor 2 approximation for VC.
- no arbitrarily good approx. is possible: There is no factor-1.3606 approx. for vertex cover , assuming $\mathcal{P} \neq \mathcal{NP}$. [Dinur & Safra, 2004]





```
BruteForceVC(Graph G, Integer k)
  foreach C \in \binom{V}{k} do
     // check if C is a VC
     vc = true
     if vc then
         return ( "YES", C)
  return ("NO", ∅)
```

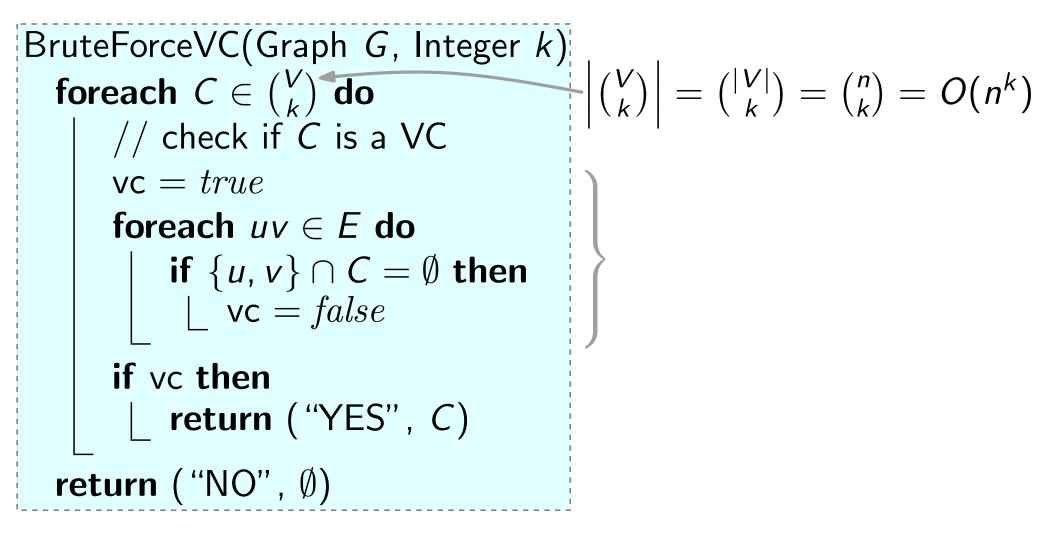
```
BruteForceVC(Graph G, Integer k)
  foreach C \in \binom{V}{k} do
      // check if C is a VC
      vc = true
      foreach uv \in E do
          if \{u, v\} \cap C = \emptyset then
          | vc = false
      if vc then
          return ( "YES", C)
  return ("NO", \emptyset)
```

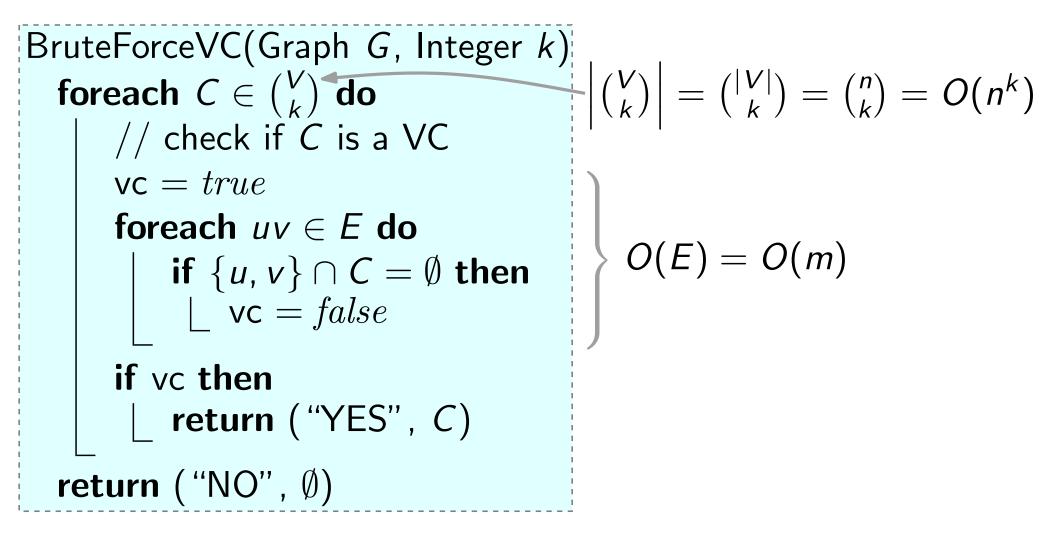
```
BruteForceVC(Graph G, Integer k)
  foreach C \in \binom{V}{k} do
      // check if C is a VC
      vc = true
      foreach uv \in E do
          if \{u, v\} \cap C = \emptyset then
          | vc = false
      if vc then
          return ( "YES", C)
  return ("NO", \emptyset)
```

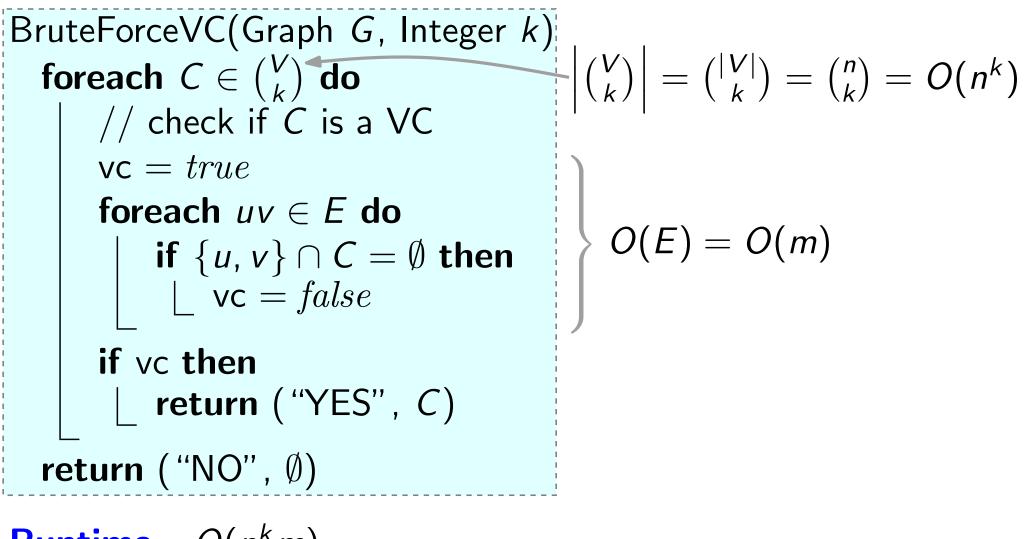
```
BruteForceVC(Graph G, Integer k)
  foreach C \in \binom{V}{k} do
      // check if C is a VC
      vc = true
      foreach uv \in E do
          if \{u, v\} \cap C = \emptyset then
           | vc = false
      if vc then
          return ( "YES", C)
  return ("NO", \emptyset)
```

```
BruteForceVC(Graph G, Integer k)
                                           \left|\binom{V}{k}\right| = \binom{|V|}{k} = \binom{n}{k} = O(
  foreach C \in \binom{V}{k} do
       // check if C is a VC
       vc = true
       foreach uv \in E do
           if \{u, v\} \cap C = \emptyset then
           | vc = false
       if vc then
           return ( "YES", C)
  return ("NO", \emptyset)
```

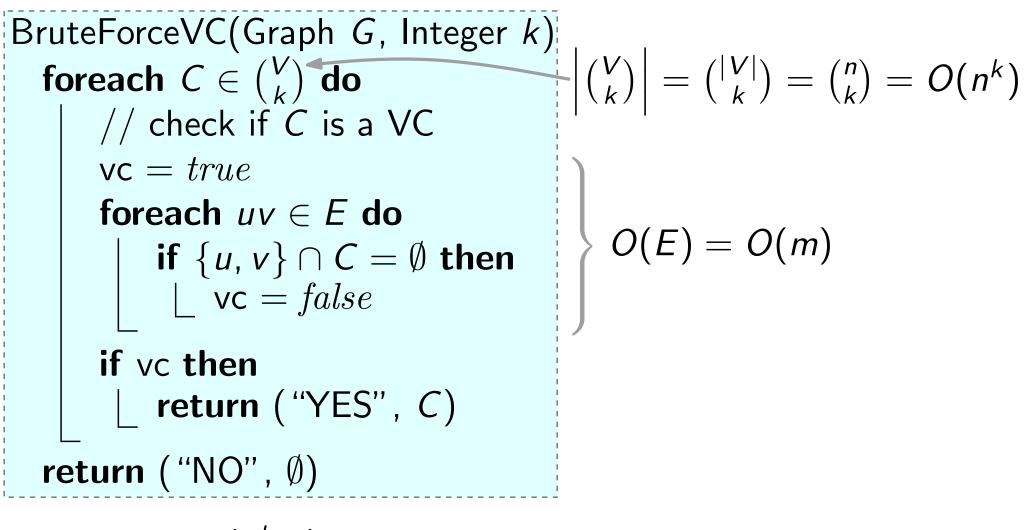
```
BruteForceVC(Graph G, Integer k)
                                           \left|\binom{V}{k}\right| = \binom{|V|}{k} = \binom{n}{k} = O(n^k)
  foreach C \in \binom{V}{k} do
       // check if C is a VC
       vc = true
       foreach uv \in E do
           if \{u, v\} \cap C = \emptyset then
           | vc = false
       if vc then
           return ( "YES", C)
  return ("NO", \emptyset)
```







Runtime. $O(n^k m)$



Runtime. $O(n^k m)$ – This is **not** polynomial in the input size (|G| = n + m; k) - k is not constant as it is part of the input.

