Julius-Maximilians-
UNIVERSITAT Lonsunio ||||| - f
WURZBURG INFORMATIK | I |

Algorithmen & Komplexitat Institut fir Informatik

Exact Algorithms

Summer Term 2020

Lecture 7. A General Approach to Inclusion—Exclusion

Thomas van Dijk Lehrstuhl fiir Informatik |

Definitions & Notation

Notation: Universe U/, Properties P

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Thm (as before): N(P) = Z (—1)PIN(S)
SCP

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) := |{e € U | e satisfies no properties in S }|
Thm (as before): N(P) = Z (—1)PIN(S)
SCP

Idea: Sometimes it is easier to compute N(-) than N(-).

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) := |{e € U | e satisfies no properties in S }|
Thm (as before): N(P) = Z (—1)PIN(S)
SCP

Idea: Sometimes it is easier to compute N(-) than N(-).

}

“Simplified Problem”

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) := |{e € U | e satisfies no properties in S }|
Thm (as before): N(P) = Z (—1)PIN(S)
SCP

Idea: Sometimes it is easier to compute N(-) than N(-).

Example: st-Hamiltonpath

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) := |{e € U | e satisfies no properties in S }|
Thm (as before): N(P) = Z (—1)PIN(S)
SCP

Idea: Sometimes it is easier to compute N(-) than N(-).

Example: st-Hamiltonpath

e U = {st-walks of length n}
e P={P,|veV, and P, = "walk goes through v"}

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Def.: let RUF U0 ="7P.
N(R,F,0) = |{eclU |

e satisfies all properties in R and none in F' }|

A 4

Required Forbidden

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Def.: let RUF U0 ="7P.
N(R,F,0) = |{eclU |

e satisfies all properties in R and none in F' }|

Obs.: For S C P, N(S) =

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Def.: let RUF U0 ="7P.
N(R,F,0) = |{eclU |

e satisfies all properties in R and none in F' }|

Obs.: For S C P, N(S) = N(S,,P\ S)

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Def.: let RUF U0 ="7P.
N(R,F,0) = |{eclU |

e satisfies all properties in R and none in F' }|
Obs.: For S C P, N(S)=N(S,9,P\S)
Obs.: For S C P, N(S) = N(2,5,P\ S)

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Def.: let RUF U0 ="7P.
N(R,F,0) = |{eclU |

e satisfies all properties in R and none in F' }|

Obs.: For RUFUO U {p} =P,

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Def.: Let RUFUJO ="P.
N(R,F,0) = |{eclU |
e satisfies all properties in R and none in F' }|

Obs.: For RUFUO U {p} =P,
N(R,F,0U{p}) = N(RU{p}, F,0) + N(R, F U {p}, O)

Definitions & Notation

Notation: Universe U/, Properties P

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies all properties in .S }|

Def. (as before): Let S C P.
N(S) :=|{e € U | e satisfies no properties in S }|

Def.: Let RUFUJO ="P.
N(R,F,0) = |{eclU |
e satisfies all properties in R and none in F' }|
Obs.: For RUF U O U {p} =P,
N(R,F,0U{p}) = N(RU{p}, F,0) + N(R, FU{p}, O)

N(RU{p}, F,0) = N(R, F,0OU{p}) — N(R,F U{p}, O)

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

Suppose: N(R, F,0) is easy when R = &

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, 9)

N(R, F,O) — Required, Forbidden, Optional
Thm: For RUFUJO =P and e € R,
N(R, F,0) = N(R\{p}, F,0U{p})— N(R\ {p}, FU{p},O)
N({1,2,3}, 2, 9)
®
— | N({2,3},9,{1})
*

too many

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3},2,)
® ©.

=[v@sienp | - (NGRS]

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, 9)
N(12,3},9,11})

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3},2,)
® ©.

=[v@sienp | - (NGRS]

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, 9)

® S,
=[v@sienp | - (NGRS]

®

— K3},9,{1,2

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)

® S,
-Gy - (e

® S,

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)

e O
=[v@eso0n |~ [NGRSEERe]
& O e

 EEEHIE o AT R (ETETNEY)

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)
® S,
= [v@espenp | - [NG235{9) |
® S, ® S,

= o022 - [ERER] - (13 (1. (21— 30, 01.2). 2

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)

@ ©,
-Ceiew] - e
® 0O O =

-] -

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)

® S,
-Gy - (e
® S, ® S,
- [- o]

®

&, &
123

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)

@ ©,
-Ceiew] - e
® 0O O =

- - -

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)

® S,
-Gy - (e

S,

@ S @
-] -

® 0 ® @ ® O

>, o @, 23 .13
123 1 2

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)
® S,

=[v@senp | - [N]

S,

@ S @
-] -

® 0 ® @ ® o © o

%) .23 ,13|| @, 12
123 1 2 3

3

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, @)
S,

®
=[v@senp | - [N]

