

Exact Algorithms

Sommer Term 2020

Lecture 8. Finding Trees and Partitioning Numbers

Based on: [Exact Exp. Algos: $\S9.1$, Param. Algos: $\S10.1.2$]

Trees: see [J. Nederlof, Algorithmica (2013) 868-884. https://doi.org/10.1007/s00453-012-9630-x]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

Given: Graph G = (V, E), terminals $K \subseteq V$, number c

Question: Does there exist a subtree (V', E') of G such that

Given: Graph G = (V, E), terminals $K \subseteq V$, number c

Question: Does there exist a subtree (V', E') of G such that

Given: Graph G = (V, E), terminals $K \subseteq V$, number c

Question: Does there exist a subtree (V', E') of G such that

IE-Formulation?

Given: Graph G = (V, E), terminals $K \subseteq V$, number c

Question: Does there exist a subtree (V', E') of G such that

IE-Formulation?

 $\mathcal{U} = \{ \text{branching walks of weight} \le c \text{ in } G \}$

Given: Graph G = (V, E), terminals $K \subseteq V$, number c

Question: Does there exist a subtree (V', E') of G such that

IE-Formulation?

 $\mathcal{U} = \{ \text{branching walks of weight} \le c \text{ in } G \}$

 $\mathcal{P} = \{ P_v \mid v \in K,$

Given: Graph G = (V, E), terminals $K \subseteq V$, number c

Question: Does there exist a subtree (V', E') of G such that

IE-Formulation?

 $\mathcal{U} = \{ \text{branching walks of weight} \le c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K,$$

where $P_v =$ "branching walk contains v" }

- T = (V', E') is an ordered rooted tree, and
- $\varphi: V' \to V$ is a homomorphism from T to G.

- T = (V', E') is an ordered rooted tree, and
- $\varphi: V' \to V$ is a homomorphism from T to G.

- T = (V', E') is an ordered rooted tree, and
- $\varphi: V' \to V$ is a homomorphism from T to G.

- T = (V', E') is an ordered rooted tree, and
- $\varphi: V' \to V$ is a homomorphism from T to G.

Obs.
$$\forall T \in \mathcal{T}_n : \exists ! \ i, j \in \mathbb{N}, \ T_i \in \mathcal{T}_i, \ T_j \in \mathcal{T}_j$$

such that $T = \gamma(T_i, T_j)$

Def. $\mathcal{T}_n :=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_n : \exists ! \ i, j \in \mathbb{N}, \ T_i \in \mathcal{T}_i, \ T_j \in \mathcal{T}_j$ such that $T = \gamma(T_i, T_j) \dots i + j = ?$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

- **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T, φ)
 - contained in $G[V \setminus F]$
 - starting at $x \in V \setminus F$
 - with $\leq c$ edges

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

- **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ)
 - contained in $G[V \setminus F]$
 - starting at $x \in V \setminus F$
 - $\bullet \ \text{with} \leq c \ \text{edges}$

Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$.

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

- **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ)
 - contained in $G[V \setminus F]$
 - starting at $x \in V \setminus F$
 - $\bullet \ \text{with} \leq c \ \text{edges}$

Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$.

Thm. For $F \subseteq K$ and $x \in V \setminus F$: $b_F(x,c) = \begin{cases} ? & \text{if } c = 0, \end{cases}$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

- **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ)
 - contained in $G[V \setminus F]$
 - starting at $x \in V \setminus F$
 - $\bullet \ \text{with} \leq c \ \text{edges}$

Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$.

Thm. For $F \subseteq K$ and $x \in V \setminus F$: $b_F(x,c) = \begin{cases} 1 & \text{if } c = 0, \end{cases}$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

- **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ)
 - contained in $G[V \setminus F]$
 - starting at $x \in V \setminus F$
 - $\bullet \ \text{with} \leq c \ \text{edges}$

Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$.

Thm. For $F \subseteq K$ and $x \in V \setminus F$: $b_F(x,c) = \begin{cases} 1 & \text{if } c = 0, \\ \sum_{t \in N(x) \setminus F} \sum_{c_1+c_2 \leq c-1} b_F(t,c_1) \cdot b_F(x,c_2) & \text{otherwise.} \end{cases}$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

- **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ)
 - contained in $G[V \setminus F]$
 - starting at $x \in V \setminus F$
 - $\bullet \ \text{with} \leq c \ \text{edges}$

Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$.