A New Goal

Find an algorithm for *k*-VC with runtime:

$O(f(k) + |I|^{c})$

Find an algorithm for *k*-VC with runtime:

$O(f(k) + |I|^{c})$

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of *I*), *I* is a given instance, and *c* is a constant (indep. of *I*)

Find an algorithm for *k*-VC with runtime:

$O(f(k) + |I|^{c})$

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of *I*), *I* is a given instance, and *c* is a constant (indep. of *I*)

- i.e., the runtime depends
- "somehow" on the Parameter k,
- polynomially on the size |I| of the input I.

Find an algorithm for *k*-VC with runtime:

$O(f(k) + |I|^{c})$

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of *I*), *I* is a given instance, and *c* is a constant (indep. of *I*)

- i.e., the runtime depends
- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size |I| of the input I.

Find an algorithm for *k*-VC with runtime:

$O(f(k) + |I|^{c})$

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of *I*), *I* is a given instance, and *c* is a constant (indep. of *I*)

- i.e., the runtime depends
- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size |I| of the input I.

A problem admitting algorithms with this type of runtime is called **fixed-parameter tractable** with respect to k.

Find an algorithm for *k*-VC with runtime:

$O(f(k) + |I|^{c})$

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of *I*), *I* is a given instance, and *c* is a constant (indep. of *I*)

- i.e., the runtime depends
- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size |I| of the input I.

A problem admitting algorithms with this type of runtime is called **fixed-parameter tractable** with respect to k.

- Remark.

The class \mathcal{FPT} implicitly allows us to replace + by \cdot here.

6

Find an algorithm for k_1 /VC with runtime:

$O(f(k) + |I|^{c})$

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of *I*), *I* is a given instance, and *c* is a constant (indep. of *I*)

- i.e., the runtime depends
- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size |I| of the input I.

A problem admitting algorithms with this type of runtime is called **fixed-parameter tractable** with respect to k.

- Remark.

The class \mathcal{FPT} implicitly allows us to replace + by \cdot here.

Find an algorithm for k_1 /VC with runtime:

$O(f(k) + |I|^{c}) =: O^{*}(f(k))$

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of *I*), *I* is a given instance, and *c* is a constant (indep. of *I*)

i.e., the runtime depends

A New Goal

- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size |I| of the input I.

A problem admitting algorithms with this type of runtime is called **fixed-parameter tractable** with respect to k.

– Remark.

The class \mathcal{FPT} implicitly allows us to replace + by \cdot here.

Find an algorithm for k_1 /VC with runtime:

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of I), I is a given instance, and c is a constant (indep. of I)

 $O(f(k) + |I|^{c}) =: O_{\zeta}^{\star}(f(k))$

i.e., the runtime depends

A New Goal

- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size |I| of the input I.

A problem admitting algorithms with this type of runtime is called **fixed-parameter tractable** with respect to k.

- Remark.

The class \mathcal{FPT} implicitly allows us to replace + by \cdot here.

Find an algorithm for k_{T} VC with runtime:

where $f : \mathbb{N} \to \mathbb{N}$ is a computable function (indep. of I), I is a given instance, and c is a constant (indep. of I)

 $O(f(k) + |I|^{c}) =: O_{\zeta}^{\star}(f(k))$

i.e., the runtime depends

A New Goal

- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size |I| of the input I.

A problem admitting algorithms with this type of runtime is called **fixed-parameter tractable** with respect to k.

 $\mathcal{FPT} = class of fixed-parameter tractable problems.$

Remark. BruteForceVC does not have this runtime.

For a graph G, VC C of G, and a vertex v outside of C, which which vertices must be in C?

7

For a graph G, VC C of G, and a vertex v outside of C, which which vertices must be in C?

Obs. 1. For a graph G, VC C of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For a graph G, VC C of G, and a vertex v outside of C, which which vertices must be in C?

Obs. 1. For a graph G, VC C of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem k-VC, what happens with vertices of degree > k?

For a graph G, VC C of G, and a vertex v outside of C, which which vertices must be in C?

Obs. 1. For a graph G, VC C of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem k-VC, what happens with vertices of degree > k?

Obs. 2. Each vertex of degree > k is in every k-VC.

For a graph G, VC C of G, and a vertex v outside of C, which which vertices must be in C?

Obs. 1. For a graph G, VC C of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem k-VC, what happens with vertices of degree > k?

Obs. 2. Each vertex of degree > k is in every k-VC.

What if $|E| > k^2$ and every vertex has degree $\leq k$?

For a graph G, VC C of G, and a vertex v outside of C, which which vertices must be in C?

Obs. 1. For a graph G, VC C of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem k-VC, what happens with vertices of degree > k?

Obs. 2. Each vertex of degree > k is in every k-VC.

What if $|E| > k^2$ and every vertex has degree $\leq k$?

Obs. 3. If $|E| > k^2$ and $\Delta(G) := \max_{v \in V} \deg v \le k$, then G has no k-VC.

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

II) solve the reduced problem exactly (vc, C') = BruteForceVC(G', k') return (vc, $C \cup C'$)

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

II) solve the reduced problem exactly

$$(vc, C') = BruteForceVC(G', k')$$

return $(vc, C \cup C')$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

II) solve the reduced problem exactly

$$(vc, C') = BruteForceVC(G', k')$$

return $(vc, C \cup C')$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \quad (L = \text{isolated}$$

$$k' = k - |C| \quad \text{vertices})$$
if $|E'| > k^2$ then return ("NO", \emptyset)

II) solve the reduced problem exactly

$$(vc, C') = BruteForceVC(G', k')$$

return $(vc, C \cup C')$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \quad (L = \text{isolated})$$

$$k' = k - |C| \qquad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

ed O(n+m) time

II) solve the reduced problem exactly

$$(vc, C') = BruteForceVC(G', k')$$

return $(vc, C \cup C')$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] (L = \text{isolated})$$

$$k' = k - |C| \qquad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

ed O(n+m)

II) solve the reduced problem exactly (vc, C') = BruteForceVC(G', k')return $(vc, C \cup C')$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] (L = \text{isolated})$$

$$k' = k - |C| \qquad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

II) solve the reduced problem exactly (vc, C') = BruteForceVC(G', k')return $(vc, C \cup C')$ $O(m' \cdot (n')^{k'})$ time

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

11) solve the reduced problem exactly (vc, C') = BruteForceVC(G', k')return $(vc, C \cup C')$ $O(m' \cdot (n')^{k'})$ time where $m' := |E'| \le k^2$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ $\\ \end{bmatrix} \begin{array}{l} O(m' \cdot (n')^{k'}) \text{ time} \\ where m' := |E'| \le k^2 \\ \Rightarrow n' := |V'| \le 2k^2 \end{array}$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \quad (L = \text{isolated})$$

$$k' = k - |C| \qquad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ $\\ \end{bmatrix} \begin{array}{l} O(m' \cdot (n')^{k'}) \text{ time} \\ where m' := |E'| \le k^2 \\ \Rightarrow n' := |V'| \le 2k^2 \end{array}$

Runtime. $O(n + m + k^2 \cdot (2k^2)^k)$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ $\\ \end{bmatrix} \begin{array}{l} O(m' \cdot (n')^{k'}) \text{ time} \\ where m' := |E'| \le k^2 \\ \Rightarrow n' := |V'| \le 2k^2 \end{array}$

