
1

see also: [J. Nederlof, J.M.M. van Rooij, T.C. van Dijk: Algorithmica (2014),
https://doi.org/10.1007/s00453-013-9759-2]

Based on: [Exact Exponential Algorithms: §3.1.2, §4.3.3]

Exact Algorithms
Summer Term 2020

Thomas van Dijk Lehrstuhl für Informatik I

Lecture 7. A General Approach to Inclusion–Exclusion

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Further reading: [Parameterized Algorithms: §10.1.3, 10.2]

2

Definitions & Notation

Notation: Universe U , Properties P

Def. (as before): Let S ⊆ P.
N(S) := |{e ∈ U | e satisfies all properties in S }|

Def. (as before): Let S ⊆ P.
N̄(S) := |{e ∈ U | e satisfies no properties in S }|

Thm (as before): N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Idea: Sometimes it is easier to compute N̄(·) than N(·).

“Simplified Problem”

2

Definitions & Notation

Notation: Universe U , Properties P

Def. (as before): Let S ⊆ P.
N(S) := |{e ∈ U | e satisfies all properties in S }|

Def. (as before): Let S ⊆ P.
N̄(S) := |{e ∈ U | e satisfies no properties in S }|

Thm (as before): N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Idea: Sometimes it is easier to compute N̄(·) than N(·).

Example: st-Hamiltonpath

2

Definitions & Notation

Notation: Universe U , Properties P

Def. (as before): Let S ⊆ P.
N(S) := |{e ∈ U | e satisfies all properties in S }|

Def. (as before): Let S ⊆ P.
N̄(S) := |{e ∈ U | e satisfies no properties in S }|

Thm (as before): N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Idea: Sometimes it is easier to compute N̄(·) than N(·).

Example: st-Hamiltonpath

• U = {st-walks of length n}
• P = {Pv | v ∈ V , and Pv = "walk goes through v"}

2

Definitions & Notation

Notation: Universe U , Properties P

Def. (as before): Let S ⊆ P.
N(S) := |{e ∈ U | e satisfies all properties in S }|

Def. (as before): Let S ⊆ P.
N̄(S) := |{e ∈ U | e satisfies no properties in S }|

Def.: Let R ·∪ F ·∪O = P.
N(R,F,O) := |{e ∈ U |

e satisfies all properties in R and none in F }|

Required Forbidden

2

Definitions & Notation

Notation: Universe U , Properties P

Def. (as before): Let S ⊆ P.
N(S) := |{e ∈ U | e satisfies all properties in S }|

Def. (as before): Let S ⊆ P.
N̄(S) := |{e ∈ U | e satisfies no properties in S }|

Def.: Let R ·∪ F ·∪O = P.
N(R,F,O) := |{e ∈ U |

e satisfies all properties in R and none in F }|
Obs.: For S ⊆ P, N(S) = N(S,∅,P \ S)

Obs.: For S ⊆ P, N̄(S) = N(∅, S,P \ S)

2

Definitions & Notation

Notation: Universe U , Properties P

Def. (as before): Let S ⊆ P.
N(S) := |{e ∈ U | e satisfies all properties in S }|

Def. (as before): Let S ⊆ P.
N̄(S) := |{e ∈ U | e satisfies no properties in S }|

Def.: Let R ·∪ F ·∪O = P.
N(R,F,O) := |{e ∈ U |

e satisfies all properties in R and none in F }|
Obs.: For R ·∪ F ·∪O ·∪ {p} = P,

N(R ∪ {p}, F,O) = N(R,F,O ∪ {p})−N(R,F ∪ {p}, O)

N(R,F,O ∪ {p}) = N(R ∪ {p}, F,O) + N(R,F ∪ {p}, O)

3

N(R,F,O) – Required, Forbidden, Optional

− − ++++

{3}, {1}, {2} {3}, {1,2},∅

+ −

Thm: For R ·∪ F ·∪O = P and e ∈ R,
N(R,F,O) = N(R\{p}, F,O ·∪{p})−N(R\{p}, F ·∪{p}, O)

+ −

N({1, 2, 3},∅,∅)

{3},∅, {1,2} {3}, {2}, {1}

N({2, 3}, {1},∅)

+ −

123 12 13 1 23 2 3 ∅

−−

−

− − −

=

=

=

N({2, 3},∅, {1})

{3}, {1}, {2} {3}, {1,2},∅+

∅,∅ ∅,3 ∅, 2 ∅, 23 ∅, 1 ∅, 13 ∅, 12 ∅, 123

3

N(R,F,O) – Required, Forbidden, Optional

− − ++++

{3}, {1}, {2} {3}, {1,2},∅

+ −

Thm: For R ·∪ F ·∪O = P and e ∈ R,
N(R,F,O) = N(R\{p}, F,O ·∪{p})−N(R\{p}, F ·∪{p}, O)

+ −

N({1, 2, 3},∅,∅)

{3},∅, {1,2} {3}, {2}, {1}

N({2, 3}, {1},∅)