Thm. For
$$F \subseteq K$$
 and $x \in V \setminus F$:
 $b_F(x,c) = \begin{cases} 1 & \text{if } c = 0, \\ \sum_{t \in N(x) \setminus F} \sum_{c_1+c_2 \leq c-1} b_F(t,c_1) \cdot b_F(x,c_2) & \text{otherwise.} \end{cases}$

Runtime:

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ .

- **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ)
 - contained in $G[V \setminus F]$
 - starting at $x \in V \setminus F$
 - $\bullet \ \text{with} \leq c \ \text{edges}$

Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$.

Thm. For
$$F \subseteq K$$
 and $x \in V \setminus F$:

$$b_F(x,c) = \begin{cases} 1 & \text{if } c = 0, \\ \sum_{t \in N(x) \setminus F} \sum_{c_1+c_2 \leq c-1} b_F(t,c_1) \cdot b_F(x,c_2) & \text{otherwise.} \end{cases}$$
Runtime: $O(n^2 \cdot n^3) = O(n^5)$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ . **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ) • contained in $G[V \setminus F]$ • starting at $x \in V \setminus F$ • with $\leq c$ edges and with edge weights $\omega: E \to \mathbb{Z}_{>0}$? Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$. **Thm.** For $F \subseteq K$ and $x \in V \setminus F$: if c = 0. $b_F(x,c) = \begin{cases} 1 \\ \sum_{t \in N(x) \setminus F} \sum_{c_1+c_2 \leq c-1} b_F(t,c_1) \cdot b_F(x,c_2) \\ 0 \end{cases}$ otherwise. **Runtime:** $O(n^2 \cdot n^3) = O(n^5)$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ . **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ) • contained in $G[V \setminus F]$ • starting at $x \in V \setminus F$ • with $\leq c$ edges total edge weight $\leq c$ and with edge weights $\omega: E \to \mathbb{Z}_{>0}$? Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$. **Thm.** For $F \subseteq K$ and $x \in V \setminus F$: if c = 0. $b_F(x,c) = \begin{cases} 1 \\ \sum_{t \in N(x) \setminus F} \sum_{c_1+c_2 \leq c-1} b_F(t,c_1) \cdot b_F(x,c_2) \\ 0 \end{cases}$ otherwise. **Runtime:** $O(n^2 \cdot n^3) = O(n^5)$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ . **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ) • contained in $G[V \setminus F]$ • starting at $x \in V \setminus F$ • with $\leq c$ edges total edge weight $\leq c$ and with edge weights $\omega: E \to \mathbb{Z}_{>0}$? Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$. **Thm.** For $F \subseteq K$ and $x \in V \setminus F$: if c = 0. $b_F(x,c) = \begin{cases} 1 \\ \sum_{t \in N(x) \setminus F} \sum_{c_1+c_2 \leq c} b_F(t,c_1) \cdot b_F(x,c_2) \\ c - \omega(xt) & \text{otherwise.} \end{cases}$ **Runtime:** $O(n^2 \cdot n^3) = O(n^5)$

 $|\mathcal{T}_n|$ works for counting rooted ordered trees... still need φ . **Def.** $\mathcal{B}_F(x,c) :=$ all branching walks of type (T,φ) • contained in $G[V \setminus F]$ • starting at $x \in V \setminus F$ • with $\leq c$ edges total edge weight $\leq c$ and with edge weights $\omega: E \to \mathbb{Z}_{>0}$? Let $b_F(x,c) := |\mathcal{B}_F(x,c)|$. **Thm.** For $F \subseteq K$ and $x \in V \setminus F$: $b_F(x,c) = \begin{cases} 1 \\ \sum_{t \in N(x) \setminus F} \sum_{c_1+c_2 \leq c-1} b_F(t,c_1) \cdot b_F(x,c_2) \\ c - \omega(xt) & \text{otherwise.} \end{cases}$ if c = 0. **Runtime:** $O(n^2 \cdot n^3) = O(n^5)$ – unweighted case $O(nc \cdot nc^2) = O(n^2c^3)$ – weighted case

Steiner Tree: Summary

Given: Graph G = (V, E), terminals $K \subseteq V$, number c

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and
- $|E'| \le c$?

Steiner Tree: Summary

Graph G = (V, E), terminals $K \subseteq V$, number c **Given:**

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and
- |E'| < c?

IE-Formulation:

50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight } \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v = "branching walk contains v" \}$

Steiner Tree: Summary

Graph G = (V, E), terminals $K \subseteq V$, number c **Given**:

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and
- $|E'| \leq c$?

IE-Formulation:

50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight } \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v =$ "branching walk contains v" }

Recall: $N(\mathcal{P}) =$

Graph G = (V, E), terminals $K \subseteq V$, number c **Given:**

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and
- $|E'| \leq c$?