Runtime. $O(n+m+k^2 \cdot (2k^2)^k) = O(n+m+k^2 2^k k^{2k})$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \quad (L = \text{isolated})$$

$$k' = k - |C| \qquad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ (vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ (vc, C') = BruteForceVC(G', k')(vc, C') = BruteForc

Runtime. $O(n+m+k^2 \cdot (2k^2)^k) = O(n+m+k^2 2^k k^{2k})$

Also:

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)
$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ $\\ \end{bmatrix} \begin{array}{l} O(m' \cdot (n')^{k'}) \text{ time} \\ 0(m' \cdot (n')^{k'}) \text{ time} \\ \text{where } m' := |E'| \le k^2 \\ \Rightarrow n' := |V'| \le 2k^2 \end{array}$

Runtime. $O(n+m+k^2 \cdot (2k^2)^k) = O(n+m+k^2 2^k k^{2k})$ Also: $k-VC \in \mathcal{FPT}!$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)
$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ $\\ \end{bmatrix} \begin{array}{l} O(m' \cdot (n')^{k'}) \text{ time} \\ 0(m' \cdot (n')^{k'}) \text{ time} \\ \text{where } m' := |E'| \le k^2 \\ \Rightarrow n' := |V'| \le 2k^2 \end{array}$

Runtime.
$$O(n + m + k^2 \cdot (2k^2)^k) = O(n + m + k^2 2^k k^{2k})$$
Also: $k - VC \in \mathcal{FPT}!$

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

if $|C| > k$ then return ("NO", \emptyset)

$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

if $|E'| > k^2$ then return ("NO", \emptyset)

O(n+m)time

(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ $\\ \end{bmatrix} \begin{array}{l} O(m' \cdot (n')^{k'}) \text{ time} \\ 0(m' \cdot (n')^{k'}) \text{ time} \\ \text{where } m' := |E'| \le k^2 \\ \Rightarrow n' := |V'| \le 2k^2 \end{array}$

Runtime. $O(n + m + k^2 \cdot (2k^2)^k) = O(\underline{n + m} + \underbrace{k^2 2^k k^{2k}}_{I|^1})$ Also: $k - VC \in \mathcal{FPT}!$ $|I|^1$ f(k)

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

$$C = \{v \in V \mid \deg v > k\}$$

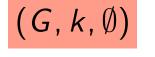
if $|C| > k$ then return ("NO", \emptyset)
$$G' = (V', E') := G[V \setminus (C \cup L)] \ (L = \text{isolated} k' = k - |C| \quad \text{vertices})$$

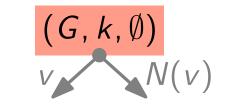
if $|E'| > k^2$ then return ("NO", \emptyset)

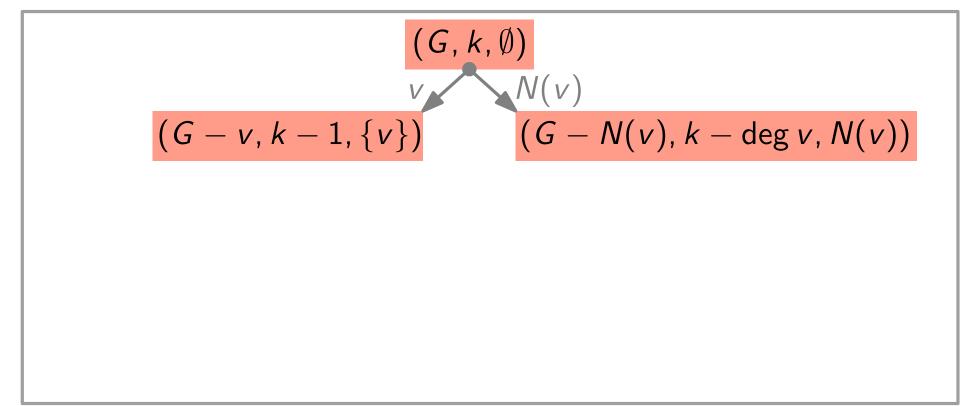
O(n+m)time

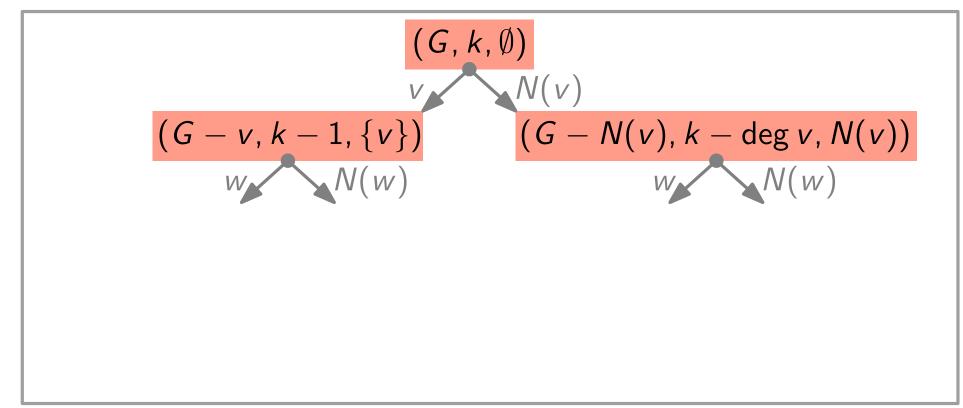
(vc, C') = BruteForceVC(G', k') $return (vc, C \cup C')$ $\\ \end{bmatrix} \begin{array}{l} O(m' \cdot (n')^{k'}) \text{ time} \\ 0(m' \cdot (n')^{k'}) \text{ time} \\ \text{where } m' := |E'| \le k^2 \\ \Rightarrow n' := |V'| \le 2k^2 \end{array}$

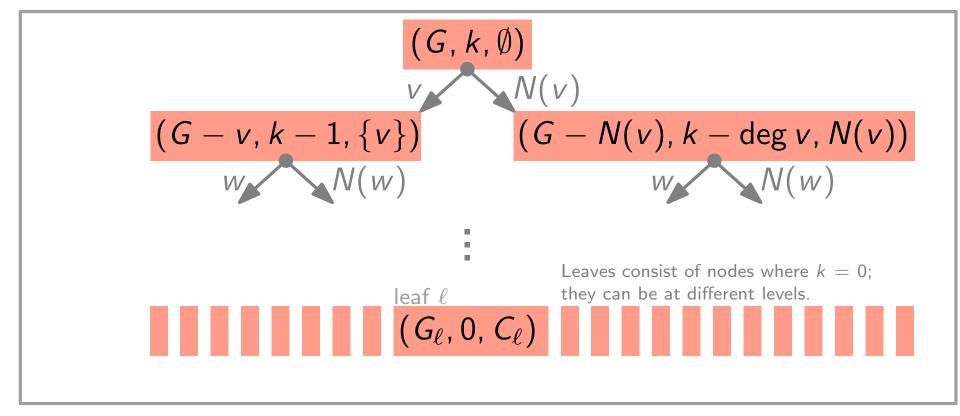
Runtime. $O(n + m + k^2 \cdot (2k^2)^k) = O(n + m + k^2 2^k k^{2k})$ Also: $k - VC \in \mathcal{FPT}!$ $|I|^1$ f(k)



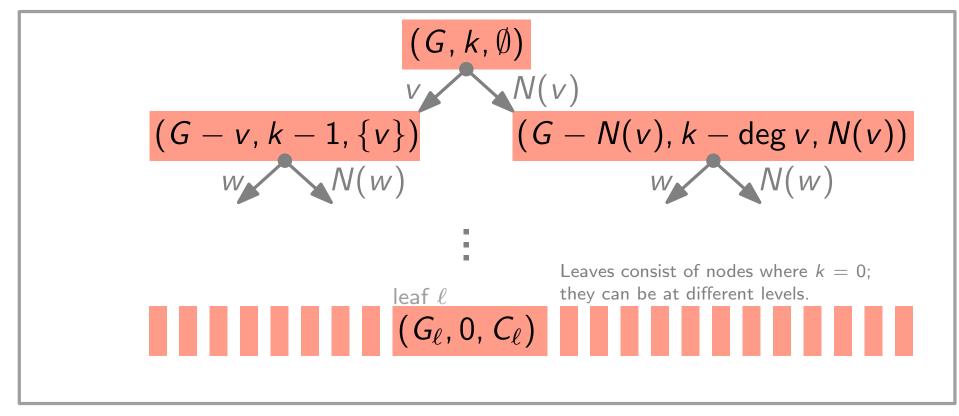






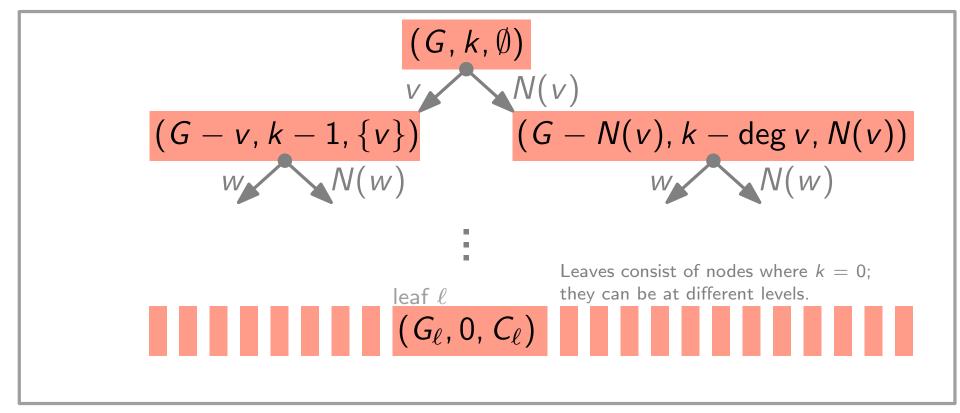


Idea. Improve phase II using a search tree.



