UNIVERSITÄT WÜRZBURG

Algorithmen \& Komplexität

Exact Algorithms

Summer Term 2020

Lecture 7. A General Approach to Inclusion-Exclusion Based on: [Exact Exponential Algorithms: §3.1.2, §4.3.3]
Further reading: [Parameterized Algorithms: §10.1.3, 10.2]
see also: [J. Nederlof, J.M.M. van Rooij, T.C. van Dijk: Algorithmica (2014), https://doi.org/10.1007/s00453-013-9759-2]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)
Thomas van Dijk

Definitions \& Notation

Notation: Universe \mathcal{U}, Properties \mathcal{P}
Def. (as before): Let $S \subseteq \mathcal{P}$.
$N(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies all properties in $S\} \mid$
Def. (as before): Let $S \subseteq \mathcal{P}$.
$\bar{N}(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies no properties in $S\} \mid$
Thm (as before): $N(\mathcal{P})=\sum_{S \subseteq \mathcal{P}}(-1)^{|S|} \bar{N}(S)$
Idea: Sometimes it is easier to compute $\bar{N}(\cdot)$ than $N(\cdot)$.
"Simplified Problem"

Definitions \& Notation

Notation: Universe \mathcal{U}, Properties \mathcal{P}
Def. (as before): Let $S \subseteq \mathcal{P}$.
$N(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies all properties in $S\} \mid$
Def. (as before): Let $S \subseteq \mathcal{P}$.
$\bar{N}(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies no properties in $S\} \mid$
Thm (as before): $N(\mathcal{P})=\sum_{S \subseteq \mathcal{P}}(-1)^{|S|} \bar{N}(S)$
Idea: Sometimes it is easier to compute $\bar{N}(\cdot)$ than $N(\cdot)$.
Example: st-Hamiltonpath

Definitions \& Notation

Notation: Universe \mathcal{U}, Properties \mathcal{P}
Def. (as before): Let $S \subseteq \mathcal{P}$.
$N(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies all properties in $S\} \mid$
Def. (as before): Let $S \subseteq \mathcal{P}$.
$\bar{N}(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies no properties in $S\} \mid$
Thm (as before): $N(\mathcal{P})=\sum_{S \subseteq \mathcal{P}}(-1)^{|S|} \bar{N}(S)$
Idea: Sometimes it is easier to compute $\bar{N}(\cdot)$ than $N(\cdot)$.
Example: st-Hamiltonpath

- $\mathcal{U}=\{s t$-walks of length $n\}$
- $\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, and $P_{v}=$ "walk goes through $\left.v "\right\}$

Definitions \& Notation

Notation: Universe \mathcal{U}, Properties \mathcal{P}
Def. (as before): Let $S \subseteq \mathcal{P}$.
$N(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies all properties in $S\} \mid$
Def. (as before): Let $S \subseteq \mathcal{P}$.
$\bar{N}(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies no properties in $S\} \mid$
Def.: Let $R \cup F \cup O=\mathcal{P}$.

$$
\begin{aligned}
N(R, F, O):= & \mid\{e \in \mathcal{U} \mid \\
& e \text { satisfies all properties in } R \text { and none in } F\} \mid \\
& \text { Required Forbidden }
\end{aligned}
$$

Definitions \& Notation

Notation: Universe \mathcal{U}, Properties \mathcal{P}
Def. (as before): Let $S \subseteq \mathcal{P}$.
$N(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies all properties in $S\} \mid$
Def. (as before): Let $S \subseteq \mathcal{P}$.
$\bar{N}(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies no properties in $S\} \mid$
Def.: Let $R \cup F \cup O=\mathcal{P}$.

$$
\begin{aligned}
N(R, F, O):= & \mid\{e \in \mathcal{U} \mid \\
& e \text { satisfies all properties in } R \text { and none in } F\} \mid
\end{aligned}
$$

Obs.: For $S \subseteq \mathcal{P}, N(S)=N(S, \varnothing, \mathcal{P} \backslash S)$
Obs.: For $S \subseteq \mathcal{P}, \bar{N}(S)=N(\varnothing, S, \mathcal{P} \backslash S)$

