Julius-Maximilians-
UNIVERSITAT Lonsunio ||||I - f
WURZBURG INFORMATIK | I |

Algorithmen & Komplexitat Institut fir Informatik

Exact Algorithms

Sommer Term 2020

Lecture 9.1 Fixed Parameter Tractability

Alexander Wolff Lehrstuhl fiuir Informatik |

Approaches to NP-Hard Problems

Approaches to NP-Hard Problems

e Exponential Algorithms | e.g. Backtracking

Approaches to NP-Hard Problems

e Exponential Algorithms | e.g. Backtracking

e Approximation Algorithms:
Trade solution quality for runtime

Approaches to NP-Hard Problems

e Exponential Algorithms | e.g. Backtracking

e Approximation Algorithms:
Trade solution quality for runtime

e Heuristics : empirically good, e.g., via benchmark instances

Approaches to NP-Hard Problems

e Exponential Algorithms | e.g. Backtracking

e Approximation Algorithms:
Trade solution quality for runtime

e Heuristics : empirically good, e.g., via benchmark instances

e Randomization: search for a needle in a haystack

Approaches to NP-Hard Problems

e Exponential Algorithms | e.g. Backtracking

e Approximation Algorithms:
Trade solution quality for runtime

e Heuristics : empirically good, e.g., via benchmark instances
e Randomization: search for a needle in a haystack

e Parameterized Algorithms
NEW

An Example: Vertex Cover

Def. (Recall)

Let G = (V/, E) be an undirectred graph.

C C V is a vertex cover of G, when, for every edge
uv € E, eitherue Corv e C.

An Example: Vertex Cover

Def. (Recall)

Let G = (V/, E) be an undirectred graph.

C C V is a vertex cover of G, when, for every edge
uv € E, eitherue Corv e C.

Prob. Minimum Vertex Cover
given: Graph G

Find: a minimum size vertex cover in G

An Example: Vertex Cover

Def. (Recall)

Let G = (V/, E) be an undirectred graph.

C C V is a vertex cover of G, when, for every edge
uv € E, eitherue Corv e C.

Prob. Minimum Vertex Cover — optimization problem
given: Graph G

Find: a minimum size vertex cover in G

An Example: Vertex Cover

Def. (Recall)

Let G = (V/, E) be an undirectred graph.

C C V is a vertex cover of G, when, for every edge
uv € E, eitherue Corv e C.

Prob. Minimum Vertex Cover — optimization problem
given: Graph G

Find: a minimum size vertex cover in G

Prob. — decision problem

An Example: Vertex Cover

Def.

Prob.

Prob.

(Recall)

Let G = (V/, E) be an undirectred graph.

C C V is a vertex cover of G, when, for every edge
uv € E, eitherue Corv e C.

Minimum Vertex Cover — optimization problem
given: Graph G

Find: a minimum size vertex cover in G

k-Vertex Cover (k-VC) — decision problem

Given: graph G, number k

Find: size < k vertex cover in G when possible
(otherwise return “NQ")

History

e one of the first problems shown to be NP-hard

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE <, VC <, ...)

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael B. Garey / David S. Johnson

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

' p . COMPUTERS AND INTRACTABILITY
¢ a p prOXI m a t I O n. A Guide to the Theory of NP-Completeness

Michael B. Garey / David S. Johnson

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

® ap proxi mation: COMPUTERS AND INTRACTABILITY

A Guide to the Theory of NP-Completeness
maximal Matching provides a factor 2
approximation for VC.

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

' p . COMPUTERS AND INTRACTABILITY
¢ a p prOXI m a t I O n. I N A A Guide to the Theory of NP-Completeness

maximal Matching provides a factor 2
approximation for VC.

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

' p . COMPUTERS AND INTRACTABILITY
¢ a p prOXI m a t I O n. I N A A Guide to the Theory of NP-Completeness

maximal Matching provides a factor 2
approximation for VC.

