UNIVERSITÄT WÜRZBURG

Lehrstuhl für

INFORMATIK I
Algorithmen \& Komplexität

Exact Algorithms

Sommer Term 2020

Lecture 8. Finding Trees and Partitioning Numbers
Based on: [Exact Exp. Algos: §9.1, Param. Algos: §10.1.2]
Trees: see [J. Nederlof, Algorithmica (2013) 868-884. https://doi.org/10.1007/s00453-012-9630-x]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Steiner Tree Problem

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

Steiner Tree Problem

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

Steiner Tree Problem

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

IE-Formulation?

Steiner Tree Problem

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

IE-Formulation?

$\mathcal{U}=\{$ branching walks of weight $\leq c$ in $G\}$

Steiner Tree Problem

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

IE-Formulation?

$\mathcal{U}=\{$ branching walks of weight $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in K\right.$,

Steiner Tree Problem

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

IE-Formulation?

$\mathcal{U}=\{$ branching walks of weight $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in K\right.$,
where $P_{v}=$ "branching walk contains $\left.v "\right\}$

Branching Walks

Def. A branching walk in G is a tuple (T, φ) where:

- $T=\left(V^{\prime}, E^{\prime}\right)$ is an ordered rooted tree, and
- $\varphi: V^{\prime} \rightarrow V$ is a homomorphism from T to G.

Branching Walks

Def. A branching walk in G is a tuple (T, φ) where:

- $T=\left(V^{\prime}, E^{\prime}\right)$ is an ordered rooted tree, and
- $\varphi: V^{\prime} \rightarrow V$ is a homomorphism from T to G.

Branching Walks

Def. A branching walk in G is a tuple (T, φ) where:

- $T=\left(V^{\prime}, E^{\prime}\right)$ is an ordered rooted tree, and
- $\varphi: V^{\prime} \rightarrow V$ is a homomorphism from T to G.

Branching Walks

Def. A branching walk in G is a tuple (T, φ) where:

- $T=\left(V^{\prime}, E^{\prime}\right)$ is an ordered rooted tree, and
- $\varphi: V^{\prime} \rightarrow V$ is a homomorphism from T to G.

Def. $\gamma(A, B):=$ result of making $\operatorname{root}(A)$ first child of $\operatorname{root}(B)$

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$
such that $T=\gamma\left(T_{i}, T_{j}\right)$

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$

$$
\text { such that } T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=?
$$

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$

$$
\text { such that } T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=?
$$

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$

$$
\text { such that } T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=?
$$

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$ such that $T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=$?

Bijective mapping:

$$
\mathcal{T}_{n} \leftrightarrow \bigcup_{i+j=n-1}\left(\mathcal{T}_{i} \times \mathcal{T}_{j}\right)
$$

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.
Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$ such that $T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=$?

Bijective mapping:

$$
\mathcal{T}_{n} \leftrightarrow \bigcup_{i+j=n-1}\left(\mathcal{T}_{i} \times \mathcal{T}_{j}\right)
$$

Theorem.
$\left|\mathcal{T}_{n}\right|=\sum_{i=0}^{n-1}\left|\mathcal{T}_{i}\right| \cdot\left|\mathcal{T}_{n-1-i}\right|$

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$ such that $T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=$?

Bijective mapping:

$$
\mathcal{T}_{n} \leftrightarrow \bigcup_{i+j=n-1}\left(\mathcal{T}_{i} \times \mathcal{T}_{j}\right)
$$

Theorem.
$\left|\mathcal{T}_{n}\right|=\sum_{i=0}^{n-1}\left|\mathcal{T}_{i}\right| \cdot\left|\mathcal{T}_{n-1-i}\right|$
$\left|\mathcal{T}_{0}\right|=$?

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.
Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$ such that $T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=$?

Bijective mapping:

$$
\mathcal{T}_{n} \leftrightarrow \bigcup_{i+j=n-1}\left(\mathcal{T}_{i} \times \mathcal{T}_{j}\right)
$$

Theorem.
$\left|\mathcal{T}_{n}\right|=\sum_{i=0}^{n-1}\left|\mathcal{T}_{i}\right| \cdot\left|\mathcal{T}_{n-1-i}\right|$
$\left|\mathcal{T}_{0}\right|=$?

Recall:
Catalan numbers

Tree Counting

Def. $\mathcal{T}_{n}:=$ set of different ordered rooted trees with n edges.

