UNIVERSITÄT WÜRZBURG

Lehrstuhl für

INFORMATIK I
Algorithmen \& Komplexität

Exact Algorithms

Sommer Term 2020
Lecture 9.1 Fixed Parameter Tractability
Based on: [Parameterized Algorithms: §1.1, 2.2.1, 3.1]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Approaches to NP-Hard Problems

Approaches to NP-Hard Problems

- Exponential Algorithms, e.g. Backtracking

Approaches to NP-Hard Problems

- Exponential Algorithms, e.g. Backtracking
- Approximation Algorithms:

Trade solution quality for runtime

Approaches to NP-Hard Problems

- Exponential Algorithms, e.g. Backtracking
- Approximation Algorithms:

Trade solution quality for runtime

- Heuristics: empirically good, e.g., via benchmark instances

Approaches to NP-Hard Problems

- Exponential Algorithms, e.g. Backtracking
- Approximation Algorithms:

Trade solution quality for runtime

- Heuristics : empirically good, e.g., via benchmark instances
- Randomization: search for a needle in a haystack

Approaches to NP-Hard Problems

- Exponential Algorithms, e.g. Backtracking
- Approximation Algorithms:

Trade solution quality for runtime

- Heuristics : empirically good, e.g., via benchmark instances
- Randomization: search for a needle in a haystack
- Parameterized Algorithms

An Example: Vertex Cover

Def. (Recall)
Let $G=(V, E)$ be an undirectred graph.
$C \subseteq V$ is a vertex cover of G, when, for every edge $u v \in E$, either $u \in C$ or $v \in C$.

An Example: Vertex Cover

Def. (Recall)

Let $G=(V, E)$ be an undirectred graph.
$C \subseteq V$ is a vertex cover of G, when, for every edge $u v \in E$, either $u \in C$ or $v \in C$.

Prob. Minimum Vertex Cover
given: Graph G
Find: a minimum size vertex cover in G

An Example: Vertex Cover

Def. (Recall)

Let $G=(V, E)$ be an undirectred graph.
$C \subseteq V$ is a vertex cover of G, when, for every edge $u v \in E$, either $u \in C$ or $v \in C$.

Prob. Minimum Vertex Cover

- optimization problem given: Graph G
Find: a minimum size vertex cover in G

An Example: Vertex Cover

Def. (Recall)

Let $G=(V, E)$ be an undirectred graph.
$C \subseteq V$ is a vertex cover of G, when, for every edge $u v \in E$, either $u \in C$ or $v \in C$.

Prob. Minimum Vertex Cover

- optimization problem given: Graph G
Find: a minimum size vertex cover in G
Prob.
- decision problem

An Example: Vertex Cover

Def. (Recall)
Let $G=(V, E)$ be an undirectred graph.
$C \subseteq V$ is a vertex cover of G, when, for every edge $u v \in E$, either $u \in C$ or $v \in C$.

Prob. Minimum Vertex Cover

- optimization problem given: Graph G
Find: a minimum size vertex cover in G
Prob. k-Vertex Cover ($k-V C$) - decision problem
Given: graph G, number k
Find: \quad size $\leq k$ vertex cover in G when possible (otherwise return "NO")

History

- one of the first problems shown to be NP-hard

History

- one of the first problems shown to be NP-hard (SAT \preceq_{p} CLIQUE \preceq_{p} VC $\preceq_{p} \ldots$)

History

- one of the first problems shown to be NP-hard (SAT \preceq_{p} CLIQUE \preceq_{p} VC $\preceq_{p} \ldots$) [Karp, 1972]

History

- one of the first problems shown to be NP-hard

$$
\left(\mathrm{SAT} \preceq_{p} \text { CLIQUE } \preceq_{p} \text { VC } \preceq_{p} \ldots\right) \quad[\text { Karp, 1972] }
$$

- one of the six original NP-complete problems in the classic book

History

- one of the first problems shown to be NP-hard

$$
\left(\text { SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \text { VC } \preceq_{p} \ldots\right) \quad[\text { Karp, 1972 }]
$$

- one of the six original NP-complete problems in the classic book
[Garey \& Johnson, 1979]

History

- one of the first problems shown to be NP-hard

$$
\left(\text { SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \text { VC } \preceq_{p} \ldots\right) \quad[\text { Karp, 1972 }]
$$

- one of the six original NP-complete problems in the classic book
[Garey \& Johnson, 1979]
- approximation:

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

History

- one of the first problems shown to be NP-hard

$$
\left(\text { SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \mathrm{VC} \preceq_{p} \ldots\right. \text {) }
$$

[Karp, 1972]

- one of the six original NP-complete problems in the classic book [Garey \& Johnson, 1979]
- approximation:
maximal Matching provides a factor 2 approximation for VC.

