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Branching Walks

Def. A branching walk in G is a tuple (T, ) where:
e T'= (V' ,E') is an ordered rooted tree, and
e v: V' — V is a homomorphism from T to G.

Def. v(A, B):=result of making root(A) first child of root(B)
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Thm. SUBSETSUM is weakly NP-hard.

Obs. Standard DP needs O*(n - t) time and space
Question: What is possible without depending on ) .S7

Obs. For S partitioned into S; U S5, note:

S has a subset of sum ¢

)

dt1,t> such that t1 + t, =t and 51 has a subset of sum ¢;
and S> has a subset of sum ¢,
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all possible subset sums of S5
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sort » ; and ), Binary seach for each ;!
Test: dt; € Zl' ty € 22 with t1 +t, =t

Runtime:
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S — {. L] L] ’ L] L] L] , L] L] L] 7 L] L] L] ’ L] L] L] , L] L] L] ’ L] L] L] 7 ° L] L] , L] L] L] , L] o L] , o L] .}

sum tl sum tz

Def. For S partitioned into S7 U .S5:
>, = all possible subset sums of S;
>, = all possible subset sums of .S,

Algo: Compute > ; and > .

sort » ; and ), Binary seach for each ;!
Test: dt; € Zl' ty € 22 with t1 +t, =t

Runtime: O(v2" - log,(v/2'))
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Subset Sum — A Solution

S — {. L] .’. L] .,. L] .7. L] .’. L] .,. L] .’. L] .7. L] .,. L] .,. o .,. L] .}

sum tl sum tz

Def. For S partitioned into S7 U .S5:
>, = all possible subset sums of S;
>, = all possible subset sums of .S,

Algo: Compute > ; and > .

sort » ; and ), Binary seach for each ;!
Test: dt; € Zl' ty € 22 with t1 +t, =t

Runtime: O(v2 - log,(v2")) CO(V2" -n)
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Subset Sum — A Solution

S — {. L] .’. L] .,. L] .7. L] .’. L] .,. L] .’. L] .7. L] .,. L] .,. o .,. L] .}

sum tl sum tz

Def. For S partitioned into S7 U .S5:
>, = all possible subset sums of S;
>, = all possible subset sums of .S,

Algo: Compute > ; and > .

sort » ; and ), Binary seach for each ;!
Test: dt; € Zl' ty € 22 with t1 +t, =t

Runtime: O(v/2' - log,(v2)) CO(V2" -n) CO*(v2")
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Subset Sum — A Solution

S - {. ° L] ’ L] L] L] 7 L] L] L] ’ L] L] L] ’ L] L[] L] , L[] L] L ] ’ L] o L] , ° L] L] , L] L] L] , L] o L] , o L] .}

sum tl sum tz

Def. For S partitioned into S7 U .S5:
>, = all possible subset sums of S;
>, = all possible subset sums of .S,

Algo: Compute > ; and > .

sort » ; and ), Binary seach for each ;!
Test: dt; € Zl' ty € 22 with t1 +t, =t

Runtime: O(v/2' - log,(v2)) CO(V2" -n) CO*(v2")

Can we get rid of this factor?
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