S,

@ S @
-] -

® 0 ® @ ® o © o

123 1 2 3

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 3, @)
® S,
-Gy - (e
® S, ® S,

-] -

® 0 ® @ ® o © o

123 1

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, 9)

B
123 1 Z E

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, 9)

N(P) € N(P,2, o)

=Y (-)¥IN(z,F,P\F)

FCP

B
123 1 Z E

N(R, F,O) — Required, Forbidden, Optional

Thm: For RUFUO =P and e € R,
N(R, F,0) = N(R\{p}, F,OU{p}) - N(R\{p}, FU{p}, O)

N({1,2,3}, 2, 9)

N(P) € N(P,2, o)

=Y (-)¥IN(z,F,P\F)

FCP

=) (CDFIN(S)
SCP

B
123 1 Z E

Using: Required-Forbidden-Optional

Problem: st-Hamiltonian Path
o U/ = {st-walks of length n}
e P={P,|veV, P, ="walk goes through v" }

Using: Required-Forbidden-Optional

Problem: st-Hamiltonian Path
o U/ = {st-walks of length n}
e P={P,|veV, P, ="walk goes through v" }

Solution: N(V, @, &)

Using: Required-Forbidden-Optional

Problem: st-Hamiltonian Path
o U/ = {st-walks of length n}
e P={P,|veV, P, ="walk goes through v" }

Solution: N(V, @, &)
Easier Problem: N(R, F,O) is easy when R = &

Using: Required-Forbidden-Optional

Problem: st-Hamiltonian Path
o U/ = {st-walks of length n}
e P={P,|veV, P, ="walk goes through v" }

Solution: N(V, @, &)
Easier Problem: N(R, F,O) is easy when R = &

Strategy: For e € R.
N(R,F,0)=N(R\{e}, F,OUJ{e})— N(R\{e}, Fu{e}, O)

Using: Required-Forbidden-Optional

Problem: st-Hamiltonian Path
o U/ = {st-walks of length n}
e P={P,|veV, P, ="walk goes through v" }

Solution: N(V, @, &)
Easier Problem: N(R, F,O) is easy when R = @

Strategy: For e € R.
N(R,F,0)=N(R\{e}, F,OUJ{e})— N(R\{e}, Fu{e}, O)

“Inclusion-Exclusion”

Using: Required-Forbidden-Optional

Problem: # Independent Sets
e U/ = {Independent Sets}
e P={P, | veV, where P, = "set contains v"

Using: Required-Forbidden-Optional

Problem: # Independent Sets
e U/ = {Independent Sets}
e P={P, | veV, where P, = "set contains v"

Solution: N(2,a,V)

Using: Required-Forbidden-Optional

Problem: # Independent Sets

e U/ = {Independent Sets}
e P={P, |veV, where P, = "set contains v"

Solution: N(2,a,V)
Easier Problem: N(R, F,O) is easy when O = @

Using: Required-Forbidden-Optional

Problem: # Independent Sets
e U/ = {Independent Sets}
e P={P, | veV, where P, = "set contains v"

Solution: N(2,a,V)
Easier Problem: N(R, F,O) is easy when O = @

Strategy: For v € O,
N(R,F,0)=N((RU{v}, F,O\{v})+ N(R, FuJ{e}, O\ {v})

Using: Required-Forbidden-Optional

Problem: # Independent Sets
e U/ = {Independent Sets}
e P={P, | veV, where P, = "set contains v"

Solution: N(2,a,V)
Easier Problem: N(R, F,O) is easy when O = &

Strategy: For v € O,
N(R,F,0)=N((RU{v}, F,O\{v})+ N(R, FuJ{e}, O\ {v})

standard branching algorithm

Graph Coloring

Given: Graph G = (V, F), number k

Question: d proper coloring of V' with k colors?

Graph Coloring

Given: Graph G = (V, E), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

Graph Coloring

Given: Graph G = (V, E), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

|E-Formulation:
U =
P =

Graph Coloring

Given: Graph G = (V, E), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

|E-Formulation:
U = {k-tuple of independent sets in G}

P =

Graph Coloring

Given: Graph G = (V, F), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

|E-Formulation: ordered! (different from the others!)
U = {k-tuple of independent sets in G}
P —

Graph Coloring

Given: Graph G = (V, F), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

|E-Formulation:
U = {k-tuple of independent sets in G}
P={P,|velV,

where P, = "tuple contains a set with v in it"}

Graph Coloring

Given: Graph G = (V, F), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

|E-Formulation:
U = {k-tuple of independent sets in G}
P={P,|velV,

where P, = "tuple contains a set with v in it"}

Lemma:
Graph Coloring: G k-colorable < N(P) > 0

Graph Coloring

Given: Graph G = (V, F), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

|E-Formulation:
U = {k-tuple of independent sets in G}
P={P,|velV,

where P, = "tuple contains a set with v in it"}

Thm.
Graph Coloring can be decided by 2/7 = 2"
queries of N(-)

Graph Coloring

Given: Graph G = (V, F), number k
Question: d proper coloring of V' with k colors?