IE-Formulation:

50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight } \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v = "branching walk contains v" \}$

Recall: $N(\mathcal{P}) =$ $\sum (-1)^{|F|} N(\emptyset, F, \mathcal{P} \setminus F)$ $F \subset \mathcal{P}$

Graph G = (V, E), terminals $K \subseteq V$, number c **Given:**

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and
- $|E'| \leq c$?

IE-Formulation:

50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight} \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v =$ "branching walk contains v" }

Recall: $N(\mathcal{P}) =$ $\sum_{F \subseteq \mathcal{P}} (-1)^{|F|} \underbrace{N(\emptyset, F, \mathcal{P} \setminus F)}_{\beta_F(s_0, c)}$

Graph G = (V, E), terminals $K \subseteq V$, number c **Given:**

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and
- |E'| < c?

IE-Formulation:

50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight } \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v =$ "branching walk contains v" }

Recall:
$$N(\mathcal{P}) =$$

$$\sum_{F \subseteq \mathcal{P}} (-1)^{|F|} \underbrace{N(\emptyset, F, \mathcal{P} \setminus F)}_{\beta_F(s_0, c)}$$

Graph G = (V, E), terminals $K \subseteq V$, number c **Given:**

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and
- |E'| < c?

IE-Formulation:

50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight } \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v =$ "branching walk contains v" }

Runtime: $O(2^k \cdot poly(n))$ unweighted

Recall:
$$N(\mathcal{P}) =$$

$$\sum_{F \subseteq \mathcal{P}} (-1)^{|F|} \underbrace{N(\emptyset, F, \mathcal{P} \setminus F)}_{\beta_F(s_0, c)}$$

Graph G = (V, E), terminals $K \subseteq V$, number c **Given:** and edge weights $\omega: E \to \mathbb{Z}_{>0}$,

Question: Does there exist a subtree (V', E') of G such that

• $K \subseteq V'$ and

• $|E'| \leq c? \omega(E') \leq c$

- **IE-Formulation:**
- 50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight} \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v =$ "branching walk contains v" }

Graph G = (V, E), terminals $K \subseteq V$, number c **Given:** and edge weights $\omega: E \to \mathbb{Z}_{>0}$,

Question: Does there exist a subtree (V', E') of G such that

- $K \subseteq V'$ and • $|E'| \leq c? \omega(E') \leq c$
- **IE-Formulation:**
- 5.50EK $\mathcal{U} = \{ \text{branching walks with root } s_0 \text{ and weight } \leq c \text{ in } G \}$

$$\mathcal{P} = \{ P_v \mid v \in K \setminus \{s_0\},\$$

where $P_v = "branching walk contains v" \}$

Runtime: $O(2^k \cdot poly(n))$ unweighted $O(2^k \cdot \operatorname{poly}(n, c))$ weighted

Recall:
$$N(\mathcal{P}) =$$

$$\sum_{F \subseteq \mathcal{P}} (-1)^{|F|} \underbrace{N(\emptyset, F, \mathcal{P} \setminus F)}_{\beta_F(s_0, c)}$$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G of maximum degree $\leq c$?

7

- **Given:** Graph G = (V, E), number $1 \le c \le n$
- **Question:** \exists spanning tree of G of maximum degree $\leq c$?

7

IE-Formulation:

 $\mathcal{U} =$

 $\mathcal{P} =$

- **Given:** Graph G = (V, E), number $1 \le c \le n$
- **Question:** \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ and of degree} \leq c \text{ in } G \}$ $\mathcal{P} =$

- **Given:** Graph G = (V, E), number $1 \le c \le n$
- **Question:** \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ and of degree} \leq c \text{ in } G \}$ $\mathcal{P} = \{ P_v \mid v \in V, \}$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ and of degree} \le c \text{ in } G \}$ $\mathcal{P} = \{ P_v \mid v \in V, \\ \text{where } P_v = \text{"branching walk contains } v" \}$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$$\begin{split} \mathcal{U} &= \{ \text{branching walks of length } n-1 \text{ and of degree} \leq c \text{ in } G \} \\ \mathcal{P} &= \{ P_v \mid v \in V, \\ & \text{where } P_v = \text{"branching walk contains } v" \; \} \end{split}$$

Easier Problem:

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$$\begin{split} \mathcal{U} &= \{ \text{branching walks of length } n-1 \text{ and of degree} \leq c \text{ in } G \} \\ \mathcal{P} &= \{ P_v \mid v \in V, \\ & \text{where } P_v = \texttt{"branching walk contains } v" \; \} \end{split}$$

Easier Problem: (find and solve it yourself!)