Definitions \& Notation

Notation: Universe \mathcal{U}, Properties \mathcal{P}
Def. (as before): Let $S \subseteq \mathcal{P}$.
$N(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies all properties in $S\} \mid$
Def. (as before): Let $S \subseteq \mathcal{P}$.
$\bar{N}(S):=\mid\{e \in \mathcal{U} \mid e$ satisfies no properties in $S\} \mid$
Def.: Let $R \cup F \cup O=\mathcal{P}$.

$$
N(R, F, O):=\mid\{e \in \mathcal{U} \mid
$$

e satisfies all properties in R and none in $F\} \mid$
Obs.: For $R \cup F \cup O \cup\{p\}=\mathcal{P}$,

$$
\begin{aligned}
& N(R, F, O \cup\{p\})=N(R \cup\{p\}, F, O)+N(R, F \cup\{p\}, O) \\
& N(R \cup\{p\}, F, O)=N(R, F, O \cup\{p\})-N(R, F \cup\{p\}, O)
\end{aligned}
$$

$N(R, F, O)$ - Required, Forbidden, Optional
Thm: For $R \cup F \cup O=\mathcal{P}$ and $e \in R$,
$N(R, F, O)=N(R \backslash\{p\}, F, O \uplus\{p\})-N(R \backslash\{p\}, F \uplus\{p\}, O)$

$N(R, F, O)$ - Required, Forbidden, Optional
Thm: For $R \cup F \cup O=\mathcal{P}$ and $e \in R$,
$N(R, F, O)=N(R \backslash\{p\}, F, O \uplus\{p\})-N(R \backslash\{p\}, F \uplus\{p\}, O)$

$N(R, F, O)$ - Required, Forbidden, Optional Thm: For $R \cup F \cup O=\mathcal{P}$ and $e \in R$,
$N(R, F, O)=N(R \backslash\{p\}, F, O \uplus\{p\})-N(R \backslash\{p\}, F \uplus\{p\}, O)$

```
N({1,2,3},\varnothing,\varnothing)
```

$$
\begin{aligned}
N(\mathcal{P}) & \stackrel{\text { def }}{=} N(\mathcal{P}, \varnothing, \varnothing) \\
& =\sum_{F \subseteq \mathcal{P}}(-1)^{|F|} N(\varnothing, F, \mathcal{P} \backslash F) \\
& \stackrel{\text { def }}{=} \sum_{S \subseteq \mathcal{P}}(-1)^{|S|} \bar{N}(S)
\end{aligned}
$$

Using: Required-Forbidden-Optional

Problem: st-Hamiltonian Path

- $\mathcal{U}=\{s t$-walks of length $n\}$
- $\mathcal{P}=\left\{P_{v} \mid v \in V, P_{v}=\right.$ "walk goes through $\left.v "\right\}$

Solution: $N(V, \varnothing, \varnothing)$
Easier Problem: $N(R, F, O)$ is easy when $R=\varnothing$
Strategy: For $e \in R$.
$N(R, F, O)=N(R \backslash\{e\}, F, O \cup\{e\})-N(R \backslash\{e\}, F \cup\{e\}, O)$
"Inclusion-Exclusion"

Using: Required-Forbidden-Optional

Problem: \# Independent Sets

- $\mathcal{U}=\{$ Independent Sets $\}$
- $\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "set contains $\left.v "\right\}$

Solution: $N(\varnothing, \varnothing, V)$

Easier Problem: $N(R, F, O)$ is easy when $O=\varnothing$
Strategy: For $v \in O$,
$N(R, F, O)=N(R \cup\{v\}, F, O \backslash\{v\})+N(R, F \cup\{e\}, O \backslash\{v\})$

standard branching algorithm

Graph Coloring

Given: Graph $G=(V, E)$, number k
Question: \exists proper coloring of V with k colors?
$\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

$\mathcal{U}=\{k$-tuple of independent sets in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "tuple contains a set with v in it" $\}$

Lemma:

Graph Coloring: $G k$-colorable $\Leftrightarrow N(\mathcal{P})>0$

Easier Problem

Thm.

Graph Coloring can be solved with 2^{n} queries of $\bar{N}(\cdot)$.
$\mathcal{U}=\{k$-tuple of independent sets in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "tuple contains a set with v in it"\}

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?
"How many k-tuples of independent sets are there that avoid the vertices in S ?"

Def.: $a(S):=\#$ independent sets that avoid S
Lemma: $\bar{N}(S)=a(S)^{k} \quad$ Proof: k sets, each from $a(S)$ (with replacement)

Easier Problem

Thm.