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

' p . COMPUTERS AND INTRACTABILITY
¢ a p prOXI m a t I O n. I N A A Guide to the Theory of NP-Completeness

maximal Matching provides a factor 2
approximation for VC.

e no arbitrarily good approx. is possible:

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

' p . COMPUTERS AND INTRACTABILITY
¢ a p prOXI m a t I O n. I N A A Guide to the Theory of NP-Completeness

maximal Matching provides a factor 2
approximation for VC.

e no arbitrarily good approx. is possible:

There is no factor-1.3606 approx. for
vertex cover

History

e one of the first problems shown to be NP-hard
(SAT =<, CLIQUE =<, VC =<, ...)

e one of the six original NP-complete problems in the classic
book

' p . COMPUTERS AND INTRACTABILITY
¢ a p prOXI m a t I O n. I N A A Guide to the Theory of NP-Completeness

maximal Matching provides a factor 2
approximation for VC.

e no arbitrarily good approx. is possible:

There is no factor-1.3606 approx. for
vertex cover

An Exact Algorithm for k-VC

An Exact Algorithm for k-VC

'BruteForceVC(Graph G, Integer k)

foreach C € (}) do
// check if C is a VC

VvC = true

if vc then
| return (“YES”, C)

return (“NO”, 0)

An Exact Algorithm for k-VC

'BruteForceVC(Graph G, Integer k)

foreach C € (}) do
// check if C is a VC
VC = true
foreach uv € E do
L if {u,v}N C =0 then
| vc = false

if vc then
| return (“YES”, C)

return (“NO”, 0)

An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € (}) do
// check if C is a VC
VC = true
foreach uv € E do
L if {u,v}N C =0 then
| vc = false

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime.

An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € () do
// check if C is a VC
VC = true
foreach uv € E do
L if {u,v}N C =0 then
| vc = false

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime.

An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € () do | ‘ -
// check if C is a VC -
VC = true
foreach uv € E do
L if {u,v}N C =0 then
| vc = false

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime.

k

An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € () do | ‘ -
// check if C is a VC -
VC = true
foreach uv € E do
L if {u,v}N C =0 then
| vc = false

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime.

An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € () do | ‘ -
// check if C is a VC -
VC = true
foreach uv € E do
L if {u,v}N C =0 then
| vc = false

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime.

An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € () do | ‘ —
// check if C is a VC -
vC = true
foreach uv € E do |
Lif {uyv}NC =0 then | [O(E)
| vc = false |

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime.

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k)
 foreach C € (})do (] = () = () = o
// check if C is a VC :
vC = true
foreach uv € E do
L if {u,v}NC =10 then O(E) = O(m)
| vc = false |

if vc then
| return (“YES”, C)

return ("NO”, 0)

Runtime. O(n*m)

An Exact Algorithm for k-VC

iBruteForceVC(Graph G, Integer k)

foreach C € () do | | = (V) =
// check if C is a VC -
vC = true
foreach uv € E do
L if {u,v}NC =10 then O(E) = O(m)
| vc = false |

if vc then
| return (“YES”, C)

return (“NO", 0)

Runtime. O(n“m) — This is not polynomial in the input
size (|G| = n+ m; k) — k is not
constant as it is part of the input.

A New Goal

Find an algorithm for k-VC with runtime:

O(f(k) +111°)

A New Goal

Find an algorithm for k-VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

A New Goal

Find an algorithm for k-VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A New Goal

Find an algorithm for k-VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A New Goal

Find an algorithm for k-VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

A New Goal

Find an algorithm for k-VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

A New Goal

Find an algorithm for k/VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

A New Goal

Find an algorithm for k/VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

A New Goal

Find an algorithm for k/VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

A New Goal

Find an algorithm for k/VC with runtime:

O(f(k)+ |1|°)

where f: N — N is a computable function (indep. of /),
| is a given instance, and c is a constant (indep. of /)

l.e., the runtime depends
— “somehow” on the Parameter k,
— polynomially on the size |/| of the input /.