History

- one of the first problems shown to be NP-hard

$$
\left(\text { SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \text { VC } \preceq_{p} \ldots\right) \quad[\text { Karp, 1972 }]
$$

- one of the six original NP-complete problems in the classic book
[Garey \& Johnson, 1979]
- approximation:

History

- one of the first problems shown to be NP-hard

$$
\left(\text { SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \text { VC } \preceq_{p} \ldots\right) \quad[\text { Karp, 1972 }]
$$

- one of the six original NP-complete problems in the classic book
[Garey \& Johnson, 1979]
- approximation:
 maximal Matching provides a factor 2 approximation for VC.

History

- one of the first problems shown to be NP-hard

$$
\left(\text { SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \text { VC } \preceq_{p} \ldots\right) \quad[\text { Karp, 1972] }
$$

- one of the six original NP-complete problems in the classic book
[Garey \& Johnson, 1979]
- approximation:
 maximal Matching provides a factor 2 approximation for VC.
- no arbitrarily good approx. is possible:

History

- one of the first problems shown to be NP-hard

$$
\text { (SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \mathrm{VC} \preceq_{p} \ldots \text {) }
$$

[Karp, 1972]

- one of the six original NP-complete problems in the classic book
- approximation:
 maximal Matching provides a factor 2 approximation for VC.
- no arbitrarily good approx. is possible: There is no factor-1.3606 approx. for vertex cover

History

- one of the first problems shown to be NP-hard

$$
\left(\text { SAT } \preceq_{p} \text { CLIQUE } \preceq_{p} \text { VC } \preceq_{p} \ldots\right) \quad[\text { Karp, 1972] }
$$

- one of the six original NP-complete problems in the classic book
- approximation:
 maximal Matching provides a factor 2 approximation for VC.
- no arbitrarily good approx. is possible: There is no factor-1.3606 approx. for vertex cover , assuming $\mathcal{P} \neq \mathcal{N} \mathcal{P}$. [Dinur \& Safra, 2004]

An Exact Algorithm for k - VC
BruteForceVC(Graph G, Integer k)

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k) foreach $C \in\binom{V}{k}$ do
// check if C is a VC $\mathrm{vc}=$ true
if vc then return ("YES", C) return ("NO", \emptyset)

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k) foreach $C \in\binom{V}{k}$ do
// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do

$$
\begin{aligned}
& \text { if }\{u, v\} \cap C=\emptyset \text { then } \\
& L \mathrm{vc}=\text { false }
\end{aligned}
$$

if vc then
return ("YES", C) return ("NO", Ø)

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k) foreach $C \in\binom{V}{k}$ do
// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do

$$
\text { if }\{u, v\} \cap C=\emptyset \text { then }
$$

$$
L \mathrm{vc}=\text { false }
$$

if vc then return ("YES", C) return ("NO", Ø)

Runtime.

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k) foreach $C \in\binom{V}{k}$ do
// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do

$$
\text { if }\{u, v\} \cap C=\emptyset \text { then }
$$

$$
L \mathrm{vc}=\text { false }
$$

if vc then return ("YES", C) return ("NO", Ø)

Runtime.

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k)
foreach $C \in\binom{V}{k}$ do $\left|\binom{V}{k}\right|=\binom{V V \mid}{ k}=\binom{n}{k}=O(\quad)$
// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do

$$
\text { if }\{u, v\} \cap C=\emptyset \text { then }
$$

$$
L \mathrm{vc}=\text { false }
$$

if vc then return ("YES", C) return ("NO", Ø)

Runtime.

