

Exact Algorithms

Summer Term 2020

Lecture 7. A General Approach to Inclusion-Exclusion

Based on: [Exact Exponential Algorithms: §3.1.2, §4.3.3]

Further reading: [Parameterized Algorithms: §10.1.3, 10.2]

see also: [J. Nederlof, J.M.M. van Rooij, T.C. van Dijk: Algorithmica (2014), https://doi.org/10.1007/s00453-013-9759-2]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Thomas van Dijk

Lehrstuhl für Informatik I

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} ar{N}(S)$$

Idea: Sometimes it is easier to compute $\overline{N}(\cdot)$ than $N(\cdot)$. "Simplified Problem"

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $\overline{N}(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} \bar{N}(S)$$

Idea: Sometimes it is easier to compute $\overline{N}(\cdot)$ than $N(\cdot)$.

Example: *st*-Hamiltonpath

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} \bar{N}(S)$$

Idea: Sometimes it is easier to compute $\overline{N}(\cdot)$ than $N(\cdot)$.

Example: *st*-Hamiltonpath

- $\mathcal{U} = \{st \text{-walks of length } n\}$
- $\mathcal{P} = \{P_v \mid v \in V, \text{ and } P_v = "walk goes through }v"\}$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid$

e satisfies all properties in R and none in F

Required Forbidden

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid e \in \mathcal$

e satisfies all properties in R and none in F

Obs.: For $S \subseteq \mathcal{P}$, $N(S) = N(S, \emptyset, \mathcal{P} \setminus S)$

Obs.: For $S \subseteq \mathcal{P}$, $\overline{N}(S) = N(\emptyset, S, \mathcal{P} \setminus S)$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

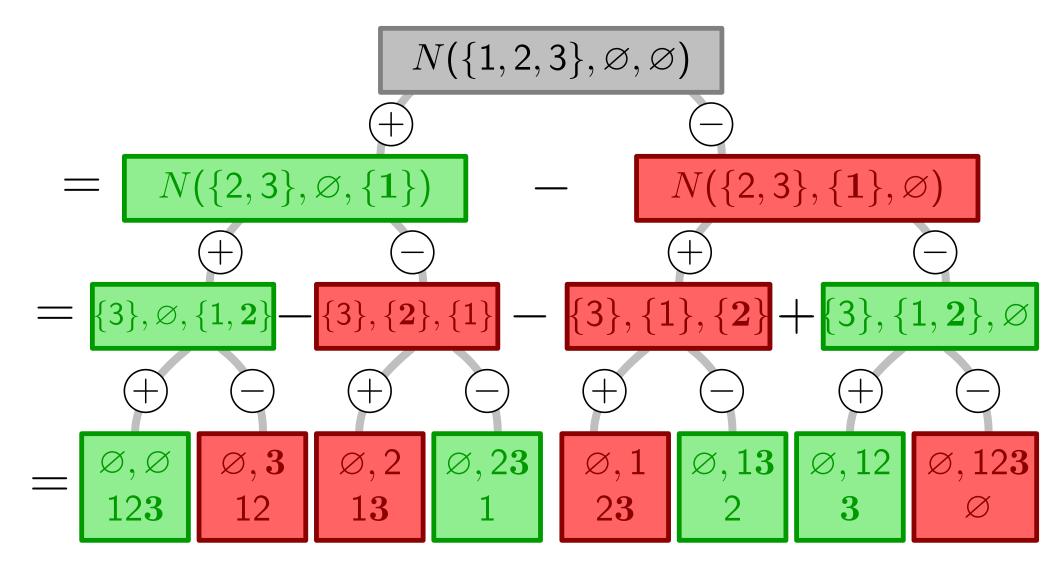
Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } R \text{ and none in } F \}|$