= d cover of V by k independent sets?

|E-Formulation:
U = {k-tuple of independent sets in G}
P={P,|velV,

where P, = "tuple contains a set with v in it"}

Thm.
Graph Coloring can be decided by 2/ = 2"
queries of N (+)

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}

P={P, | veV, where P, = "tuple contains a set
with v in it"}

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}

P={P, | veV, where P, = "tuple contains a set
with v in it"}

What is the inuitive meaning of N(S) for S C P?

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}
P={P,|veV, where P, = "tuple contains a set

with v in it"}

What is the inuitive meaning of N(S) for S C P?

“How many k-tuples of independent sets are there that avoid
the vertices in 57"

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}
P={P,|veV, where P, = "tuple contains a set

with v in it"}

What is the inuitive meaning of N(S) for S C P?

“How many k-tuples of independent sets are there that avoid
the vertices in 57"

Def.: a(S) := # independent sets that avoid S

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}
P={P,|veV, where P, = "tuple contains a set

with v in it"}

What is the inuitive meaning of N(S) for S C P?

“How many k-tuples of independent sets are there that avoid
the vertices in 57"

Def.: a(S) := # independent sets that avoid S
Lemma: N(S) =

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}
P={P,|veV, where P, = "tuple contains a set

with v in it"}

What is the inuitive meaning of N(S) for S C P?

“How many k-tuples of independent sets are there that avoid
the vertices in 57"

Def.: a(S) := # independent sets that avoid S
Lemma: N(S) = a(5)"

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}

P={P, | veV, where P, = "tuple contains a set
with v in it"}

What is the inuitive meaning of N(S) for S C P?

“How many k-tuples of independent sets are there that avoid
the vertices in 57"

Def.: a(S) := # independent sets that avoid S

Lemma:]_[(S) — a(S)’f Proof: k sets, each from a(S) (with
replacement)

Easier Problem

Thm.)
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}

P={P, | veV, where P, = "tuple contains a set
with v in it"}

What is the inuitive meaning of N(S) for S C P?

“How many k-tuples of independent sets are there that avoid
the vertices in 57"

Def.: a(S) := # independent sets that avoid S

Lemma:]_[(S) — a,(S)k Proof: k sets, each from a(S) (with
replacement)

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O* (2" 131)

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O* (2" 131)

Thm.
Using Algorithm 1 for Graph Coloring gives us

Time

Space

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O* (2" 131)

Thm.
Using Algorithm 1 for Graph Coloring gives us

Z 2"~ 151poly(n) Time
SCV

Space

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O* (2" 131)

Thm.
Using Algorithm 1 for Graph Coloring gives us

En: (ni Z) 2" ~inoly(n) Time

1=0

Space

Counting Independent Sets

Def.: a(S) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O*(Qn—|5|) Binomial Thm:

- n n— n
D <k>fﬁky b= (z+y)
Thm. w=0
Using Algorithm 1 for Graph Coloring gives us

En: (ni Z) 2" ~inoly(n) Time

1=0

Space

Counting Independent Sets

Def.: a(S) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O*(Qn—|5|) Binomial Thm:

- n n— n
D <k>fﬁky b= (z+y)
Thm. w=0
Using Algorithm 1 for Graph Coloring gives us

0O*(3") f:(" ,)2“—Z’poly(n) Time

: n —1
=0

Space

Counting Independent Sets

Def.: a(S) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O*(Qn—|5|) Binomial Thm:

- n n— n
D <k>fﬁky b= (z+y)
Thm. w=0
Using Algorithm 1 for Graph Coloring gives us

0O*(3") f:(" ,)2“—Z’poly(n) Time

: n —1
=0

polynomial Space

Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ 5]

Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ 5]

Runtime: O*(v/37~1°1)

Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ 5]

Runtime: O*(v/3"~151)

Thm:
Using Algorithm 2 for Graph Coloring gives us

Time

polynomial Space

Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ 5]

Runtime: O*(v/3"~151)

Thm:
Using Algorithm 2 for Graph Coloring gives us

O*(Z V377 Time

SCV

polynomial Space

Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ 5]

Runtime: O*(v/3"~151)

Thm:
Using Algorithm 2 for Graph Coloring gives us

O*((1 ++v/3)") Time

polynomial Space

Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ 5]

Runtime: 0*(\3/§n—|5|)

Thm:
Using Algorithm 2 for Graph Coloring gives us

0(2.4423") > O*((1 ++v/3)") Time

A
Runtime from Lawler (1976) ——J

polynomial Space

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

10

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")
F&K enumerates satisfying assignments for 2-SAT instances.