Obs. $\forall T \in \mathcal{T}_{n}: \exists!i, j \in \mathbb{N}, T_{i} \in \mathcal{T}_{i}, T_{j} \in \mathcal{T}_{j}$ such that $T=\gamma\left(T_{i}, T_{j}\right) \ldots i+j=$?

Bijective mapping:

$$
\mathcal{T}_{n} \leftrightarrow \bigcup_{i+j=n-1}\left(\mathcal{T}_{i} \times \mathcal{T}_{j}\right)
$$

Theorem.

$$
\begin{aligned}
& \left|\mathcal{T}_{n}\right|=\sum_{i=0}^{n-1}\left|\mathcal{T}_{i}\right| \cdot\left|\mathcal{T}_{n-1-i}\right| \\
& \left|\mathcal{T}_{0}\right|=?
\end{aligned}
$$

Recall:
Catalan numbers

$$
C_{0}=1 ; C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i} \sim \frac{4^{n}}{n^{3 / 2} \sqrt{\pi}}
$$

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
$b_{F}(x, c)=\{?$
if $c=0$,

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
$b_{F}(x, c)=\left\{\begin{array}{l}1 \\ \end{array}\right.$
if $c=0$,

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
$b_{F}(x, c)=\left\{\begin{array}{l}1 \\ \sum_{t \in N(x) \backslash F} \sum_{c_{1}+c_{2} \leq c-1} b_{F}\left(t, c_{1}\right) \cdot b_{F}\left(x, c_{2}\right){ }_{\text {otherwise }} .\end{array}\right.$

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
$b_{F}(x, c)=\left\{\begin{array}{l}1 \\ \sum_{t \in N(x) \backslash F} \sum_{c_{1}+c_{2} \leq c-1} b_{F}\left(t, c_{1}\right) \cdot b_{F}\left(x, c_{2}\right){ }_{\text {otherwise }} .\end{array}\right.$
Runtime:

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
$b_{F}(x, c)=\left\{\begin{array}{l}1 \\ \sum_{t \in N(x) \backslash F} \sum_{c_{1}+c_{2} \leq c-1} b_{F}\left(t, c_{1}\right) \cdot b_{F}\left(x, c_{2}\right)\end{array}\right.$ otherwise.
Runtime: $O\left(n^{2} \cdot n^{3}\right)=O\left(n^{5}\right)$

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
and with edge weights $\omega: E \rightarrow \mathbb{Z}_{\geq 0}$?
$b_{F}(x, c)= \begin{cases}1 & \text { if } c=0, \\ \sum_{t \in N(x) \backslash F} \sum_{c_{1}+c_{2} \leq c-1} b_{F}\left(t, c_{1}\right) \cdot b_{F}\left(x, c_{2}\right)\end{cases}$
Runtime: $O\left(n^{2} \cdot n^{3}\right)=O\left(n^{5}\right)$

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges total edge weight $\leq c$

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
$b_{F}(x, c)=\left\{\begin{array}{l}1 \\ \sum_{t \in N(x) \backslash F} \sum_{c_{1}+c_{2} \leq c-1} b_{F}\left(t, c_{1}\right) \cdot b_{F}\left(x, c_{2}\right){ }_{\text {otherwise }} .\end{array}\right.$
Runtime: $O\left(n^{2} \cdot n^{3}\right)=O\left(n^{5}\right)$

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges total edge weight $\leq c$ Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.

Thm. For $F \subseteq K$ and $x \in V \backslash F$:
$b_{F}(x, c)= \begin{cases}1 & \text { if } c=0, \\ \sum_{t \in N(x) \backslash F} \sum_{c_{1}+c_{2} \leq c y_{1}} b_{F}\left(t, c_{1}\right) \cdot b_{F}\left(x, c_{2}\right) \\ c-\omega(x t) & \text { otherwise. }\end{cases}$
Runtime: $O\left(n^{2} \cdot n^{3}\right)=O\left(n^{5}\right)$

Counting Branching Walks

$\left|\mathcal{T}_{n}\right|$ works for counting rooted ordered trees. . . still need φ.
Def. $\mathcal{B}_{F}(x, c):=$ all branching walks of type (T, φ)

- contained in $G[V \backslash F]$
- starting at $x \in V \backslash F$
- with $\leq c$ edges total edge weight $\leq c$