+ −

123 12 13 1 23 2 3 ∅

−−

−

− − −

=

=

=

N({2, 3},∅, {1})

{3}, {1}, {2} {3}, {1,2},∅+

∅,∅ ∅,3 ∅, 2 ∅, 23 ∅, 1 ∅, 13 ∅, 12 ∅, 123

3

N(R,F,O) – Required, Forbidden, Optional

− − ++++

{3}, {1}, {2} {3}, {1,2},∅

+ −

Thm: For R ·∪ F ·∪O = P and e ∈ R,
N(R,F,O) = N(R\{p}, F,O ·∪{p})−N(R\{p}, F ·∪{p}, O)

+ −

N({1, 2, 3},∅,∅)

{3},∅, {1,2} {3}, {2}, {1}

N({2, 3}, {1},∅)

+ −

123 12 13 1 23 2 3 ∅

−−

−

− − −

=

=

=

N({2, 3},∅, {1})

{3}, {1}, {2} {3}, {1,2},∅+

N(P)
def
= N(P,∅,∅)

=
∑
F⊆P

(−1)|F |N(∅, F,P \ F)

∅,∅ ∅,3 ∅, 2 ∅, 23 ∅, 1 ∅, 13 ∅, 12 ∅, 123

def
=
∑
S⊆P

(−1)|S|N̄(S)

4

Using: Required-Forbidden-Optional

Problem: st-Hamiltonian Path
• U = {st-walks of length n}
• P = {Pv | v ∈ V , Pv = "walk goes through v" }

Easier Problem: N(R,F,O) is easy when R = ∅
Strategy: For e ∈ R.
N(R,F,O) = N(R \ {e}, F,O ·∪ {e})−N(R \ {e}, F ·∪ {e}, O)

Solution: N(V,∅,∅)

“Inclusion-Exclusion”

5

Using: Required-Forbidden-Optional

Problem: # Independent Sets
• U = {Independent Sets}
• P = {Pv | v ∈ V , where Pv = "set contains v"}

Easier Problem: N(R,F,O) is easy when O = ∅
Strategy: For v ∈ O,
N(R,F,O) = N(R ·∪{v}, F,O \{v}) +N(R,F ·∪{e}, O \{v})

Solution: N(∅,∅, V)

standard branching algorithm

6

Graph Coloring

Given: Graph G = (V,E), number k

Question: ∃ proper coloring of V with k colors?

≡ ∃ cover of V by k independent sets?

IE-Formulation:

U =

P =

{k-tuple of independent sets in G}

{Pv | v ∈ V ,

where Pv = "tuple contains a set with v in it"}

Lemma:
Graph Coloring: G k-colorable ⇔ N(P) > 0

7

Easier Problem

Thm.
Graph Coloring can be solved with 2n queries of N̄(·).

What is the inuitive meaning of N̄(S) for S ⊆ P?

“How many k-tuples of independent sets are there that avoid
the vertices in S?”

Def.: a(S) := # independent sets that avoid S

Lemma: N̄(S) = a(S)k Proof: k sets, each from a(S) (with
replacement)

U =

P =

{k-tuple of independent sets in G}

{Pv | v ∈ V , where Pv = "tuple contains a set

with v in it"}

7

Easier Problem

Thm.
Graph Coloring can be solved with 2n queries of N̄(·).

What is the inuitive meaning of N̄(S) for S ⊆ P?

“How many k-tuples of independent sets are there that avoid
the vertices in S?”

Def.: a(S) := # independent sets that avoid S

Lemma: N̄(S) = a(S)k Proof: k sets, each from a(S) (with
replacement)

U =

P =

{k-tuple of independent sets in G}

{Pv | v ∈ V , where Pv = "tuple contains a set

with v in it"}

8

Counting Independent Sets

Algorithm 1:
Enumerate all subsets of V \ S: test independence

Runtime: O∗(2n−|S|)

Thm.
Using Algorithm 1 for Graph Coloring gives us

Time

Space

n∑
i=0

(
n

n− i

)
2n−ipoly(n)

polynomial

O∗(3n) 3

Def.: a(S) := # independent sets that avoid S

Binomial Thm:
n∑

k=0

(
n

k

)
xkyn−k = (x + y)n

9

Counting Independent Sets

Def.: a′(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ S]

Runtime: O∗(3
√

3n−|S|) [as in Lecture 1]

Time

Spacepolynomial

O∗((1 + 3
√

3)n)O(2.4423n) ⊃

Runtime from Lawler (1976)

Thm:
Using Algorithm 2 for Graph Coloring gives us

10

Counting Independent Sets

Def.: a(S) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: O(1.1247n)

Thm:
Using Algorithm 3 for Graph Coloring gives us

Time

Spacepolynomial

O((1 + 1.1247)n)O(2.1247n) ⊃
Lawler: O(2.4423n)

5- and 6-coloring from last week are now obsolete

F&K enumerates satisfying assignments for 2-Sat instances.
 enumeration of independent sets :)

11

Counting Independent Sets

Algorithm 4:
Compute a(S) for each S ⊆ V by DP

Runtime: O∗(2n) in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

Time

SpaceO∗(2n)

O∗(2n)

Def.: a(S) := # independent sets that avoid S

11

Counting Independent Sets

Algorithm 4:
Compute a(S) for each S ⊆ V by DP

Runtime: O∗(2n) in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

Time

SpaceO∗(2n)

O∗(2n)

Def.: a(S) := # independent sets that avoid S

12

Dynamic Program for a(S), S ⊆ V

Def.: a(R,F,O) := # independent sets that contain R
and avoid F .