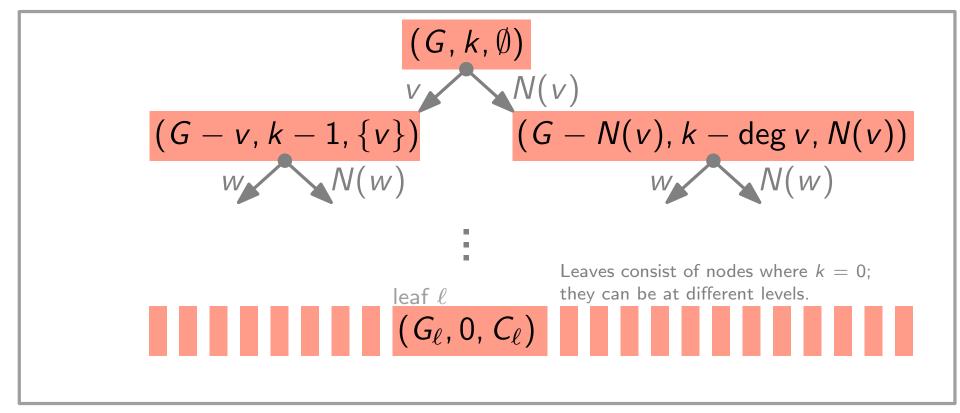
YES:

Idea. Improve phase II using a search tree.



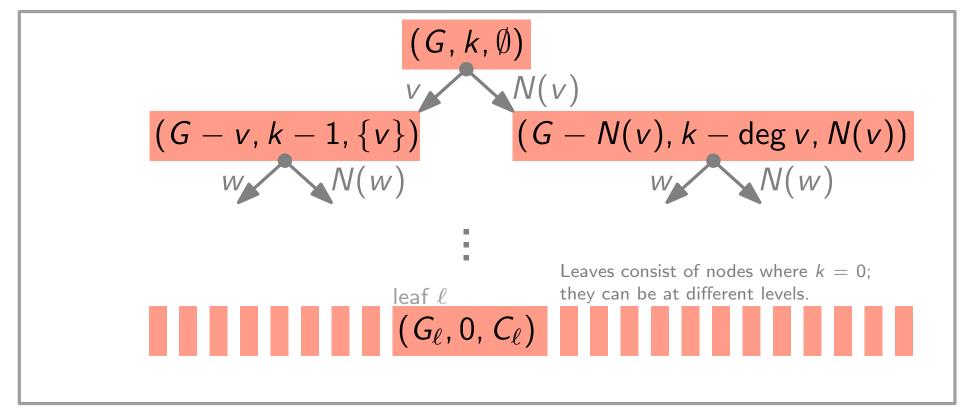
YES: If there is a leaf ℓ where $E_{\ell} = \emptyset$, then C_{ℓ} is a k-VC of G.

Idea. Improve phase II using a search tree.

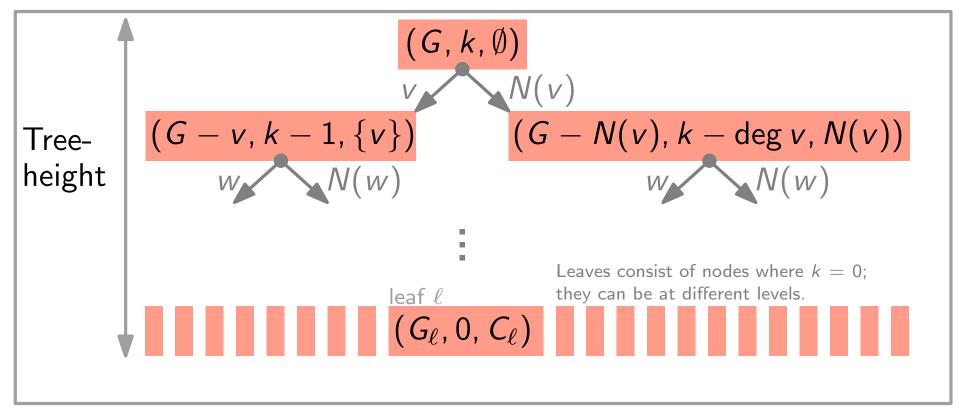


YES: If there is a leaf ℓ where $E_{\ell} = \emptyset$, then C_{ℓ} is a k-VC of G. NO:

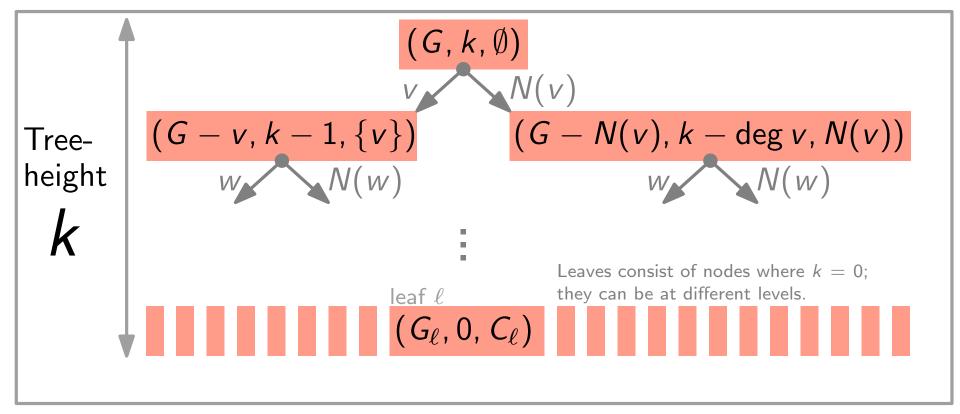
Idea. Improve phase II using a search tree.



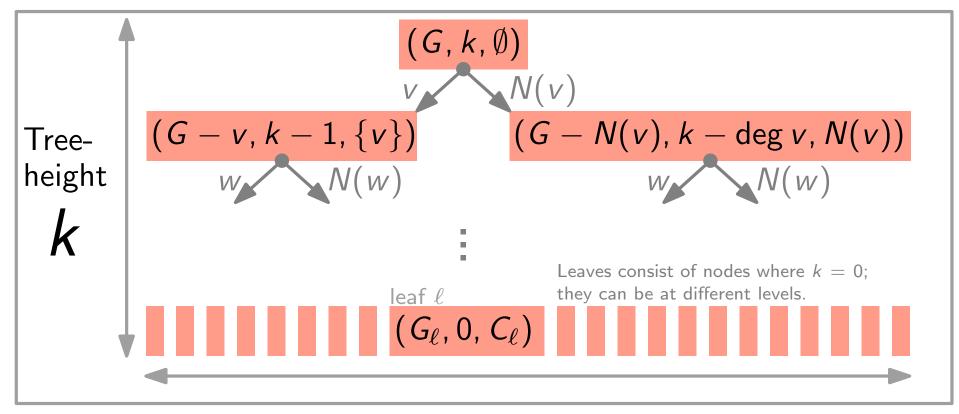
Idea. Improve phase II using a search tree.



Idea. Improve phase II using a search tree.