Graph Coloring can be solved with 2^{n} queries of $\bar{N}(\cdot)$.
$\mathcal{U}=\{k$-tuple of independent sets in $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "tuple contains a set with v in it"\}

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?
"How many k-tuples of independent sets are there that avoid the vertices in S ?"

Def.: $a(S):=\#$ independent sets that avoid S
Lemma: $\bar{N}(S)=a(S)^{k}$ Proof: k sets, each from $a(S)$ (with replacement)

Counting Independent Sets

Def.: $a(S):=$ \# independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \backslash S$: test independence
Runtime: $O^{*}\left(2^{n-|S|}\right)$

Binomial Thm:

$$
\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=(x+y)^{n}
$$

Thm.
Using Algorithm 1 for Graph Coloring gives us

$$
O^{*}\left(3^{n}\right) \ni \quad \sum_{i=0}^{n}\binom{n}{n-i} 2^{n-i} \operatorname{poly}(n) \quad \text { Time }
$$

polynomial Space

Counting Independent Sets

Def.: $a^{\prime}(S):=\#$ maximal independent sets that avoid S
Algorithm 2:
Enumerate all maximal independent sets of $G[V \backslash S]$
Runtime: $O^{*}\left(\sqrt[3]{3}^{n-|S|}\right)$ [as in Lecture 1]

Thm:

Using Algorithm 2 for Graph Coloring gives us

$$
O\left(2.4423^{n}\right) \supset \quad O^{*}\left((1+\sqrt[3]{3})^{n}\right) \quad \text { Time }
$$

Runtime from Lawler (1976)
polynomial Space

Counting Independent Sets

Def.: $a(S):=\#$ independent sets that avoid S
Algorithm 3:
Use the algorithm of Fürer \& Kasiviswanathan (2007)
Runtime: $O\left(1.1247^{n}\right)$
F\&K enumerates satisfying assignments for 2-SAT instances.
\rightsquigarrow enumeration of independent sets :)

Thm:

Using Algorithm 3 for Graph Coloring gives us 5- and 6-coloring from last week are now obsolete $O\left(2.1247^{n}\right) \supset O\left((1+1.1247)^{n}\right) \quad$ Time Lawler: $O\left(2.4423^{n}\right)$

Counting Independent Sets

Def.: $a(S):=\#$ independent sets that avoid S
Algorithm 4:
Compute $a(S)$ for each $S \subseteq V$ by DP
Runtime: $O^{*}\left(2^{n}\right)$ in total

Thm:
Using Algorithm 4 for Graph Coloring gives us
$O^{*}\left(2^{n}\right) \quad$ Time
$O^{*}\left(2^{n}\right) \quad$ Space

Counting Independent Sets

Def.: $a(S):=\#$ independent sets that avoid S

Algorithm 4:

Compute $a(S)$ for each $S \subseteq V$ by DP
Runtime: $O^{*}\left(2^{n}\right)$ in total

Thm:

Using Algorithm 4 for Graph Coloring gives us
$O^{*}\left(2^{n}\right) \quad$ Time
$O^{*}\left(2^{n}\right) \quad$ Space

Dynamic Program for $a(S), S \subseteq V$
Def.: $a(S):=$ \# independent sets that avoid S
Def.: $a(R, F, O):=\#$ independent sets that contain R and avoid F.

independent

Obs.: For $S \subseteq V, \quad a(S)=a(\varnothing, S, V \backslash S)$
Obs.: For $R \cup F=V, a(R, F, \varnothing)=[R$ independent? $] \in\{0,1\}$
Lemma: For $R \cup F \cup O \cup\{v\}=V$,

$$
a(R, F, O \cup\{v\})=a(R \cup\{v\}, F, O)+a(R, F \cup\{v\}, O)
$$

Obs.: For $R \subseteq V, R$ not independent $\Rightarrow a(R, \cdot, \cdot)=0$

Dynamic Program for $a(S), S \subseteq V$
Def.: $a(S):=$ \# independent sets that avoid S
Def.: $a(R, F, O):=\#$ independent sets that contain R and avoid F.

