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An Example: Vertex Cover

Def.

Prob.

Prob.

(Recall)

Let G = (V/, E) be an undirectred graph.

C C V is a vertex cover of G, when, for every edge
uv € E, eitherue Corv e C.

Minimum Vertex Cover — optimization problem
given: Graph G

Find: a minimum size vertex cover in G

k-Vertex Cover (k-VC) — decision problem

Given: graph G, number k

Find: size < k vertex cover in G when possible
(otherwise return “NQ")
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 foreach C € (})do (] = () = () = o
// check if C is a VC :
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foreach uv € E do
L if {u,v}NC =10 then O(E) = O(m)
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An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € () do | | = (V) =
// check if C is a VC -
vC = true
foreach uv € E do
L if {u,v}NC =10 then O(E) = O(m)
| vc = false |

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime. O(n“m) — This is not polynomial in the input
size (|G| = n+ m; k) — k is not
constant as it is part of the input.
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A New Goal

Find an algorithm for k/VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

Remark. BruteForceVC does not have this runtime.
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Some Observations

For a graph G, VC C of G, and a vertex v outside of C,
which which vertices must be in C7

Obs. 1. For a graph G, VC C of G and vertex v,
Either v € C or N(v) C C.

For the decision problem k-VC,
what happens with vertices of degree > k7

Obs. 2. Each vertex of degree > k is in every k-VC.

What if |E| > k? and every vertex has degree < k?

Obs. 3. If |E| > k? and A(G) := max,cy degv < k,
then G has no k-VC.
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Idea. Improve phase |l using a search tree.

(G, k,0)

(G—v,k—1{v})
W/\N(W)

(G— N(v), k—degv, N(v))
WAN(W)

Leaves consist of nodes where kK = 0O;
they can be at different levels.
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= Runtime: 0*(2K)
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Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: > 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1T(<L4) = const.
— Y r»r —
branching vector (4, 1)

solve T(k) =zK—-1 = zK=zk-4 4 Zk71 1

= Characteristic polynomial: z* =1 + 23
= largest positive solution: z ~ 1.38 (branching value)
= T(k) € O(1.38%). How can we ensure degv > 4 7
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Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

. C=CU{w}
< —> e k' = k-1
W
o

k' = k-2
Rule 2:  Reduce degree 2 vertices
when uw 1s an edge,

put uand w in C,

otherwise v € C,

and merge u,
k' = k — 1




Rule 3: Reduce Degree-3 Vertices

Rule 3.1:  G[N(v)] has no edges
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Rule 3: Reduce Degree-3 Vertices

Rule 3.1:  G[N(v)] has no edges

d d
b< b -
C C

Note. k-VCin G & k-VCin G’

Rule 3.2:  G[N(v)] contains an edge
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Degree-4 Algorithm

ldea:

Apply the improved kernelization approach at each
node of the search tree.

= Runtime: O(nk + k?-1.38%) C 0*(1.38%)

Preprocessing  Kernelization in each node
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Summary

e k-VC can be solved in O(nk + 1.38%k?) time.

e parameterized complexity =
new approach to hard problems: kernelization, search trees,

e always a good idea look for parameterized analysis
asin FPT |

o |deally:
“natural” problem P € FPT = reasonable f(k).
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Books on the Topic

1999

Jorg Flum
Martin Grohe

| BEE: 1 | bt n 111 I
L Y 1
PTT | 1T ISVepIE)

Parameterized
Complexity Theory

~ x
Z] Springer

2006

Also, the textbook we are using:
Parameterized Algorithms

Invitation to
Fixed-Parameter
Algorithms

Rolf Niedermeier

2006
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Computational Complexity

e FPT-reduction
e Decision circuits: weft and depth

o Problem Classes: .-

e Example W/[1]-complete problems

— k-INDEPENDENTSET
— k-CLIQUE

e Example of a W|2]-complete problem:
— k-DOMINATINGSET

Exercise:

Show that these problems are in W[1]/W/|2]

16
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