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k)
foreach $C \in\binom{V}{k}$ do $\left|\binom{V}{k}\right|=\binom{V \mid}{ k}=\binom{n}{k}=O\left(n^{k}\right)$
// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do

$$
\text { if }\{u, v\} \cap C=\emptyset \text { then }
$$

$$
L \mathrm{vc}=\text { false }
$$

if vc then return ("YES", C) return ("NO", Ø)

Runtime.

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k)
foreach $C \in\binom{V}{k}$ do $\left|\binom{V}{k}\right|=\binom{V \mid}{ k}=\binom{n}{k}=O\left(n^{k}\right)$
// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do

$$
\text { if }\{u, v\} \cap C=\emptyset \text { then }
$$

$$
L \mathrm{vc}=\text { false }
$$

if vc then return ("YES", C) return ("NO", Ø)

Runtime.

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k) foreach $C \in\binom{V}{k}$ do

$$
\left|\binom{V}{k}\right|=\binom{|V|}{k}=\binom{n}{k}=O\left(n^{k}\right)
$$

// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do if $\{u, v\} \cap C=\emptyset$ then
$O(E)=O(m)$

$$
L \mathrm{vc}=\text { false }
$$

if vc then return ("YES", C) return ("NO", Ø)

Runtime.

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k) foreach $C \in\binom{V}{k}$ do

$$
\left|\binom{V}{k}\right|=\binom{|V|}{k}=\binom{n}{k}=O\left(n^{k}\right)
$$

// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do if $\{u, v\} \cap C=\emptyset$ then
$O(E)=O(m)$ return ("NO", Ø)

Runtime. $O\left(n^{k} m\right)$

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer $k)$ foreach $C \in\binom{v}{k}$ do

$$
\left|\binom{V}{k}\right|=\binom{|V|}{k}=\binom{n}{k}=O\left(n^{k}\right)
$$

// check if C is a VC
$\mathrm{vc}=$ true
foreach $u v \in E$ do

$$
\text { if }\{u, v\} \cap C=\emptyset \text { then }
$$

$O(E)=O(m)$
if vc then return ("YES", C)
return ("NO", Ø)
Runtime. $O\left(n^{k} m\right)$ - This is not polynomial in the input size $(|G|=n+m ; k)-k$ is not constant as it is part of the input.

A New Goal
Find an algorithm for k-VC with runtime: $O\left(f(k)+|I|^{c}\right)$

A New Goal
Find an algorithm for k-VC with runtime:

$O\left(f(k)+|I|^{c}\right)$

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I),
I is a given instance, and c is a constant (indep. of I)

A New Goal

Find an algorithm for k-VC with runtime:

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), l is a given instance, and c is a constant (indep. of I)
i.e., the runtime depends

- "somehow" on the Parameter k,
- polynomially on the size $|I|$ of the input I.

A New Goal

Find an algorithm for k-VC with runtime:

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), l is a given instance, and c is a constant (indep. of I)
i.e., the runtime depends

- "somehow" on the Parameter k, difficulty of the instance
- polynomially on the size $|I|$ of the input I.

A New Goal

Find an algorithm for k-VC with runtime:

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), l is a given instance, and c is a constant (indep. of l)
i.e., the runtime depends

- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size $|I|$ of the input I.

A problem admitting algorithms with this type of runtime is called fixed-parameter tractable with respect to k.

A New Goal

Find an algorithm for k-VC with runtime:

$O\left(f(k)+\mid \| I^{\circ}\right)$

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), I is a given instance, and c is a constant (indep. of I)
i.e., the runtime depends

- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size $|I|$ of the input I.

A problem admitting algorithms with this type of runtime is called fixed-parameter tractable with respect to k.
$\mathcal{F P} \mathcal{T}=$ class of fixed-parameter tractable problems.

A New Goal
Find an algorithm for k - VC with runtime: $O\left(f(k)+|I|^{c}\right)$
where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), I is a given instance, and c is a constant (indep. of I)
i.e., the runtime depends

- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size $|I|$ of the input I.

A problem admitting algorithms with this type of runtime is called fixed-parameter tractable with respect to k.
$\mathcal{F P} \mathcal{T}=$ class of fixed-parameter tractable problems.