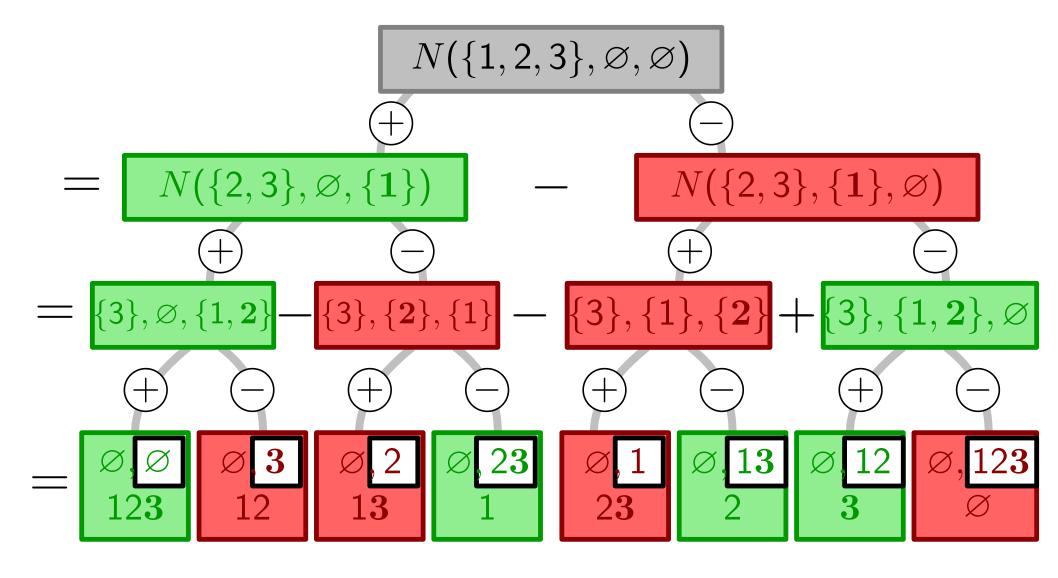
Obs.: For $R \cup F \cup O \cup \{p\} = \mathcal{P}$, $N(R, F, O \cup \{p\}) = N(R \cup \{p\}, F, O) + N(R, F \cup \{p\}, O)$ $N(R \cup \{p\}, F, O) = N(R, F, O \cup \{p\}) - N(R, F \cup \{p\}, O)$ N(R, F, O) – Required, Forbidden, Optional

Thm: For $R \cup F \cup O = \mathcal{P}$ and $e \in R$, $N(R, F, O) = N(R \setminus \{p\}, F, O \cup \{p\}) - N(R \setminus \{p\}, F \cup \{p\}, O)$



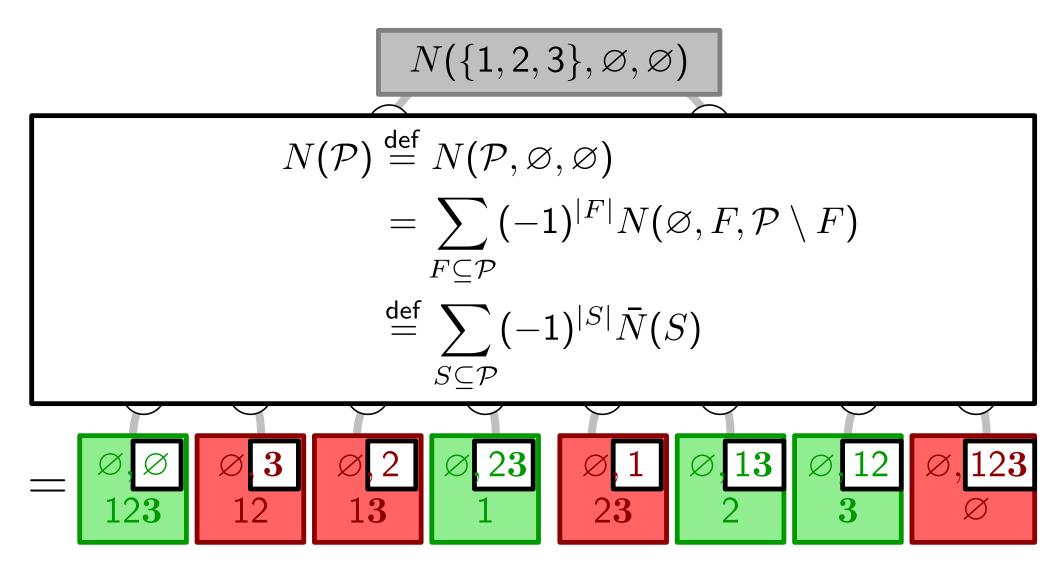
N(R, F, O) – Required, Forbidden, Optional