A problem admitting algorithms with this type of runtime is
called fixed-parameter tractable with respect to k.

FPT = class of fixed-parameter tractable problems.

Remark. BruteForceVC does not have this runtime.

Some Observations

For a graph G, VC C of G, and a vertex v outside of C,
which which vertices must be in C7

Some Observations

For a graph G, VC C of G, and a vertex v outside of C,
which which vertices must be in C7

Obs. 1. For a graph G, VC C of G and vertex v,
Either v € C or N(v) C C.

Some Observations

For a graph G, VC C of G, and a vertex v outside of C,
which which vertices must be in C7

Obs. 1. For a graph G, VC C of G and vertex v,
Either v € C or N(v) C C.

For the decision problem k-VC,
what happens with vertices of degree > k7

Some Observations

For a graph G, VC C of G, and a vertex v outside of C,
which which vertices must be in C7

Obs. 1. For a graph G, VC C of G and vertex v,
Either v € C or N(v) C C.

For the decision problem k-VC,
what happens with vertices of degree > k7

Obs. 2. Each vertex of degree > k is in every k-VC.

Some Observations

For a graph G, VC C of G, and a vertex v outside of C,
which which vertices must be in C7

Obs. 1. For a graph G, VC C of G and vertex v,
Either v € C or N(v) C C.

For the decision problem k-VC,
what happens with vertices of degree > k7

Obs. 2. Each vertex of degree > k is in every k-VC.

What if |E| > k? and every vertex has degree < k?

Some Observations

For a graph G, VC C of G, and a vertex v outside of C,
which which vertices must be in C7

Obs. 1. For a graph G, VC C of G and vertex v,
Either v € C or N(v) C C.

For the decision problem k-VC,
what happens with vertices of degree > k7

Obs. 2. Each vertex of degree > k is in every k-VC.

What if |E| > k? and every vertex has degree < k?

Obs. 3. If |E| > k? and A(G) := max,cy degv < k,
then G has no k-VC.

Algorithm [Buss 1993]
BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k')
return (vc, CU (')

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, ()
G'=(V' E'):=G[V\(CUL)] (L = isolated
k' =k —|C| vertices)
if |[E’| > k? then return (“NO”, ()

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k)
return (vc, CU (')

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV|degv > k}
if |C| > k then return (“NO”, ()
G'=(V' E'):=G[V\(CUL)] (L = isolated
k' =k —|C| vertices)
if |[E’| > k? then return (“NO”, ()

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k)
return (vc, CU (')

Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV|degv > k}
if |C| > k then return (“NO”, ()
G'=(V' E'):=G[V\(CUL)] (L = isolated
k' =k —|C| vertices)
if |[E’| > k? then return (“NO”, ()

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k)
return (vc, CU (')

Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV|degv > k}
if |C| > k then return (“NO”, ()
G'=(V' E'):=G[V\(CUL)] (L = isolated
k' =k —|C| vertices)
if |[E’| > k? then return (“NO”, ()

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k)
return (vc, CU (')

Runtime.

O(n+ m)

time

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV|degv > k}
if |C| > k then return (“NO”, ()
G'=(V' E'):=G[V\(CUL)] (L = isolated
k' =k —|C| vertices)
if |[E’| > k? then return (“NO”, ()

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k)
return (vc, CU (')

Runtime.

O(n+ m)

time

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m’ - (n")*) time
return (vc, CU (')

Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m' - (n)<) time
return (vc, C U C') where m’ := |E’| < k?

Runtime.

Algorithm [Buss 1993]
BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k') O(m’ - (n")*) time

where m’ = |E'| < k?
return (vc, CU C') o= V] < 2k2

Runtime.