A New Goal
Find an algorithm for $k-V C$ with runtime: $O\left(f(k)+|I|^{c}\right)=: O^{\star}(f(k))$
where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), I is a given instance, and c is a constant (indep. of I)
i.e., the runtime depends

- "somehow" on the Parameter k, difficulty of the instance - polynomially on the size $|I|$ of the input I.

A problem admitting algorithms with this type of runtime is called fixed-parameter tractable with respect to k.
$\mathcal{F P} \mathcal{T}=$ class of fixed-parameter tractable problems.

A New Goal
Find an algorithm for $k-V C$ with runtime:

$O\left(f(k)+\mid \|^{c}\right)=: O_{\xi}^{*}(f(k))$

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), I is a given instance, and c is a constant (indep. of I)
i.e., the runtime depends

- "somehow" on the Parameter k, difficulty of the instance
- polynomially on the size $|I|$ of the input I.

A problem admitting algorithms with this type of runtime is called fixed-parameter tractable with respect to k.
$\mathcal{F P} \mathcal{T}=$ class of fixed-parameter tractable problems.

A New Goal
Find an algorithm for $k-V C$ with runtime:

$O\left(f(k)+\mid \|^{c}\right)=: O_{\xi}^{*}(f(k))$

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (indep. of I), I is a given instance, and c is a constant (indep. of I)
i.e., the runtime depends

- "somehow" on the Parameter k, difficulty of the instance
- polynomially on the size $|I|$ of the input I.

A problem admitting algorithms with this type of runtime is called fixed-parameter tractable with respect to k.
$\mathcal{F} \mathcal{P} \mathcal{T}=$ class of fixed-parameter tractable problems.
Remark. BruteForceVC does not have this runtime.

Some Observations

For a graph $G, V C C$ of G, and a vertex v outside of C, which which vertices must be in C ?

Some Observations

For a graph $G, V C C$ of G, and a vertex v outside of C, which which vertices must be in C ?

Obs. 1. For a graph $G, V C C$ of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

Some Observations

For a graph $G, V C C$ of G, and a vertex v outside of C, which which vertices must be in C ?

Obs. 1. For a graph $G, V C C$ of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem $k-\mathrm{VC}$, what happens with vertices of degree $>k$?

Some Observations

For a graph $G, V C C$ of G, and a vertex v outside of C, which which vertices must be in C ?

Obs. 1. For a graph $G, V C C$ of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem $k-\mathrm{VC}$, what happens with vertices of degree $>k$?

Obs. 2. Each vertex of degree $>k$ is in every $k-\mathrm{VC}$.

Some Observations

For a graph $G, V C C$ of G, and a vertex v outside of C, which which vertices must be in C ?

Obs. 1. For a graph $G, V C C$ of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem $k-\mathrm{VC}$, what happens with vertices of degree $>k$?

Obs. 2. Each vertex of degree $>k$ is in every $k-V C$.

What if $|E|>k^{2}$ and every vertex has degree $\leq k$?

Some Observations

For a graph $G, V C C$ of G, and a vertex v outside of C, which which vertices must be in C ?

Obs. 1. For a graph $G, V C C$ of G and vertex v, Either $v \in C$ or $N(v) \subseteq C$.

For the decision problem $k-\mathrm{VC}$, what happens with vertices of degree $>k$?

Obs. 2. Each vertex of degree $>k$ is in every $k-V C$.

What if $|E|>k^{2}$ and every vertex has degree $\leq k$?
Obs. 3. If $|E|>k^{2}$ and $\Delta(G):=\max _{v \in V} \operatorname{deg} v \leq k$, then G has no $k-V C$.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices $)$
if $\left|E^{\prime}\right|>k^{2}$ then return (" $N O$ ", Ø)
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$
return (vc, $C \cup C^{\prime}$)

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices $)$
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$
return (vc, $C \cup C^{\prime}$)
Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$
return (vc, $C \cup C^{\prime}$)
Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$
time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$
return (vc, $C \cup C^{\prime}$)
Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$
time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)

Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$O(n+m)$
time
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return (" NO ", Ø)
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time return (vc, $C \cup C^{\prime}$)

Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$O(n+m)$
time
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$

Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$O(n+m)$
time
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$

Runtime.