Thm: For $R \cup F \cup O = \mathcal{P}$ and $e \in R$, $N(R, F, O) = N(R \setminus \{p\}, F, O \cup \{p\}) - N(R \setminus \{p\}, F \cup \{p\}, O)$



N(R, F, O) – Required, Forbidden, Optional

Thm: For $R \cup F \cup O = \mathcal{P}$ and $e \in R$, $N(R, F, O) = N(R \setminus \{p\}, F, O \cup \{p\}) - N(R \setminus \{p\}, F \cup \{p\}, O)$



Using: Required-Forbidden-Optional

Problem: *st*-Hamiltonian Path

- $\mathcal{U} = \{st \text{-walks of length } n\}$
- $\mathcal{P} = \{ P_v \mid v \in V, P_v = "walk goes through v" \}$

Solution: $N(V, \emptyset, \emptyset)$

Easier Problem: N(R, F, O) is easy when $R = \emptyset$

Strategy: For $e \in R$. $N(R, F, O) = N(R \setminus \{e\}, F, O \cup \{e\}) - N(R \setminus \{e\}, F \cup \{e\}, O)$

Using: Required-Forbidden-Optional

Problem: # Independent Sets

- $\mathcal{U} = \{ \mathsf{Independent Sets} \}$
- $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = "\text{set contains } v"\}$

Solution: $N(\emptyset, \emptyset, V)$

Easier Problem: N(R, F, O) is easy when $O = \emptyset$

Strategy: For $v \in O$, $N(R, F, O) = N(R \cup \{v\}, F, O \setminus \{v\}) + N(R, F \cup \{e\}, O \setminus \{v\})$

standard branching algorithm

Graph Coloring

Given: Graph G = (V, E), number k

Question: \exists proper coloring of V with k colors?

 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

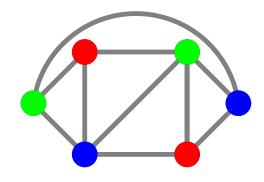
 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

$$\mathcal{P} = \{P_v \mid v \in V, v \in V, v \in V\}$$

where $P_v = "tuple contains a set with v in it" \}$

Lemma:

Graph Coloring: $G \ k$ -colorable $\Leftrightarrow N(\mathcal{P}) > 0$



Easier Problem

Thm.

Graph Coloring can be solved with 2^n queries of $\overline{N}(\cdot)$.

 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

- $\mathcal{P} = \{ P_v \mid v \in V \text{, where } P_v = \texttt{"tuple contains a set} \\ \text{with } v \text{ in it"} \}$
- What is the inuitive meaning of $\overline{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Def.: a(S) := # independent sets that avoid S

Lemma: $\overline{N}(S) = a(S)^k$ **Proof:** k sets, each from a(S) (with replacement)

Easier Problem

Thm.

Graph Coloring can be solved with 2^n queries of $\overline{N}(\cdot)$.

 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

- $\mathcal{P} = \{ P_v \mid v \in V, \text{ where } P_v = \texttt{"tuple contains a set} \\ \text{ with } v \text{ in it"} \}$
- What is the inuitive meaning of $\overline{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Def.: a(S) := # independent sets that avoid S

Lemma: $\overline{N}(S) = a(S)^k$ **Proof:** k sets, each from a(S) (with replacement)

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Binomial Thm:

$$\sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} = (x+y)^{n}$$

Thm.