Obs.: For S ⊆ V , a(S) = a(∅, S, V \ S)

Obs.: For R ·∪ F = V , a(R,F,∅) = [R independent?] ∈ {0, 1}

Lemma: For R ·∪ F ·∪O ·∪ {v} = V ,

a(R,F,O ·∪ {v}) = a(R ·∪ {v}, F,O) + a(R,F ·∪ {v}, O)

independent

Obs.: For R ⊆ V , R not independent ⇒ a(R, ·, ·) = 0

Def.: a(S) := # independent sets that avoid S

12

Dynamic Program for a(S), S ⊆ V

Def.: a(R,F,O) := # independent sets that contain R
and avoid F .

Obs.: For S ⊆ V , a(S) = a(∅, S, V \ S)

Obs.: For R ·∪ F = V , a(R,F,∅) = [R independent?] ∈ {0, 1}

Lemma: For R ·∪ F ·∪O ·∪ {v} = V ,

a(R,F,O ·∪ {v}) = a(R ·∪ {v}, F,O) + a(R,F ·∪ {v}, O)

Obs.: For R1 ·∪ F1 ·∪O = R2 ·∪ F2 ·∪O = V , and Ri’s indep.

@ edge between Ri and O ⇒ a(R1, F1, O) = a(R2, F2, O).

Def.: a(S) := # independent sets that avoid S

12

Dynamic Program for a(S), S ⊆ V

Def.: a(R,F,O) := # independent sets that contain R
and avoid F .

Obs.: For S ⊆ V , a(S) = a(∅, S, V \ S)

Obs.: For R ·∪ F = V and R indep.. a(R,F,∅) = 1

Lemma: For R ·∪ F ·∪O = V and v ∈ O,

a(R,F,O) = a(R,F ·∪ {v}, O \ {v})

+ a(R ·∪ {v}, F ·∪ U(v), O \ U [v])

U := neighborhood

Def.: a(S) := # independent sets that avoid S

12

Dynamic Program for a(S), S ⊆ V

Def.: a(R,F,O) := # independent sets that contain R
and avoid F .

Obs.: For S ⊆ V , a(S) = a(∅, S, V \ S)

Obs.: For R ·∪ F = V and R indep.. a(R,F,∅) = 1

Lemma: For R ·∪ F ·∪O = V and v ∈ O,

a(R,F,O) = a(R,F ·∪ {v}, O \ {v})

+ a(R ·∪ {v}, F ·∪ U(v), O \ U [v])independent

no edges between R ·∪ {v} and O \ U [v]

and R independent,
and @ edge between R and O

Def.: a(S) := # independent sets that avoid S

12

Dynamic Program for a(S), S ⊆ V

Def.: a(R,F,O) := # independent sets that contain R
and avoid F .

Obs.: For S ⊆ V , a(S) = a(∅, S, V \ S)

Obs.: For R ·∪ F = V and R indep.. a(R,F,∅) = 1

Lemma: For R ·∪ F ·∪O = V and v ∈ O,

b(O) = b(O \ {v})

+ b(O \ U [v])

and R independent,
and @ edge between R and O

Def.: a(S) := # independent sets that avoid S

12

Dynamic Program for a(S), S ⊆ V

Def.: a(R,F,O) := # independent sets that contain R
and avoid F .

Obs.: For S ⊆ V , a(S) = a(∅, S, V \ S)

Obs.: For R ·∪ F = V and R indep.. a(R,F,∅) = 1

Lemma: For R ·∪ F ·∪O = V and v ∈ O,

b(O) = b(O \ {v})

+ b(O \ U [v])

= b(V \ S)

b(∅) = 1

and R independent,
and @ edge between R and O

Thm: Table with
a(S) for each S ⊆ V
can be computed in
O∗(2n) time. �

Def.: a(S) := # independent sets that avoid S

13

Graph Coloring: Summary

Given: Graph G = (V,E), number k

Question: ∃ proper k-coloring of V ?

IE-Formulation:

U = {k-tuple of independent sets from G}

Algorithm:

• Compute N̄(S) = a(S)k for each S ⊆ V
• Apply Inclusion-Exclusion

Thm: Graph Coloring can be decided using
O∗(2n) time and space

P = {Pv | v ∈ V , where Pv = "tuple contains a set

with v in it"}