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg} v>k\} \\
& \text { if }|C|>k \text { then return ("NO", } \emptyset \text {) }
\end{aligned}
$$

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$ time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$

Runtime. $O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)$

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg} v>k\} \\
& \text { if }|C|>k \text { then return ("NO", } \emptyset \text {) }
\end{aligned}
$$

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$ time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$

Runtime. $O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)=O\left(n+m+k^{2} 2^{k} k^{2 k}\right)$

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg} v>k\} \\
& \text { if }|C|>k \text { then return ("NO", } \emptyset \text {) }
\end{aligned}
$$

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$ time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$

Runtime. $O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)=O\left(n+m+k^{2} 2^{k} k^{2 k}\right)$
Also:

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg} v>k\} \\
& \text { if }|C|>k \text { then return ("NO", } \emptyset \text {) }
\end{aligned}
$$

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$ time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$

Runtime. $O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)=O\left(n+m+k^{2} 2^{k} k^{2 k}\right)$
Also: $\quad k-\mathrm{VC} \in \mathcal{F P T}$!

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg} v>k\} \\
& \text { if }|C|>k \text { then return ("NO", } \emptyset \text {) }
\end{aligned}
$$

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$ time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$

Runtime. $O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)=O(\underbrace{n+m}+k^{2} 2^{k} k^{2 k})$
Also: $k-\mathrm{VC} \in \mathcal{F P T}$!
$\left|\left|\left.\right|^{1}\right.\right.$

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg} v>k\} \\
& \text { if }|C|>k \text { then return ("NO", } \emptyset \text {) }
\end{aligned}
$$

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$ time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$
$\begin{array}{ll}\text { Runtime. } & O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)=O(\underbrace{n+m}_{|I|^{1}}+\underbrace{k^{2} 2^{k} k^{2 k}}_{f(k)}) \\ \text { Also: } & k-\mathrm{VC} \in \mathcal{F} \mathcal{P} \boldsymbol{T}!\end{array}$
Also: $k-\mathrm{VC} \in \mathcal{F P} \mathcal{T}!$
$f(k)$

Algorithm [Buss 1993]

BussVC(Graph G, Integer k)
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg} v>k\} \\
& \text { if }|C|>k \text { then return ("NO", } \emptyset \text {) }
\end{aligned}
$$

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)](L=$ isolated
$k^{\prime}=k-|C| \quad$ vertices)
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", Ø)
$O(n+m)$ time
II) solve the reduced problem exactly
$\left(\mathrm{vc}, C^{\prime}\right)=\operatorname{BruteForceVC}\left(G^{\prime}, k^{\prime}\right)$ return (vc, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$
$\begin{array}{ll}\text { Runtime. } & O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)=O(\underbrace{n+m}_{\left|| |^{1}\right.}+\underbrace{k^{2} 2^{k} k^{2 k}}_{f(k)}) \\ \text { Also: } & k-\mathrm{VC} \in \mathcal{F} \mathcal{P} \boldsymbol{T}!\end{array}$

Search Tree Algorithm

Idea. Improve phase II using a search tree.

$$
(G, k, \emptyset)
$$

Search Tree Algorithm

Idea. Improve phase II using a search tree.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

$(G-v, k-1,\{v\}) \quad$	$(G-N(v), k-\operatorname{deg} v, N(v))$

Search Tree Algorithm

Idea. Improve phase II using a search tree.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G. NO:

Search Tree Algorithm

Idea. Improve phase II using a search tree.

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G. NO: If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

Treeheight	

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G. NO: If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

Tree-		
height	$(G-v, k-1,\{v\})$	$(G-N(v), k-\operatorname{deg} v, N(v))$
K	$\left(G_{\ell}, 0, C_{\ell}\right)$	

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G. NO: If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

\#nodes: $T(k) \leq 2$

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-V C$ of G. $\mathrm{NO}:$ If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

\#nodes: $T(k) \leq 2 \square \square$
YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G. NO: If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

\#nodes: $T(k) \leq 2 T(k-1)+1, T(0)=1$

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-V C$ of G. $\mathrm{NO}:$ If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

\#nodes: $T(k) \leq 2 T(k-1)+1, T(0)=1 \quad \Rightarrow T(k) \leq 2^{k+1}-1 \in O\left(2^{k}\right)$

YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G. NO: If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

\#nodes: $T(k) \leq 2 T(k-1)+1, T(0)=1 \quad \Rightarrow T(k) \leq 2^{k+1}-1 \in O\left(2^{k}\right)$
\Rightarrow Runtime:
YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-V C$ of G. NO: If there is no such leaf, then G has no $k-V C$.