Algorithm [Buss 1993]
BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k') O(m’ - (n")*) time

where m’ = |E'| < k?
return (vc, CU C') o= V] < 2k2

Runtime. O(n m4 k2. (2k2)k)

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m’ - (n")*) time

where m’ = |E'| < k?
return (vc, CU C') o= V] < 2k2

Runtime. O(n+ m+ k?-(2k?)%) = O(n+ m + k22kk2K)

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m’ - (n")*) time

where m’ = |E'| < k?
return (vc, CU C') o= V] < 2k2

Runtime. O(n+ m+ k?- (2k?)%) = O(n+ m + k22Kk¥)
Also:

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m’ - (n")*) time

where m’ = |E'| < k?
return (vc, CU C') o= V] < 2k2

Runtime. O(n+ m+ k?- (2k?)%) = O(n+ m + k22Kk¥)
Also: k-VC € FPT!

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m' - (n)<) time
return (vc, C U C') where m’ := |E’| < k?

= n’ = |V'| < 2k?
Runtime. O(n + m+ k?- (2k2)k) — O(n 4+ m+ k22kk2k)

Also: k-VC € FPT! Uk

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m’ - (n")*) time

where m’ = |E'| < k?
return (vc, CU C') o= V] < 2k2

Runtime. O(n+ m+ k?- (2k?)%) = O(n+ m + k?2Kk?¥)
—— N——
Also: k-VC € FPT! Uk f(k)

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the instance
C={veV | degv > k}
if |C| > k then return (“NO”, 0)

G'=(V' E'):=G[V\(CUL)] (L = isolated

k' =k —|C| vertices)
if |[E'| > k° then return (“NO", 0)

O(n+ m)

time

I1) solve the reduced problem exactly
(vc, C') = BruteForceVC(G', k) O(m’ - (n")*) time

where m’ = |E'| < k?
return (vc, CU C') o= V] < 2k2

Runtime. O(n+ m+ k% (2k?)K) = O(n + m + k?2kk2k)
Also: k-VC € FPT! Uk f(k)

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

VAN(V)

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

N(v)

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

sist of nodes where k = 0;

thy b at different levels.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

sist of nodes where k = 0;

thy b at different levels.

YES:

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

sist of nodes where k = 0;

thy b at different levels.

YES: |If there is a leaf ¢ where E;, = (), then C; is a k-VC of G.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

sist of nodes where k = 0;

thy b at different levels.

YES: |If there is a leaf ¢ where E;, = (), then C; is a k-VC of G.
NO:

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)
V/\N(V)
(G—v,k—1,{v}) (G — N(v), k—degv, N(v))
W/\N(W) WAN(W)

Leaves consist of nodes where kK = 0O;
they can be at different levels.

(Ge, 0, Cy)

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

V/\N(V)
Tree- (G—v,k—1{v}) (G— N(v), k—degv, N(v))
height W/\N(W) WAN(W)

Leaves consist of nodes where kK = 0O;
they can be at different levels.

(Ge, 0, Cy)

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

V/\N(V)
Tree- (G—v,k—1{v}) (G— N(v), k—degv, N(v))
height W/\N(W) WAN(W)

k

Leaves consist of nodes where kK = 0O;
they can be at different levels.

(Ge, 0, Cy)

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

v/.\N(v)
Tree- (G—v,k—1{v}) (G— N(v), k—degv, N(v))
height W/\N(W) W/\N(W)

k

Leaves consist of nodes where kK = 0O;
they can be at different levels.

(Gy, 0, Cp)

#nodes: T (k) <2

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

(G—v,k—1{v})
W/\N(W)

(G— N(v), k—degv, N(v))
W/\N(W)

Leaves consist of nodes where kK = 0O;
they can be at different levels.
#nodes: T (k) < 2@

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Tree-
heigh

(Ge

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

(G—v,k—1{v})
W/\N(W)

(G— N(v), k—degv, N(v))
W/\N(W)

Leaves consist of nodes where kK = 0O;
they can be at different levels.
#nodes: T (k) < 2+ 1, T(0) =1

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Tree-
heigh

(Ge

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

(G—v,k—1{v})
W/\N(W)

(G— N(v), k—degv, N(v))
WAN(W)

Leaves consist of nodes V\D
they can be at different levels.
#nodes: T(k) <2(T(k— L)+ L T(0)=1 = T(k) < 2! —1€ 0(2")

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Tree-
heigh

(Ge

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

(G—v,k—1{v})
W/\N(W)

(G— N(v), k—degv, N(v))
WAN(W)

Leaves consist of nodes where kK = 0O;
they can be at different levels.