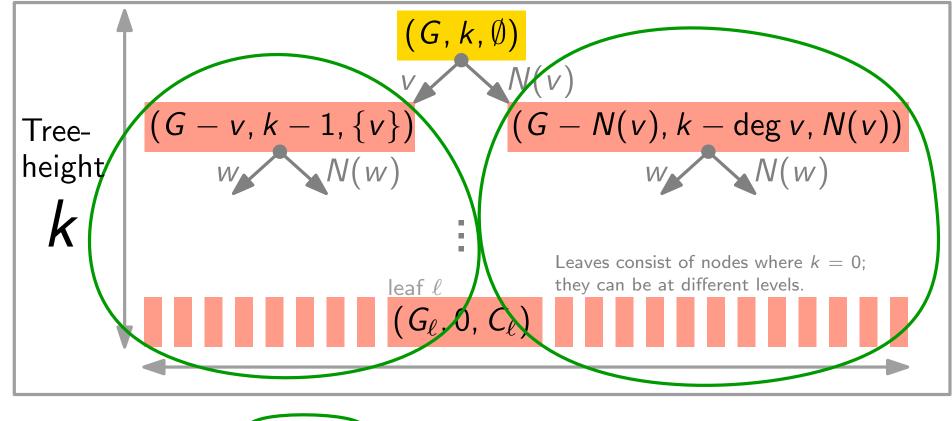


Idea. Improve phase II using a search tree.



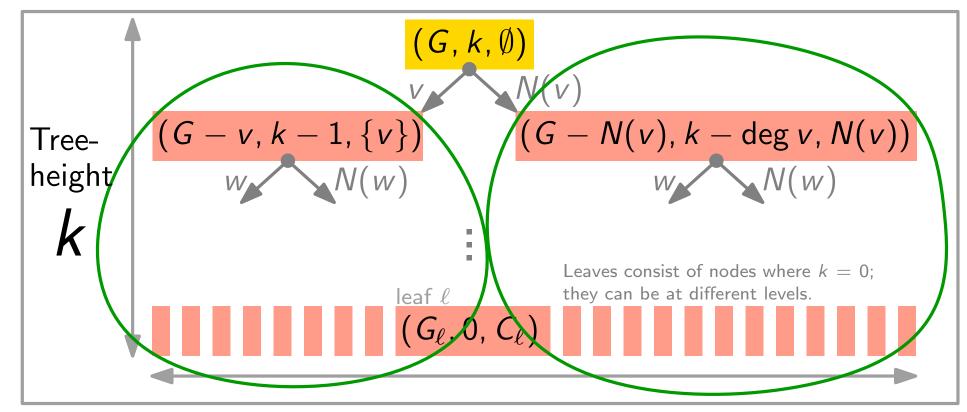
#nodes: $T(k) \leq 2$

Idea. Improve phase II using a search tree.



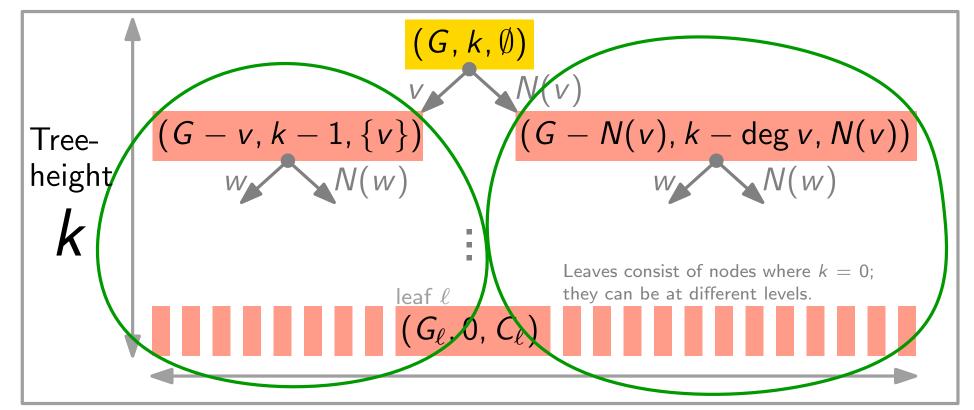
#nodes: $T(k) \leq 2$

Idea. Improve phase II using a search tree.



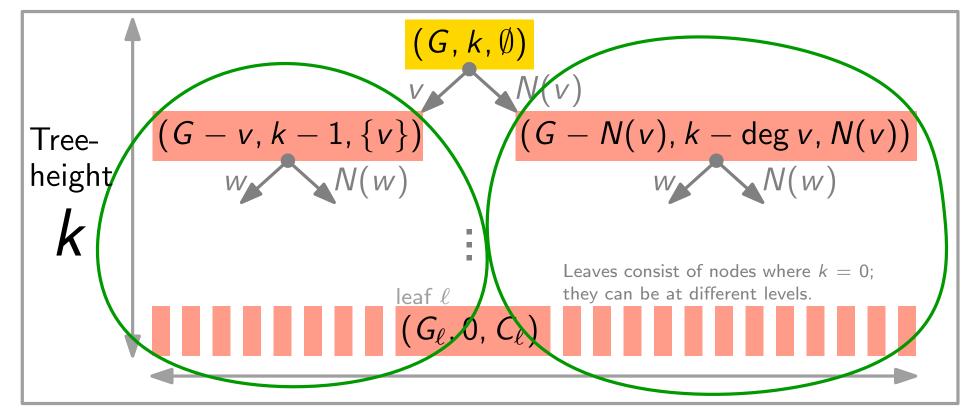
#nodes: $T(k) \le 2T(k-1) + 1$, T(0) = 1

Idea. Improve phase II using a search tree.



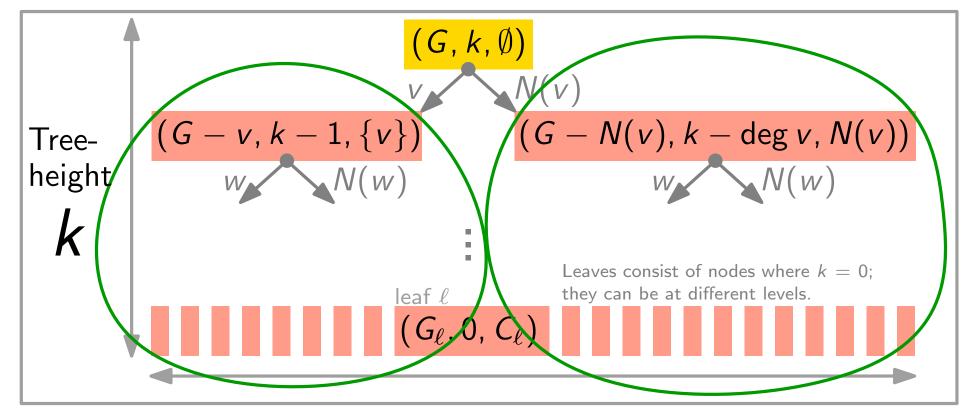
#nodes: $T(k) \le 2T(k-1) + 1$, $T(0) = 1 \implies T(k) \le 2^{k+1} - 1 \in O(2^k)$

Idea. Improve phase II using a search tree.



#nodes: $T(k) \leq 2T(k-1) + 1$, $T(0) = 1 \Rightarrow T(k) \leq 2^{k+1} - 1 \in O(2^k)$ \Rightarrow Runtime:

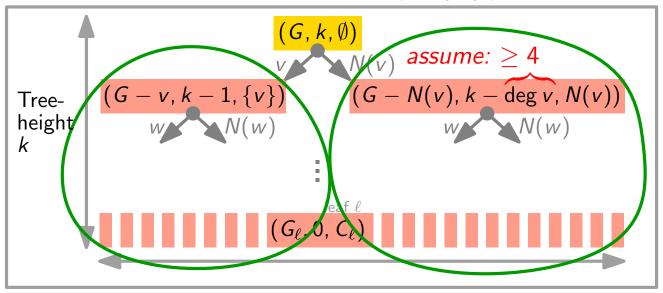
Idea. Improve phase II using a search tree.



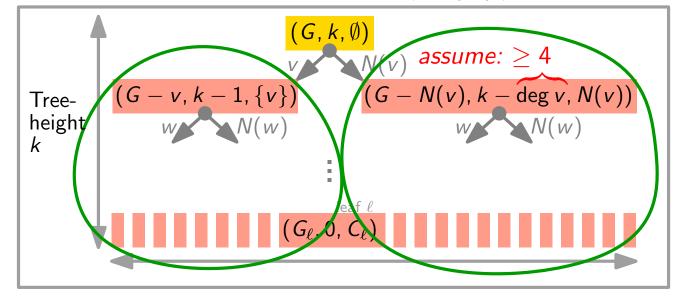
#nodes: $T(k) \leq 2T(k-1) + 1$, $T(0) = 1 \Rightarrow T(k) \leq 2^{k+1} - 1 \in O(2^k)$ \Rightarrow Runtime: $O^*(2^k)$

Idea. Better analysis based on |N(v)|.

What if we could always branch on a vertex v whose degree is at least 4?