Search Tree Algorithm

Idea. Improve phase II using a search tree.

\#nodes: $T(k) \leq 2 T(k-1)+1, T(0)=1 \quad \Rightarrow T(k) \leq 2^{k+1}-1 \in O\left(2^{k}\right)$
\Rightarrow Runtime: $O^{\star}\left(2^{k}\right)$
YES: If there is a leaf ℓ where $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-V C$ of G. NO: If there is no such leaf, then G has no $k-V C$.

Degree-4 Algorithm
Idea. Better analysis based on $|N(v)|$.

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

What if we could always branch on a vertex v whose degree is at least 4?

Degree-4 Algorithm
Idea. Better analysis based on $|N(v)|$.

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=$

Degree-4 Algorithm
Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-4)+T(k-1)+1, \quad T(\leq 4)=$ const.

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$$
\Rightarrow \quad T(k)=T(k-\underbrace{4})+T\left(k^{k-1}\right)+1, \quad T(\leq 4)=\text { const. }
$$

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-4)+T(k-1)+1, \quad T(\leq 4)=$ const. branching vector $(4,1)$
solve $T(k)=z^{k}-1$

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4})+T(k-1)+1, r^{\text {branching vector }(4,1)} T(\leq 4)=$ const.
solve $T(k)=z^{k}-1 \Rightarrow z^{k}=$

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4})+T(k-1)+1, r^{\text {branching vector }(4,1)} T(\leq 4)=$ const.
solve $T(k)=z^{k}-1 \Rightarrow z^{k} \xlongequal{=} z^{k-4}+z^{k-1}$

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4)+T(k-1}_{\text {branching vector }(4,1)})+1,>T(\leq 4)=$ cons. solve $T(k)=z^{k}-1 \Rightarrow z^{k}=z^{k-4}+z^{k-1}$

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4)}_{\text {branching vector }(4,1)+T(k-1)})+1, T(\leq 4)=$ const. solve $T(k)=z^{k}-1 \quad \Rightarrow \quad z^{k}=z^{k-4}+z^{k-1}$

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4)+1,}_{\text {branching vector }(4,1)+T(k-1)} T(\leq 4)=$ const. solve $T(k)=z^{k}-1 \quad \Rightarrow z^{k} \xlongequal{=} z^{k-4}+z^{k-1}$
\Rightarrow Characteristic polynomial: $z^{4}=1+z^{3}$

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4}_{\text {branching vector }(4,1)+T(k-1)})+1, T(\leq 4)=$ const. solve $T(k)=z^{k}-1 \quad \Rightarrow \quad z^{k}=z^{k-4}+z^{k-1}$
\Rightarrow Characteristic polynomial: $z^{4}=1+z^{3}$
\Rightarrow largest positive solution:

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4}_{\text {branching vector }(4,1)+T(k-1)})+1, T(\leq 4)=$ const. solve $T(k)=z^{k}-1 \quad \Rightarrow \quad z^{k}=z^{k-4}+z^{k-1}$
\Rightarrow Characteristic polynomial: $z^{4}=1+z^{3}$
\Rightarrow largest positive solution: $z \approx 1.38$ (branching value)

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4}_{\text {branching vector }(4,1)+T(k-1)})+1, T(\leq 4)=$ const. solve $T(k)=z^{k}-1 \quad \Rightarrow \quad z^{k}=z^{k-4}+z^{k-1}$
\Rightarrow Characteristic polynomial: $z^{4}=1+z^{3}$
\Rightarrow largest positive solution: $z \approx 1.38$ (branching value)
$\Rightarrow T(k) \in O\left(1.38^{k}\right)$.