Using Algorithm 1 for Graph Coloring gives us

$$O^*(3^n) \ni \sum_{i=0}^n \binom{n}{n-i} 2^{n-i} \operatorname{poly}(n)$$
 Time

polynomial Space

Def.: a'(S) := # maximal independent sets that avoid S

Algorithm 2:

Enumerate all maximal independent sets of $G[V \setminus S]$

Runtime: $O^*(\sqrt[3]{3^{n-|S|}})$ [as in Lecture 1]

Thm:

Using Algorithm 2 for Graph Coloring gives us

$$O(2.4423^n) \supset O^*((1+\sqrt[3]{3})^n)$$
 Time
Runtime from Lawler (1976) polynomial Space

Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances. \rightsquigarrow enumeration of independent sets :)

Thm:

Using Algorithm 3 for Graph Coloring gives us 5- and 6-coloring from last week are now obsolete $O(2.1247^n) \supset O((1+1.1247)^n)$ Time Lawler: $O(2.4423^n)$

polynomial Space

Def.: a(S) := # independent sets that avoid S

Algorithm 4: Compute a(S) for each $S \subseteq V$ by DP Runtime: $O^*(2^n)$ in total

Thm:

Using Algorithm 4 for Graph Coloring gives us

 $O^*(2^n)$ Time

 $O^*(2^n)$ Space

Def.: a(S) := # independent sets that avoid S

Algorithm 4: Compute a(S) for each $S \subseteq V$ by DP Runtime: $O^*(2^n)$ in total

Thm:

Using Algorithm 4 for Graph Coloring gives us

 $O^*(2^n)$ Time

 $O^*(2^n)$ Space

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** Rand **avoid** F. **obs.:** For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \emptyset) = [R \text{ independent}?] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

 $a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$

Obs.: For $R \subseteq V$, R not independent $\Rightarrow a(R, \cdot, \cdot) = 0$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \emptyset) = [R \text{ independent}?] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

 $a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$

Obs.: For $R_1 \cup F_1 \cup O = R_2 \cup F_2 \cup O = V$, and R_i 's indep. \nexists edge between R_i and $O \Rightarrow a(R_1, F_1, O) = a(R_2, F_2, O)$.

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, U := neighborhood $a(R, F, O) = a(R, F \cup \{v\}, O \setminus \{v\})$ $+ a(R \cup \{v\}, F \cup U(v), O \setminus U[v])$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and R independent, and \nexists edge between R and O

$$a(R, F, O) = a(R, F \cup \{v\}, O \setminus \{v\})$$

independent $+ a(R \cup \{v\}, F \cup U(v), O \setminus U[v])$
no edges between $R \cup \{v\}$ and $O \setminus U[v]$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$,

and R independent, and \nexists edge between R and O

$$b(O) = b(O \setminus \{v\})$$

+ $b(O \setminus U[v])$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For
$$S \subseteq V$$
, $a(S) = a(\emptyset, S, V \setminus S) = b(V \setminus S)$
Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and R independent, and \nexists edge between R and O

$$b(O) = b(O \setminus \{v\})$$
Thm: Table with $+ b(O \setminus U[v])$ $a(S)$ for each $S \subseteq V$ $b(\emptyset) = 1$ $O^*(2^n)$ time. \Box

Graph Coloring: Summary

Given: Graph G = (V, E), number k

Question: \exists proper k-coloring of V?

IE-Formulation:

 $\mathcal{U} = \{k \text{-tuple of independent sets from } G\}$

 $\mathcal{P} = \{ P_v \mid v \in V, \text{ where } P_v = \texttt{"tuple contains a set} \\ \text{ with } v \text{ in it"} \}$

Algorithm:

- Compute $\overline{N}(S) = a(S)^k$ for each $S \subseteq V$
- Apply Inclusion-Exclusion

Thm: Graph Coloring can be decided using $O^*(2^n)$ time and space