Let $b_{F}(x, c):=\left|\mathcal{B}_{F}(x, c)\right|$.
Thm. For $F \subseteq K$ and $x \in V \backslash F$:
[and with edge weights]

$$
\omega: E \rightarrow \mathbb{Z}_{\geq 0} \text { ? }
$$

$b_{F}(x, c)= \begin{cases}1 & \text { if } c=0, \\ \sum_{t \in N(x) \backslash F} \sum_{c_{1}+c_{2} \leq c y} b_{F}\left(t, c_{1}\right) \cdot b_{F}\left(x, c_{2}\right) \\ c-\omega(x t) & \text { otherwise. }\end{cases}$
Runtime: $O\left(n^{2} \cdot n^{3}\right)=O\left(n^{5}\right) \quad$ - unweighted case

$$
O\left(n c \cdot n c^{2}\right)=O\left(n^{2} c^{3}\right)-\text { weighted case }
$$

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c

Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c

Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that - $K \subseteq V^{\prime}$ and

- $\left|E^{\prime}\right| \leq c$?

IE-Formulation:

$\mathcal{U}=\left\{\right.$ branching walks with root $s_{0} \swarrow^{\text {and }}$ weight $\leq c$ in $\left.G\right\}$
$\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\}\right.$,
where $P_{v}=$ "branching walk contains $\left.v "\right\}$

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that - $K \subseteq V^{\prime}$ and

- $\left|E^{\prime}\right| \leq c$?

IE-Formulation:

$\mathcal{U}=\left\{\right.$ branching walks with root $s_{0} \measuredangle^{\swarrow^{s 0}}$ and weight $\leq c$ in $\left.G\right\}$

$$
\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\},\right.
$$

where $P_{v}=$ "branching walk contains $\left.v "\right\}$
Recall: $N(\mathcal{P})=$

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c

Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that - $K \subseteq V^{\prime}$ and

- $\left|E^{\prime}\right| \leq c$?

IE-Formulation:

$\mathcal{U}=\left\{\right.$ branching walks with root s_{0} and $_{\text {and }}^{\text {s0 }}$ weight $\leq c$ in $\left.G\right\}$ $\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\}\right.$, where $P_{v}=$ "branching walk contains $\left.v "\right\}$

$$
\begin{aligned}
& \text { Recall: } \quad N(\mathcal{P})= \\
& \sum_{F \subseteq \mathcal{P}}(-1)^{|F|} N(\emptyset, F, \mathcal{P} \backslash F)
\end{aligned}
$$

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that - $K \subseteq V^{\prime}$ and

- $\left|E^{\prime}\right| \leq c$?

IE-Formulation:

$\mathcal{U}=\left\{\right.$ branching walks with root $s_{0} \swarrow^{\text {and }}$ weight $\leq c$ in $\left.G\right\}$ $\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\}\right.$, where $P_{v}=$ "branching walk contains $\left.v "\right\}$

$$
\begin{aligned}
& \text { Recall: } N(\mathcal{P})= \\
& \sum_{F \subseteq \mathcal{P}}(-1)^{|F|} \underbrace{N(\emptyset, F, \mathcal{P} \backslash F)}_{\beta_{F}\left(s_{0}, c\right)}
\end{aligned}
$$

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that - $K \subseteq V^{\prime}$ and

- $\left|E^{\prime}\right| \leq c$?

IE-Formulation:

$\mathcal{U}=\left\{\right.$ branching walks with root $s_{0} \swarrow^{\text {and }}$ weight $\leq c$ in $\left.G\right\}$
$\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\}\right.$,
where $P_{v}=$ "branching walk contains $\left.v "\right\}$
Runtime:

$$
\begin{aligned}
& \text { Recall: } \quad N(\mathcal{P})= \\
& \sum_{F \subseteq \mathcal{P}}(-1)^{|F|} \underbrace{N(\emptyset, F, \mathcal{P} \backslash F)}_{\beta_{F}\left(s_{0}, c\right)}
\end{aligned}
$$

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that

- $K \subseteq V^{\prime}$ and
- $\left|E^{\prime}\right| \leq c$?