Degree-4 Algorithm

Idea. Better analysis based on $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4)+1,}_{\text {branching vector }(4,1)+T(k-1)} T(\leq 4)=$ const. solve $T(k)=z^{k}-1 \quad \Rightarrow \quad z^{k}=z^{k-4}+z^{k-1}$
\Rightarrow Characteristic polynomial: $z^{4}=1+z^{3}$
\Rightarrow largest positive solution: $z \approx 1.38$ (branching value)
$\Rightarrow \quad T(k) \in O\left(1.38^{k}\right)$. How can we ensure $\operatorname{deg} v \geq 4$?

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1:

Rule 2:

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

Rule 2:

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

Rule 2:

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

$$
C=C^{\prime} \cup\{w\}
$$

Rule 2:

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

$$
\begin{aligned}
& C=C^{\prime} \cup\{w\} \\
& k^{\prime}=k-1
\end{aligned}
$$

Rule 2:

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

$$
\begin{aligned}
& C=C^{\prime} \cup\{w\} \\
& k^{\prime}=k-1
\end{aligned}
$$

Rule 2: Reduce degree 2 vertices

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

$$
\begin{aligned}
& C=C^{\prime} \cup\{w\} \\
& k^{\prime}=k-1
\end{aligned}
$$

Rule 2: Reduce degree 2 vertices

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

$$
\begin{aligned}
& C=C^{\prime} \cup\{w\} \\
& k^{\prime}=k-1
\end{aligned}
$$

Rule 2: Reduce degree 2 vertices

when $u w$ is an edge, put u and w in C, otherwise $v \in C$, and merge u, w.

Kernel Construction II

Previous version:

Rule K: Reduce vertices of degree $>k$
Rule 0: Delete isolated (degree 0) vertices
New rules:
Rule 1: Reduce degree 1 vertices

Rule 2: Reduce degree 2 vertices

$$
\begin{aligned}
& C=C^{\prime} \cup\{w\} \\
& k^{\prime}=k-1
\end{aligned}
$$

$>k^{\prime}=k-2$ when $u w$ is an edge, put u and w in C, otherwise $v \in C$, and merge u, w. $k^{\prime}=k-1$

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

Note. $\quad k-\mathrm{VC}$ in $G \Leftrightarrow k-\mathrm{VC}$ in G^{\prime}. [proof omitted]

Rule 3: Reduce Degree-3 Vertices
Rule 3.1: $G[N(v)]$ has no edges

G^{\prime}

Note. $\quad k-V C$ in $G \Leftrightarrow k-V C$ in G^{\prime}. [proof omitted]

Rule 3.2: $G[N(v)]$ contains an edge

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each node of the search tree.

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each node of the search tree.
\Rightarrow Runtime:

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each node of the search tree.
\Rightarrow Runtime: $O\left(\square+\square \cdot 1.38^{k}\right)$

Preprocessing Kernelization in each node

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each node of the search tree.
\Rightarrow Runtime: $O\left(n k+k^{2} \cdot 1.38^{k}\right)$

Preprocessing Kernelization in each node

Degree-4 Algorithm

Idea: Apply the improved kernelization approach at each node of the search tree.
\Rightarrow Runtime: $O\left(n k+k^{2} \cdot 1.38^{k}\right) \subseteq O^{\star}\left(1.38^{k}\right)$

Preprocessing Kernelization in each node

Summary

- k-VC can be solved in $O\left(n k+1.38^{k} k^{2}\right)$ time.
- parameterized complexity $=$ new approach to hard problems: kernelization, search trees,
- always a good idea look for parameterized analysis as in FPT!
- Ideally:
"natural" problem $P \in \mathcal{F P \mathcal { T }} \Rightarrow$ reasonable $f(k)$.

Books on the Topic

MONOGRAPHS IN COMPUTER SCIENCE
PARAMETERIZED COMPLEXITY
R.G. Downey
M.R. Fellows

Springer

2006

2006

Also, the textbook we are using: Parameterized Algorithms

Computational Complexity

- FPT-reduction
- Decision circuits: weft and depth
- Problem Classes:

- Example $W[1]$-complete problems
- k-IndependentSet
- k-Clique
- Example of a $W[2]$-complete problem:
- k-DominatingSet

Exercise:
Show that these problems are in $\mathrm{W}[1] / \mathrm{W}[2]$