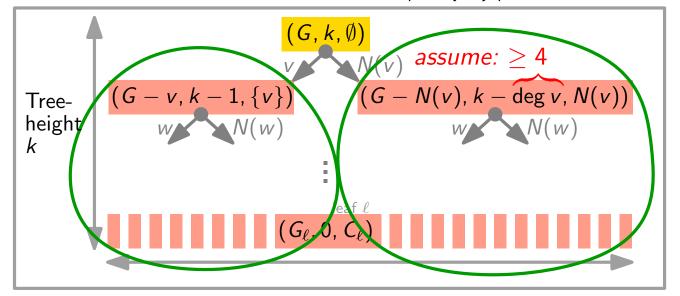


Idea. Better analysis based on |N(v)|.

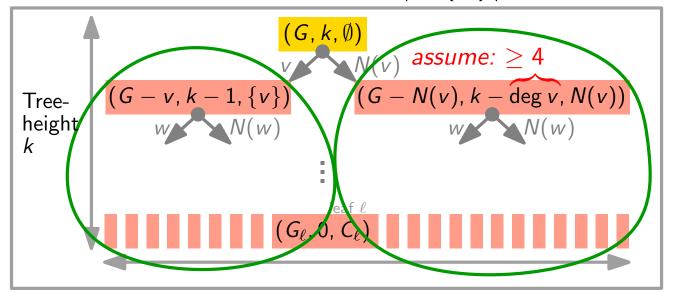


 $\Rightarrow T(k) =$

Idea. Better analysis based on |N(v)|.

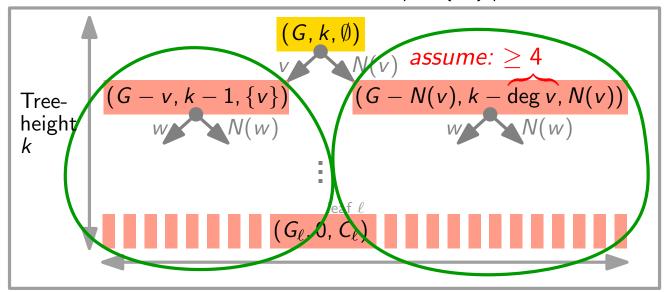


 $\Rightarrow T(k) = T(k-4) + T(k-1) + 1, T(\leq 4) = const.$

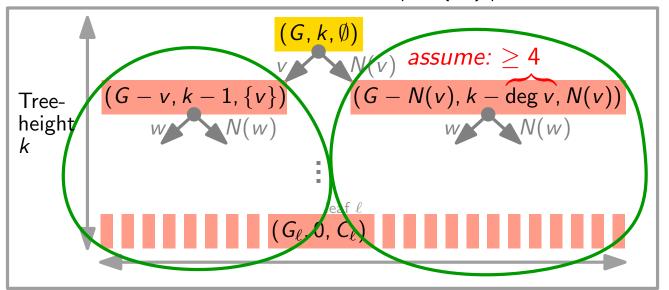


 $\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\leq 4) = const.$ branching vector (4, 1)

Idea. Better analysis based on |N(v)|.

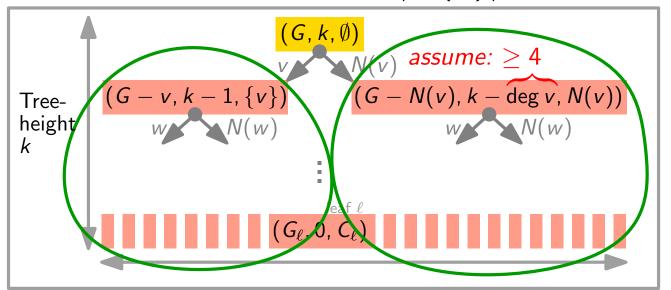


 $\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, \quad T(\leq 4) = const.$ branching vector (4, 1) solve $T(k) = z^k - 1$



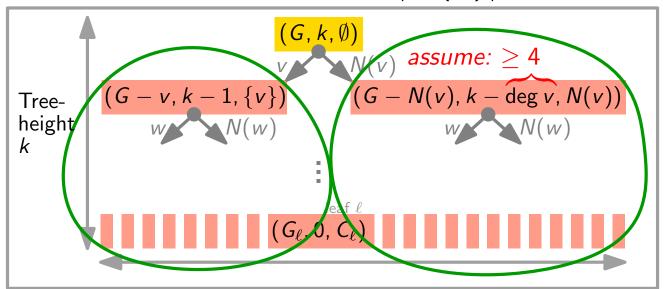
$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\le 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k =$



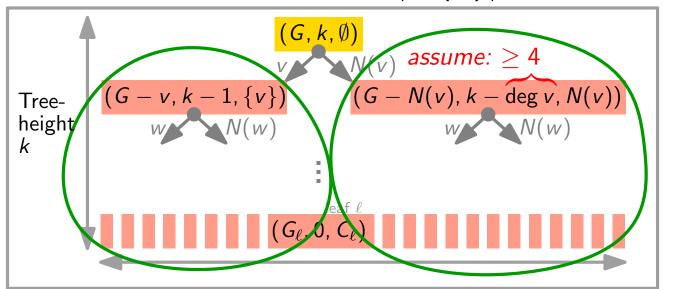
$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\leq 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1}$



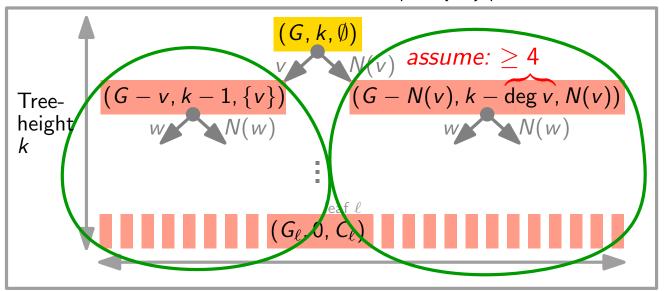
$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\le 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1}$



$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\leq 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1} \rightarrow \frac{1}{z^{k-4}}$

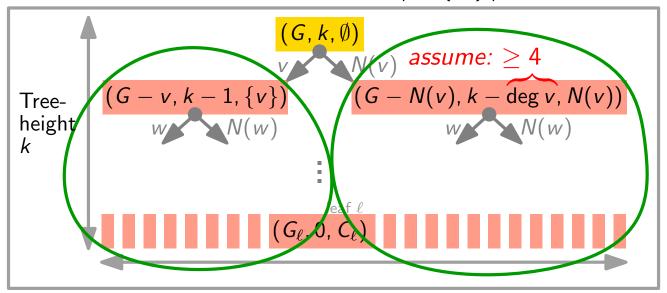


$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\le 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1}$

$$\Rightarrow \text{ Characteristic polynomial: } z^4 = 1 + z^3$$

Idea. Better analysis based on |N(v)|.



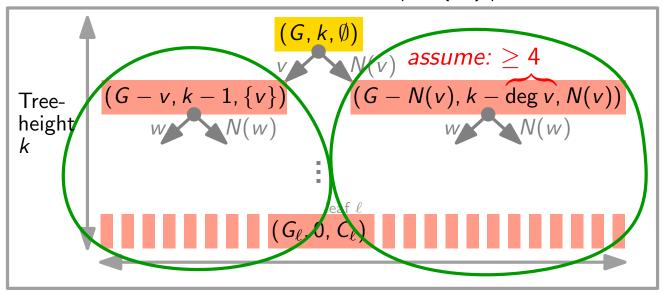
$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\le 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1}$

$$\Rightarrow Characteristic polynomial: z^4 = 1 + z^3$$

 \Rightarrow largest positive solution:

Idea. Better analysis based on |N(v)|.