IE-Formulation:

$\mathcal{U}=\left\{\right.$ branching walks with root $s_{0} \measuredangle^{\text {and }}$ weight $\leq c$ in $\left.G\right\}$
$\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\}\right.$,
where $P_{v}=$ "branching walk contains $\left.v "\right\}$
Runtime: $O\left(2^{k} \cdot \operatorname{poly}(n)\right)$ unweighted Recall: $N(\mathcal{P})=$

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c and edge weights $\omega: E \rightarrow \mathbb{Z}_{\geq 0}$,
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that - $K \subseteq V^{\prime}$ and

- $\left|E^{\prime}\right| \leq c$? $\omega\left(E^{\prime}\right) \leq c$

IE-Formulation:

$\mathcal{U}=\left\{\right.$ branching walks with root $s_{0} \measuredangle^{\text {and }}$ weight $\leq c$ in $\left.G\right\}$
$\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\}\right.$,
where $P_{v}=$ "branching walk contains $\left.v "\right\}$
Runtime: $O\left(2^{k} \cdot \operatorname{poly}(n)\right)$ unweighted

Steiner Tree: Summary

Given: \quad Graph $G=(V, E)$, terminals $K \subseteq V$, number c and edge weights $\omega: E \rightarrow \mathbb{Z}_{\geq 0}$,
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that - $K \subseteq V^{\prime}$ and

- $\left|E^{\prime}\right| \leq c$? $\omega\left(E^{\prime}\right) \leq c$

IE-Formulation:

$\mathcal{P}=\left\{P_{v} \mid v \in K \backslash\left\{s_{0}\right\}\right.$,
where $P_{v}=$ "branching walk contains $\left.v "\right\}$
Runtime: $O\left(2^{k} \cdot \operatorname{poly}(n)\right)$ unweighted $O\left(2^{k} \cdot \operatorname{poly}(n, c)\right)$ weighted

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=$
$\mathcal{P}=$

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ and of degree $\leq c$ in $G\}$
$\mathcal{P}=$

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ and of degree $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$,

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ and of degree $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$,
where $P_{v}=$ "branching walk contains v " $\}$

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ and of degree $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains v " $\}$

Easier Problem:

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ and of degree $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains v " $\}$

Easier Problem: (find and solve it yourself!)

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ and of degree $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains $\left.v "\right\}$

Easier Problem: (find and solve it yourself!)
Runtime:
$O^{*}\left(2^{n}\right)$

Degree-Constrained Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G of maximum degree $\leq c$?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ and of degree $\leq c$ in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains v " \}

Easier Problem: (find and solve it yourself!)
Runtime:

$$
\begin{array}{r}
O^{*}\left(2^{n}\right), \text { improving over } O^{*}\left(5.92^{n}\right) \\
{[\text { Amini et al., ICALP'09] }}
\end{array}
$$

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=$
$\mathcal{P}=$

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ with $\geq c$ internal vtc. $\}$
$\mathcal{P}=$

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ with $\geq c$ internal vtc. $\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$,

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ with $\geq c$ internal vtc. $\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$,
where $P_{v}=$ "branching walk contains v " $\}$

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ with $\geq c$ internal vtc. $\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains v " $\}$

Easier Problem:

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ with $\geq c$ internal vtc. $\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains v " $\}$

Easier Problem: (find and solve it yourself!)

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ with $\geq c$ internal vtc. $\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains v " $\}$

Easier Problem: (find and solve it yourself!)
Runtime:
$O^{*}\left(2^{n}\right)$

Maximum Internal Spanning Tree

Given: \quad Graph $G=(V, E)$, number $1 \leq c \leq n$
Question: \exists spanning tree of G with $\geq c$ internal vertices?

IE-Formulation:

$\mathcal{U}=\{$ branching walks of length $n-1$ with $\geq c$ internal vtc. $\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "branching walk contains v " $\}$

Easier Problem: (find and solve it yourself!)
Runtime:

$$
\begin{array}{r}
O^{*}\left(2^{n}\right), \text { improving over } O^{*}\left(3^{n}\right) \\
{\left[\text { Fernau et al., } W G^{\prime} 09\right]}
\end{array}
$$

Partitioning Numbers

Partition
Given: Set S of integers.
Question: \exists partition of S into two sets with the same sum?

Partitioning Numbers

Partition
Given: Set S of integers.
Question: \exists partition of S into two sets with the same sum?

SubSetSum
Given: Set S of integers and an integer t.
Question: \exists subset of S that sums to t ?

Partitioning Numbers

Partition
Given: Set S of integers.
Question: \exists partition of S into two sets with the same sum?

SubSetSum
Given: Set S of integers and an integer t.
Question: \exists subset of S that sums to t ?

3-Partition
Given: Set S of integers
Question: \exists partition of S into 3 -tuples with the same sum?

Partitioning Numbers

Partition
Given: Set S of integers.
Question: \exists partition of S into two sets with the same sum?

SubSetSum

Given: Set S of integers and an integer t.
Question: \exists subset of S that sums to t ?