#nodes: T(k) < 2(T(k—)41 T(0) =1 = T(k) <251 1€ 0(2¥)

= Runtime:

Tree-
heigh

(Ge

YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Search Tree Algorithm

Idea. Improve phase |l using a search tree.

(G, k,0)

(G—v,k—1{v})
W/\N(W)

(G— N(v), k—degv, N(v))
WAN(W)

Leaves consist of nodes where kK = 0O;
they can be at different levels.

#nodes: T(k) < 2(T(k—)41 T(0) =1 = T(k) <251 1€ 0(2¥)

= Runtime: 0*(2K)
YES: If there is a leaf ¢ where E; = (), then C, is a k-VC of G.
NO: If there is no such leaf, then G has no k-VC.

Tree-
heigh

(Ge

Degree-4 Algorithm

ldea.

Better analysis based on |N(v)]|.

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].

What if we could always branch on a vertex v whose degree is
at least 47

10

Degree-4 Algorithm

ldea.

Better analysis based on |[N(v)]|.

10

Degree-4 Algorithm

ldea.

Better analysis based on |[N(v)]|.

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

7o

7) assume: = 4

(G — N(v), k — deg v, N(v))
WA/V(W)

= T(k)=T(k—4)+T(k—1)+1, T(<4)=const.

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: >4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1, T(L4)=const.

" ‘/‘
branching vector (4, 1)

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: >4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1, T(L4)=const.

—
branching vector (4, 1)
solve T (k) =zK -1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

o

7) assume: = 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1T(<L4) = const.
—e
branching vector (4, 1) f

solve T (k) = zk —1 N

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

o

7) assume: = 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1T(<L4) = const.
— Y r»r —
branching vector (4, 1)

solve T (k) = k1 kL k=4 4 k-1

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

o

7) assume: = 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1T(<L4) = const.
— Y r»r —
branching vector (4, 1)

solve T (k) = k1 kL k=4 4 k-1

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

o

7) assume: = 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1~T(L4) = const.

" ‘/—‘
branching vector (4, 1)

solve T (k) = k1 kL k=4 4 k-1

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: >4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)= T(k—4)+ T(k—1)+1~T(< 4) = const.

" ‘/—‘
branching vector (4, 1)

solve T (k) = k1 kL k=4 4 k-1

= Characteristic polynomial: z* =1 + 23

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: >4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)= T(k—4)+ T(k—1)+1~T(< 4) = const.

" ‘/—‘
branching vector (4, 1)

solve T (k) = k1 kL k=4 4 k-1

= Characteristic polynomial: z* =1 + 23
— largest positive solution:

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: > 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1T(<L4) = const.
— Y r»r —
branching vector (4, 1)

solve T(k) =zK—-1 = zK=zk-4 4 Zk71 1

= Characteristic polynomial: z* =1 + 23
= largest positive solution: z ~ 1.38 (branching value)

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: > 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)= T(k—4)+ T(k—1)+1~T(< 4) = const.

" ‘/—‘
branching vector (4, 1)

solve T (k) = k1 kL k=4 4 k-1

= Characteristic polynomial: z* =1 + 23

= largest positive solution: z ~ 1.38 (branching value)

= T(k) € O(1.38).