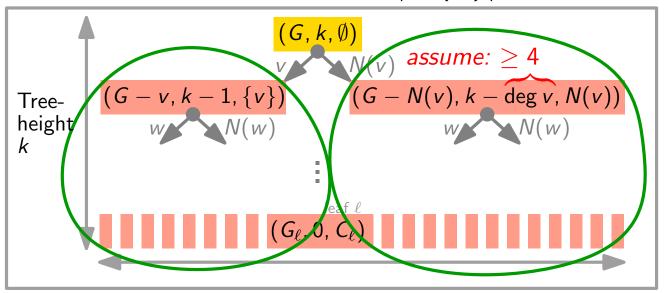


$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\le 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1}$

$$\Rightarrow Characteristic polynomial: z^4 = 1 + z^3$$

 \Rightarrow largest positive solution: $z \approx 1.38$ (branching value)

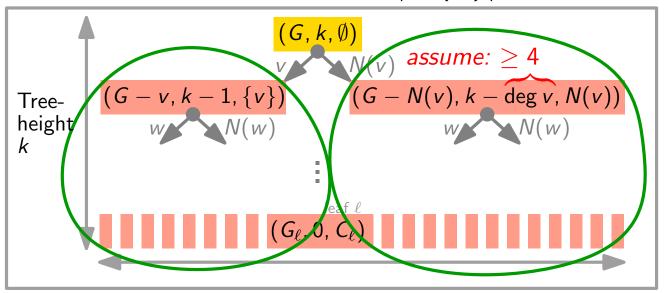


$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\le 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1}$

$$\Rightarrow \text{Characteristic polynomial: } z^4 = 1 + z^3$$

$$\Rightarrow \text{ largest positive solution: } z \approx 1.38 \text{ (branching value)}$$



$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\leq 4) = const.$$

branching vector (4, 1)
solve $T(k) = z^k - 1 \Rightarrow z^k = z^{k-4} + z^{k-1}$

$$\Rightarrow Characteristic polynomial: z^4 = 1 + z^3$$

$$\Rightarrow largest positive solution: z \approx 1.38 (branching value)$$

$$\Rightarrow T(k) \in O(1.38^k). How can we ensure deg v \geq 4$$
?

Previous version:

Rule K: Reduce vertices of degree > k

Previous version:

- **Rule K**: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

New rules:

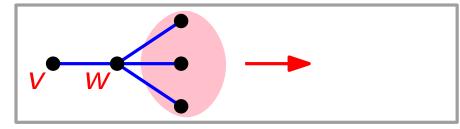
Rule 1:

Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

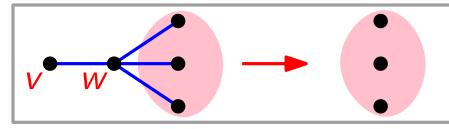


Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

New rules:

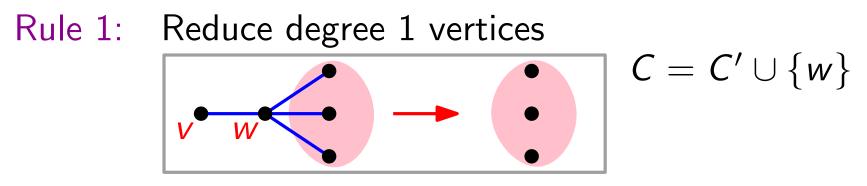
Rule 1: Reduce degree 1 vertices



Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

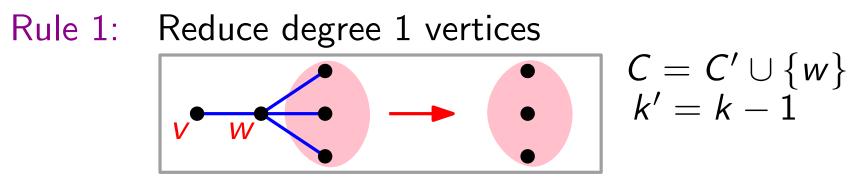
New rules:



Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

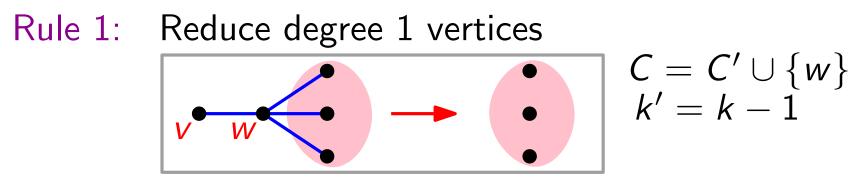
New rules:



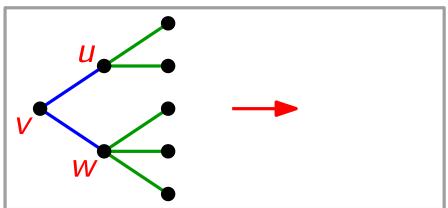
Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

New rules:



Rule 2: Reduce degree 2 vertices

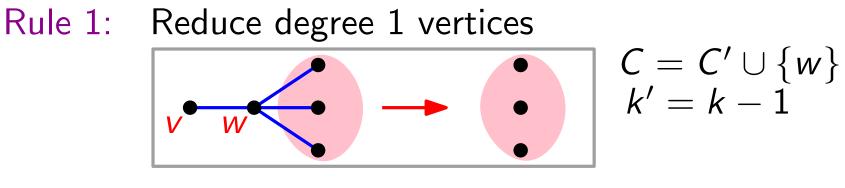


Kernel Construction II

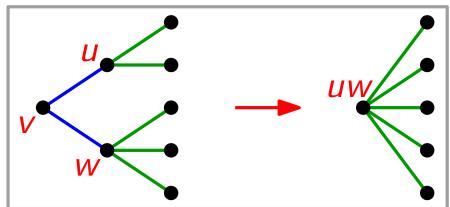
Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

New rules:



Rule 2: Reduce degree 2 vertices



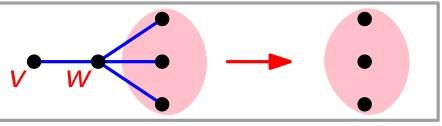
Kernel Construction II

Previous version:

- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

New rules:

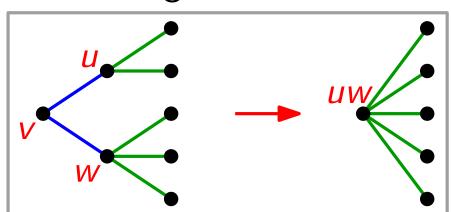
Rule 1: Reduce degree 1 vertices



$$C = C' \cup \{w\}$$

$$k' = k - 1$$

Rule 2: Reduce degree 2 vertices



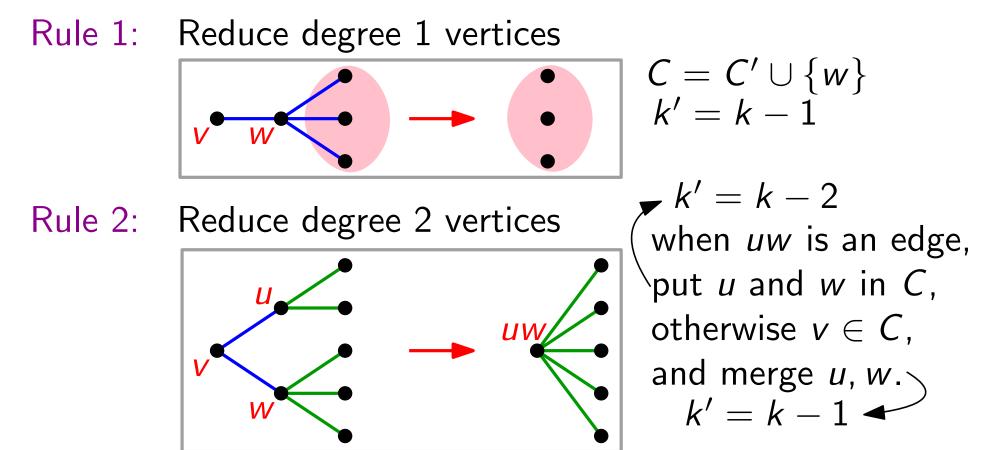
when uw is an edge, put u and w in C, otherwise $v \in C$, and merge u, w.

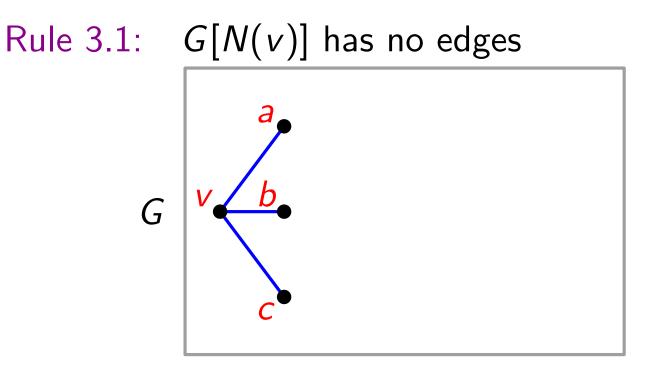
Kernel Construction II

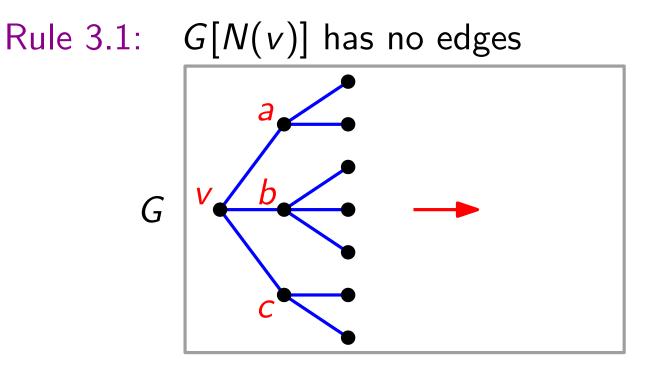
Previous version:

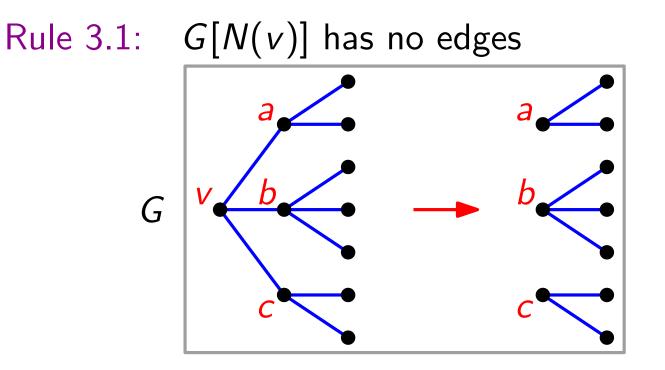
- Rule K: Reduce vertices of degree > k
- Rule 0: Delete isolated (degree 0) vertices

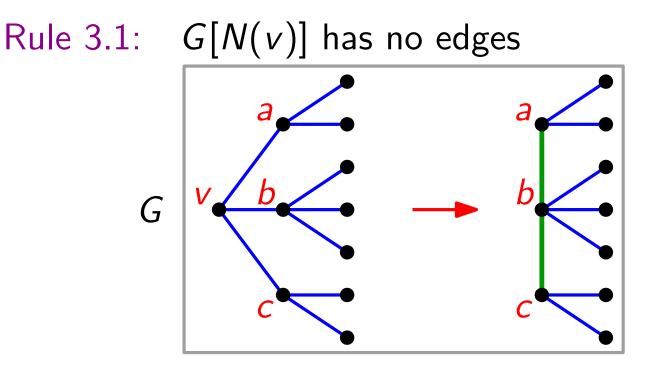
New rules:

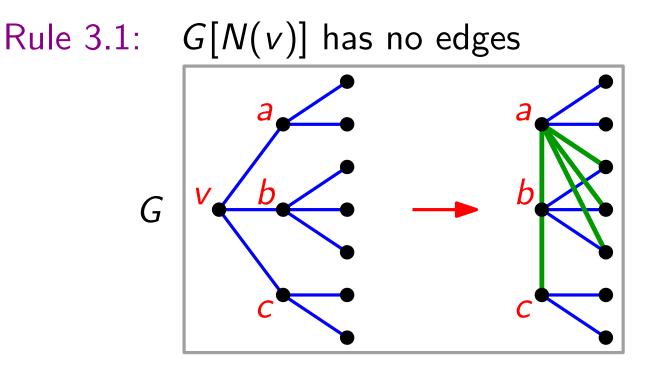


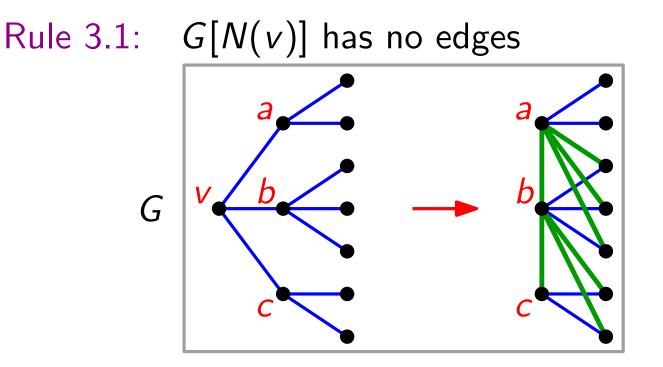


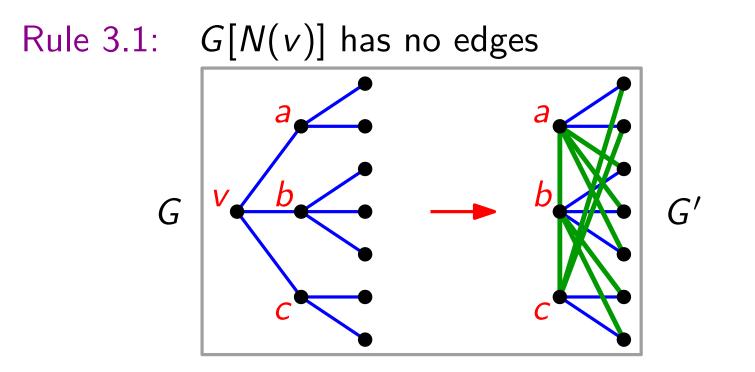


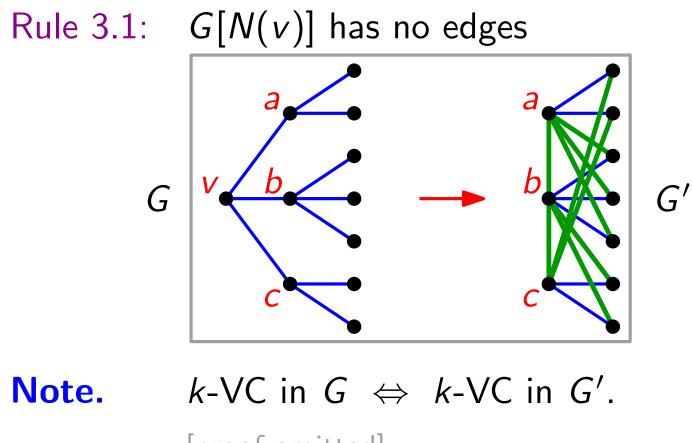




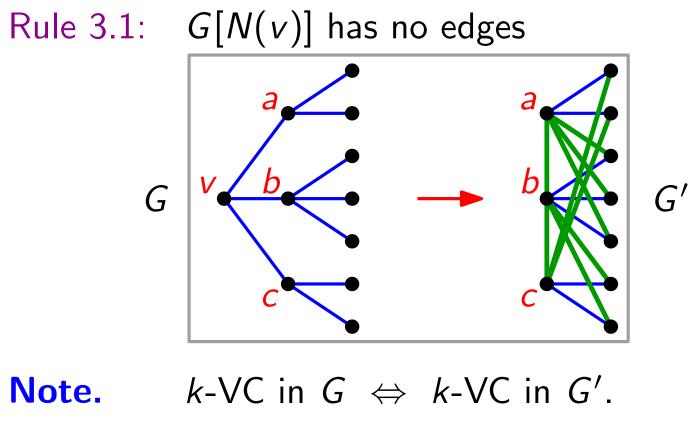








[proof omitted]



[proof omitted]

Rule 3.2: G[N(v)] contains an edge

Idea: Apply the improved kernelization approach at each node of the search tree.

- Idea: Apply the improved kernelization approach at each node of the search tree.
 - \Rightarrow **Runtime**:

Idea: Apply the improved kernelization approach at each node of the search tree.

$$\Rightarrow \text{ Runtime: } O(\blacksquare + \blacksquare \cdot 1.38^k)$$

Preprocessing Kernelization in each node

Idea: Apply the improved kernelization approach at each node of the search tree.

$$\Rightarrow \text{ Runtime: } O(nk + k^2 \cdot 1.38^k)$$

Preprocessing Kernelization in each node

Idea: Apply the improved kernelization approach at each node of the search tree.

 $\Rightarrow \text{ Runtime: } O(nk + k^2 \cdot 1.38^k) \subseteq O^*(1.38^k)$ Preprocessing Kernelization in each node

Summary

- k-VC can be solved in $O(nk + 1.38^k k^2)$ time.
- parameterized complexity = new approach to hard problems: kernelization, search trees,
- always a good idea look for parameterized analysis as in FPT !
- Ideally: "natural" problem $P \in \mathcal{FPT} \Rightarrow$ reasonable f(k).

Books on the Topic

MONOGRAPHS IN COMPUTER SCIENCE

PARAMETERIZED COMPLEXITY

R.G. Downey M.R. Fellows

Also, the textbook we are using: Parameterized Algorithms

Computational Complexity

- FPT-reduction
- Decision circuits: weft and depth
- Problem Classes:

- Example W[1]-complete problems
 - k-INDEPENDENTSET
 - k-CLIQUE
- Example of a W[2]-complete problem:
 - k-DominatingSet

Exercise: Show that these problems are in W[1]/W[2]

W[1]

W[2]