3-Partition
Given: Set S of integers
Question: \exists partition of S into 3-tuples with the same sum?

Subset Sum - A Question

Thm. SubSetSum is weakly NP-hard.

Subset Sum - A Question

Thm. SubSetSum is weakly NP-hard.
Obs. Standard DP needs $O^{*}(n \cdot t)$ time and space

Subset Sum - A Question

Thm. SubSetSum is weakly NP-hard.
Obs. Standard DP needs $O^{*}(n \cdot t)$ time and space
Question: What is possible without depending on $\sum S$?

Subset Sum - A Question

Thm. SubSetSum is weakly NP-hard.
Obs. Standard DP needs $O^{*}(n \cdot t)$ time and space
Question: What is possible without depending on $\sum S$?
Obs. For S partitioned into $S_{1} \cup S_{2}$, note:

Subset Sum - A Question

Thm. SubSetSum is weakly NP-hard.
Obs. Standard DP needs $O^{*}(n \cdot t)$ time and space
Question: What is possible without depending on $\sum S$?
Obs. For S partitioned into $S_{1} \cup S_{2}$, note:
S has a subset of sum t

$$
\mathfrak{\imath}
$$

Subset Sum - A Question

Thm. SubSetSum is weakly NP-hard.
Obs. Standard DP needs $O^{*}(n \cdot t)$ time and space
Question: What is possible without depending on $\sum S$?
Obs. For S partitioned into $S_{1} \cup S_{2}$, note:
S has a subset of sum t

$$
\downarrow
$$

$\exists t_{1}, t_{2}$ such that $t_{1}+t_{2}=t$ and S_{1} has a subset of sum t_{1} and S_{2} has a subset of sum t_{2}

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}
Algo: Compute \sum_{1} and \sum_{2}.

Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}
Algo: Compute \sum_{1} and \sum_{2}.

Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime:

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Algo: Compute \sum_{1} and \sum_{2}.

Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime: $\quad . \quad \sum_{1} \times \sum_{2}$ candidates to check?

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}
Algo: Compute \sum_{1} and \sum_{2}.
sort \sum_{1} and \sum_{2}
Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime:

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Algo: Compute \sum_{1} and \sum_{2}.
sort \sum_{1} and $\sum_{2} \leftarrow$ How much time does this take?
Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime:

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Algo: Compute \sum_{1} and \sum_{2}.
sort \sum_{1} and $\sum_{2} \quad$ Binary seach for each t_{1} !
Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime:

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Algo: Compute \sum_{1} and \sum_{2}.
sort \sum_{1} and $\sum_{2} \quad$ Binary seach for each t_{1} !
Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime: $O\left(\sqrt{2}^{n} \cdot \log _{2}\left(\sqrt{2}^{n}\right)\right)$

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Algo: Compute \sum_{1} and \sum_{2}.
sort \sum_{1} and $\sum_{2} \quad$ Binary seach for each t_{1} !
Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime: $O\left(\sqrt{2}^{n} \cdot \log _{2}\left(\sqrt{2}^{n}\right)\right) \subseteq O\left(\sqrt{2}^{n} \cdot n\right)$

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Algo: Compute \sum_{1} and \sum_{2}.
sort \sum_{1} and $\sum_{2} \quad$ Binary seach for each t_{1} !
Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime: $O\left(\sqrt{2}^{n} \cdot \log _{2}\left(\sqrt{2}^{n}\right)\right) \subseteq O\left(\sqrt{2}^{n} \cdot n\right) \subseteq O^{*}\left(\sqrt{2}^{n}\right)$

Subset Sum - A Solution

$$
S=\{\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}
$$

Def. For S partitioned into $S_{1} \cup S_{2}$:
$\sum_{1}:=$ all possible subset sums of S_{1}
$\sum_{2}:=$ all possible subset sums of S_{2}

Algo: Compute \sum_{1} and \sum_{2}.
sort \sum_{1} and \sum_{2} Binary seach for each t_{1} !
Test: $\exists t_{1} \in \sum_{1}, t_{2} \in \sum_{2}$ with $t_{1}+t_{2}=t$
Runtime: $O\left(\sqrt{2}^{n} \cdot \log _{2}\left(\sqrt{2}^{n}\right)\right) \subseteq O\left(\sqrt{2}^{n} \cdot n\right) \subseteq O^{*}\left(\sqrt{2}^{n}\right)$
Can we get rid of this factor?