Obs.: For $S \subseteq V, \quad a(S)=a(\varnothing, S, V \backslash S)$
Obs.: For $R \cup F=V, a(R, F, \varnothing)=[R$ independent? $] \in\{0,1\}$
Lemma: For $R \cup F \cup O \cup\{v\}=V$,

$$
a(R, F, O \cup\{v\})=a(R \cup\{v\}, F, O)+a(R, F \cup\{v\}, O)
$$

Obs.: For $R_{1} \cup F_{1} \cup O=R_{2} \cup F_{2} \cup O=V$, and R_{i} 's indep.
\nexists edge between R_{i} and $O \Rightarrow a\left(R_{1}, F_{1}, O\right)=a\left(R_{2}, F_{2}, O\right)$.

Dynamic Program for $a(S), S \subseteq V$
Def.: $a(S):=$ \# independent sets that avoid S
Def.: $a(R, F, O):=\#$ independent sets that contain R and avoid F.

Obs.: For $S \subseteq V, \quad a(S)=a(\varnothing, S, V \backslash S)$
Obs.: For $R \uplus F=V$ and R indep.. $\quad a(R, F, \varnothing)=1$
Lemma: For $R \cup F \cup O=V$ and $v \in O, \quad U:=$ neighborhood

$$
\begin{aligned}
a(R, F, O) & =a(R, F \cup\{v\}, O \backslash\{v\}) \\
& +a(R \cup\{v\}, F \cup U(v), O \backslash U[v])
\end{aligned}
$$

Dynamic Program for $a(S), S \subseteq V$
Def.: $a(S):=$ \# independent sets that avoid S
Def.: $a(R, F, O):=\#$ independent sets that contain R and avoid F.

Obs.: For $S \subseteq V, \quad a(S)=a(\varnothing, S, V \backslash S)$
Obs.: For $R \uplus F=V$ and R indep.. $\quad a(R, F, \varnothing)=1$
Lemma: For $R \cup F \cup O=V$ and $v \in O, \begin{aligned} & \text { and } R \text { independent, } \\ & \text { and } \# \text { edge between } R \text { and } O\end{aligned}$

$$
\begin{gathered}
a(R, F, O)=a(R, F \cup\{v\}, O \backslash\{v\}) \\
\text { independent }+a(R \cup\{v\}, F \cup U(v), O \backslash U[v])
\end{gathered}
$$

Dynamic Program for $a(S), S \subseteq V$
Def.: $a(S):=\#$ independent sets that avoid S
Def.: $a(R, F, O):=\#$ independent sets that contain R and avoid F.

Obs.: For $S \subseteq V, \quad a(S)=a(\varnothing, S, V \backslash S)$
Obs.: For $R \cup F=V$ and R indep.. $\quad a(R, F, \varnothing)=1$
Lemma: For $R \cup F \cup O=V$ and $v \in O, \begin{aligned} & \text { and } R \text { independent, } \\ & \text { and } \neq \text { edge between } R \text { and } O\end{aligned}$

$$
\begin{aligned}
b(O) & =b(O \backslash\{v\}) \\
& +b(O \backslash U[v])
\end{aligned}
$$

Dynamic Program for $a(S), S \subseteq V$
Def.: $a(S):=\#$ independent sets that avoid S
Def.: $a(R, F, O):=\#$ independent sets that contain R and avoid F.

Obs.: For $S \subseteq V, \quad a(S)=a(\varnothing, S, V \backslash S)=b(V \backslash S)$
Obs.: For $R \uplus F=V$ and R indep.. $\quad a(R, F, \varnothing)=1$
Lemma: For $R \cup F \cup O=V$ and $v \in O$, and R independent, and \nexists edge between R and O

$$
\left.\begin{array}{rlrl}
b(O) & =b(O \backslash\{v\}) & & \text { Thm: Table with } \\
& +b(O \backslash U[v]) & & a(S) \text { for each } S \subseteq V \\
\text { can be computed in }
\end{array}\right] \begin{array}{lll}
b(\varnothing) & =1 & \\
O^{*}\left(2^{n}\right) \text { time. } \square
\end{array}
$$

Graph Coloring: Summary

Given: Graph $G=(V, E)$, number k
Question: \exists proper k-coloring of V ?

IE-Formulation:

$\mathcal{U}=\{k$-tuple of independent sets from $G\}$
$\mathcal{P}=\left\{P_{v} \mid v \in V\right.$, where $P_{v}=$ "tuple contains a set with v in it"\}

Algorithm:

- Compute $\bar{N}(S)=a(S)^{k}$ for each $S \subseteq V$
- Apply Inclusion-Exclusion

Thm: Graph Coloring can be decided using $O^{*}\left(2^{n}\right)$ time and space