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$$\begin{split} \mathcal{U} &= \{ \text{branching walks of length } n-1 \text{ and of degree} \leq c \text{ in } G \} \\ \mathcal{P} &= \{ P_v \mid v \in V, \\ & \text{where } P_v = \texttt{"branching walk contains } v" \; \} \end{split}$$

Easier Problem: (find and solve it yourself!)

Runtime: $O^*(2^n)$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$$\begin{split} \mathcal{U} &= \{ \text{branching walks of length } n-1 \text{ and of degree} \leq c \text{ in } G \} \\ \mathcal{P} &= \{ P_v \mid v \in V, \\ & \text{where } P_v = \texttt{"branching walk contains } v" \; \} \end{split}$$

Easier Problem: (find and solve it yourself!)

Runtime: $O^*(2^n)$, improving over $O^*(5.92^n)$ [Amini et al., ICALP'09]

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

 $\mathcal{U} =$

 $\mathcal{P} =$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ with } \geq c \text{ internal vtc.} \}$ $\mathcal{P} =$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ with } \geq c \text{ internal vtc.} \}$ $\mathcal{P} = \{ P_v \mid v \in V, \}$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

 $\begin{aligned} \mathcal{U} &= \{ \text{branching walks of length } n-1 \text{ with } \geq c \text{ internal vtc.} \} \\ \mathcal{P} &= \{ P_v \mid v \in V, \\ & \text{where } P_v = \text{"branching walk contains } v" \; \} \end{aligned}$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ with } \geq c \text{ internal vtc.} \}$ $\mathcal{P} = \{ P_v \mid v \in V,$ where $P_v = \text{"branching walk contains } v \text{"} \}$

Easier Problem:

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ with } \geq c \text{ internal vtc.} \}$ $\mathcal{P} = \{ P_v \mid v \in V,$ where $P_v = \text{"branching walk contains } v \text{"} \}$

Easier Problem: (find and solve it yourself!)

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$$\begin{split} \mathcal{U} &= \{ \text{branching walks of length } n-1 \text{ with } \geq c \text{ internal vtc.} \} \\ \mathcal{P} &= \{ P_v ~|~ v \in V, \\ & \text{where } P_v = \texttt{"branching walk contains } v" \; \} \end{split}$$

Easier Problem: (find and solve it yourself!)

Runtime: $O^*(2^n)$

Given: Graph G = (V, E), number $1 \le c \le n$

Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

 $\mathcal{U} = \{ \text{branching walks of length } n-1 \text{ with } \geq c \text{ internal vtc.} \}$ $\mathcal{P} = \{ P_v \mid v \in V,$ where $P_v = \text{"branching walk contains } v \text{"} \}$

Easier Problem: (find and solve it yourself!)

Runtime: $O^*(2^n)$, improving over $O^*(3^n)$ [Fernau et al., WG'09]

PARTITION

Given: Set S of integers.

Question: \exists partition of S into two sets with the same sum?

PARTITION

Given: Set S of integers.

Question: \exists partition of S into two sets with the same sum?

SUBSETSUM **Given:** Set S of integers and an integer t. **Question:** \exists subset of S that sums to t?

PARTITION

Given: Set S of integers.

Question: \exists partition of S into two sets with the same sum?

SUBSETSUM **Given:** Set S of integers and an integer t. **Question:** \exists subset of S that sums to t?

3-PARTITION

Given: Set S of integers

Question: \exists partition of S into 3-tuples with the same sum?

PARTITION

Given: Set S of integers.

Question: \exists partition of S into two sets with the same sum?

SUBSETSUM **Given:** Set S of integers and an integer t. **Question:** \exists subset of S that sums to t?

3-PARTITION

Given: Set S of integers

Question: \exists partition of S into 3-tuples with the same sum?

Thm. SUBSETSUM is *weakly* NP-hard.

Thm. SUBSETSUM is *weakly* NP-hard.

Obs. Standard DP needs $O^*(n \cdot t)$ time and space

Thm. SUBSETSUM is *weakly* NP-hard.

Obs. Standard DP needs $O^*(n \cdot t)$ time and space

Question: What is possible without depending on $\sum S$?

Thm. SUBSETSUM is *weakly* NP-hard.

Obs. Standard DP needs $O^*(n \cdot t)$ time and space

Question: What is possible without depending on $\sum S$?