10

Degree-4 Algorithm

Idea. Better analysis based on |N(v)].
(G, k,0)

P

7) assume: > 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1T(<L4) = const.
— Y r»r —
branching vector (4, 1)

solve T(k) =zK—-1 = zK=zk-4 4 Zk71 1

= Characteristic polynomial: z* =1 + 23
= largest positive solution: z ~ 1.38 (branching value)
= T(k) € O(1.38%). How can we ensure degv > 4 7

10

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:
Rule 1:

Rule 2:

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

® ® —>
"4 W<

Rule 2:

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

®

® ® — ®
"4 W<

o

Rule 2:

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

< ° C=CU{w}

Rule 2:

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

. C=CU{w}
o < —> o k' = k—1
v W
o

Rule 2:

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

. C=CU{w}
o < —> o k' = k—1
v W
o

Rule 2: Reduce degree 2 vertices

u
—
V
w

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

. C=CU{w}
o < —> o k' = k—1
v W
o

Rule 2: Reduce degree 2 vertices

u
uw,
—
V
w

11

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

. C=CU{w}
o < —> o k' = k—1
v W
o

Rule 2: Reduce degree 2 vertices :
when uw is an edge,

U put v and w in C,
uw, otherwise v € C,
—
v and merge u, w.
w

11

Kernel Construction |l

Previous version:

Rule K: Reduce vertices of degree > k
Rule 0: Delete isolated (degree 0) vertices

New rules:

Rule 1: Reduce degree 1 vertices

. C=CU{w}
< —> e k' = k-1
W
o

k' = k-2
Rule 2: Reduce degree 2 vertices
when uw 1s an edge,

put uand w in C,

otherwise v € C,

and merge u,
k' = k — 1

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

] 2
- vg . b<
c c'i:

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

d d
b< b
C C

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

d d
b< b
C C

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

d d
b< b
C C

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

d d
b< b -
C C

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

d d
b< b -
C C

Note. k-VCin G & k-VCin G’

12

Rule 3: Reduce Degree-3 Vertices

Rule 3.1: G[N(v)] has no edges

d d
b< b -
C C

Note. k-VCin G & k-VCin G’

Rule 3.2: G[N(v)] contains an edge

12

Degree-4 Algorithm

ldea:

Apply the improved kernelization approach at each
node of the search tree.

13

Degree-4 Algorithm

ldea:

Apply the improved kernelization approach at each
node of the search tree.

= Runtime:

13

Degree-4 Algorithm

ldea:

Apply the improved kernelization approach at each
node of the search tree.

= Runtime: O(+ -1.38%)

Preprocessing Kernelization in each node

13

Degree-4 Algorithm

ldea:

Apply the improved kernelization approach at each
node of the search tree.

= Runtime: O(nk + k? - 1.38%)

Preprocessing Kernelization in each node

13

Degree-4 Algorithm

ldea:

Apply the improved kernelization approach at each
node of the search tree.

= Runtime: O(nk + k?-1.38%) C 0*(1.38%)

Preprocessing Kernelization in each node

13

Summary

e k-VC can be solved in O(nk + 1.38%k?) time.

e parameterized complexity =
new approach to hard problems: kernelization, search trees,

e always a good idea look for parameterized analysis
asin FPT |

o |deally:
“natural” problem P € FPT = reasonable f(k).

14

Books on the Topic

1999

Jorg Flum
Martin Grohe

| BEE: 1 | bt n 111 I
L Y 1
PTT | 1T ISVepIE)

Parameterized
Complexity Theory

~ x
Z] Springer

2006

Also, the textbook we are using:
Parameterized Algorithms

Invitation to
Fixed-Parameter
Algorithms

Rolf Niedermeier

2006

15

Computational Complexity

e FPT-reduction
e Decision circuits: weft and depth

o Problem Classes: .-

e Example W/[1]-complete problems

— k-INDEPENDENTSET
— k-CLIQUE

e Example of a W|2]-complete problem:
— k-DOMINATINGSET

Exercise:

Show that these problems are in W[1]/W/|2]

16

	Titel
	Approaches to NP-Hard Problems
	An Example: Vertex Cover
	History
	An Exact Algorithm for k-VC
	A New Goal
	Some Observations
	Algorithm \gy{} [Buss 1993]
	Search Tree Algorithm
	Degree-4 Algorithm
	Kernel Construction II
	Rule 3: Reduce Degree-3 Vertices
	Degree-4 Algorithm
	Summary
	Books on the Topic
	Computational Complexity