Obs. For S partitioned into $S_1 \cup S_2$, note:

Thm. SUBSETSUM is weakly NP-hard. **Obs.** Standard DP needs $O^*(n \cdot t)$ time and space

Question: What is possible without depending on $\sum S$?

Obs. For S partitioned into $S_1 \cup S_2$, note:

 ${\boldsymbol{S}}$ has a subset of sum ${\boldsymbol{t}}$

 \uparrow

Thm. SUBSETSUM is *weakly* NP-hard. **Obs.** Standard DP needs $O^*(n \cdot t)$ time and space **Question:** What is possible without depending on $\sum S$? **Obs.** For S partitioned into $S_1 \cup S_2$, note: S has a subset of sum t \uparrow $\exists t_1, t_2 \text{ such that } t_1 + t_2 = t \text{ and } S_1 \text{ has a subset of sum } t_1$ and S_2 has a subset of sum t_2

$$S = \{ \dots, \dots \}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2

Algo: Compute \sum_1 and \sum_2 .

Test:
$$\exists t_1 \in \sum_1 t_2 \in \sum_2 t_1$$
 with $t_1 + t_2 = t_1$

$$S = \{\dots, \dots, N\}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .

Test:
$$\exists t_1 \in \sum_1$$
, $t_2 \in \sum_2$ with $t_1 + t_2 = t$

$$S = \{\dots, \dots, \}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .

Test:
$$\exists t_1 \in \sum_1, t_2 \in \sum_2$$
 with $t_1 + t_2 = t$

Runtime: ... $\sum_{1} \times \sum_{2}$ candidates to check?

$$S = \{ \begin{array}{cccc} & \dots & \dots & \dots & \dots & \dots \\ & & \text{sum } t_1 & \text{sum } t_2 \end{array} \}$$
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 := \text{ all possible subset sums of } S_1$
 $\sum_2 := \text{ all possible subset sums of } S_2$
Algo: Compute $\sum_1 \text{ and } \sum_2$.
 $\text{sort } \sum_1 \text{ and } \sum_2$
 $\text{Test: } \exists t_1 \in \sum_1, t_2 \in \sum_2 \text{ with } t_1 + t_2 = t$

$$S = \{ \dots, \}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .
sort \sum_1 and $\sum_2 \leftarrow$ How much time does this take?
Test: $\exists t_1 \in \sum_1, t_2 \in \sum_2$ with $t_1 + t_2 = t$

$$S = \{\dots, \dots, \}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .
sort \sum_1 and \sum_2 Binary seach for each t_1 !
Test: $\exists t_1 \in \sum_1, t_2 \in \sum_2$ with $t_1 + t_2 = t$

$$S = \{\dots, \dots, \}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .
sort \sum_1 and \sum_2 Binary seach for each t_1 !
Test: $\exists t_1 \in \sum_1, t_2 \in \sum_2$ with $t_1 + t_2 = t$
Runtime: $O(\sqrt{2}^n \cdot \log_2(\sqrt{2}^n))$

$$S = \{\dots, \dots, n\}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .
sort \sum_1 and \sum_2 Binary seach for each t_1 !
Test: $\exists t_1 \in \sum_1, t_2 \in \sum_2$ with $t_1 + t_2 = t$
Runtime: $O(\sqrt{2}^n \cdot \log_2(\sqrt{2}^n)) \subseteq O(\sqrt{2}^n \cdot n)$

$$S = \{ \dots, n \}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .
sort \sum_1 and \sum_2 Binary seach for each t_1 !
Test: $\exists t_1 \in \sum_1, t_2 \in \sum_2$ with $t_1 + t_2 = t$
Runtime: $O(\sqrt{2}^n \cdot \log_2(\sqrt{2}^n)) \subseteq O(\sqrt{2}^n \cdot n) \subseteq O^*(\sqrt{2}^n)$

$$S = \{ \dots, \dots \}$$

sum t_1 sum t_2
Def. For S partitioned into $S_1 \cup S_2$:
 $\sum_1 :=$ all possible subset sums of S_1
 $\sum_2 :=$ all possible subset sums of S_2
Algo: Compute \sum_1 and \sum_2 .
sort \sum_1 and \sum_2 Binary seach for each t_1 !
Test: $\exists t_1 \in \sum_1, t_2 \in \sum_2$ with $t_1 + t_2 = t$
Runtime: $O(\sqrt{2}^n \cdot \log_2(\sqrt{2}^n)) \subseteq O(\sqrt{2}^n \cdot n) \subseteq O^*(\sqrt{2}^n)$
Can we get rid of this factor?