10

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

F&K enumerates satisfying assignments for 2-SAT instances.
How does this help us for independent sets?

10

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

F&K enumerates satisfying assignments for 2-SAT instances.
How does this help us for independent sets?

X

o

10

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

F&K enumerates satisfying assignments for 2-SAT instances.
How does this help us for independent sets?

X

y/. < (-zV-y)

10

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

F&K enumerates satisfying assignments for 2-SAT instances.
~~ enumeration of independent sets :)

X

y/. < (-zV-y)

10

10

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

F&K enumerates satisfying assignments for 2-SAT instances.
~~ enumeration of independent sets :)

Thm:
Using Algorithm 3 for Graph Coloring gives us

0(2.1247%) > O((1 + 1.1247)") Time

Lawler: O(2.4423")
polynomial Space

10

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

F&K enumerates satisfying assignments for 2-SAT instances.
~~ enumeration of independent sets :)

Thm:
Using Algorithm 3 for Graph Coloring gives us
5- and 6-coloring from last week are now obsolete
0(2.1247™") > O((1 + 1.1247)™) Time

Lawler: O(2.4423")
polynomial Space

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

11

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

Time

Space

11

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

O*(2™) Time

Space

11

Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

O*(2™) Time

O*(2") Space

11

Counting Independent Sets

Def.: a(S) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

O*(2™) Time

O*(2") Space

11

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)

12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F,2) =

Dynamic Program for a(S5), S CV

Def.

: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R

Obs
Obs

and avoid F'.

2 For SCV, a(S)=a(a,5,V\S9)
2 For RUF =V, a(R, F,2) = [R independent?] € {0,1}

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F,) = [R independent?] € {0, 1}

Lemma: For RUF U0 U{v} =V,
a(R,F,OUY{v}) =a(RU{v}, F,O)+ a(R, FU{v}, O)

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)

DP with parameters R J F'lJ O seems like it would use O*(3")
time and space... but does it?

12

12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)
Obs.: For R C V, R not independent = a(R,-,-) =0

12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

/— independent

Obs.: For S CV, a(S)=a(2,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R,F,OUY{v}) =a(RU{v}, F,O)+ a(R, FU{v}, O)
Obs.: For R C V, R not independent = a(R,-,-) =0

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)
Obs.: For RiUF1 U0 =Ry F>, O =YV, and R;'s indep.

12

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)

Obs.: For RiUF1 U0 =Ry F>, O =YV, and R;'s indep.
B edge between R; and O = a(R1, F1,0) = a(Ry, 5, O).

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1
Lemma: For RUFUO =V and v € O,

a(R,F,0) =a(R,FU{v},O\ {v})
+ a(RU{v}, FUU(v),0\ Ulv])

12

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUJO =V andv e, U = neighborhood

a(R,F,0)=a(R,FU{v}, O\ {v‘}/j
+ a(RYU {v}, FUU(v),0\ Ulv])

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1
Lemma: For RUFUO =V and v € O,

a(R,F,0) =a(R, FJ{v}, O\ {v})
independent T a(RU{v}, FUU(v), 0\ Ulv])

12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUO =V and v € O,
a(R,F,0)=a(R,FU{v}, O\ {v})
independent T a(RU{v}, FUU(v),0\ Ulv])

no edges between R {v} and O \ U|[v] /

12

12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUF UO =V and v € O, ¢ e e and O
a(R,F,0)=a(R,FU{v}, O\ {v})
independent + a(RU{v}, FUU(v),0 \ Ulv])

no edges between R {v} and O \ U|[v] /

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1
Lemma: For RUF UO =V and v € O, ¢ e e and O

a(R, F,0) =a(R, FU{v},O\ {v})
+ a(RU{v}, FUU(v), 0\ Ulv])

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

. . . - nd R ind ndent,
Lemma- For R U F U O _ V and (% E O’ znd 39 edg:pbeetvfeen R and O

CL(-.°, O) — CL(-, 5 O \ {U})
+ CL(-, 5 O \ U[U])

12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

. . . - nd R ind ndent,
Lemma- For R U F U O _ V and (% E O’ znd 39 edg:pbeetvfeen R and O

b(0) = 0(0\ {v})
+ (0 \ Ulv])

12

Dynamic Program for a(S5), S CV
Def.: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUO =V and v € O, 25 derendent. w0
b(0) = b(O \ {v})
+H(0\ ULy
b(o) =1

12

Dynamic Program for a(S5), S CV
Def.: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For SCV, a(S)=a(a,5,V\S) =bV\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUO =V and v € O, 25 derendent. w0
b(0) = b(O \ {v})
+H(0\ ULy
b(o) =1

Dynamic Program for a(S5), S CV
Def.: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For SCV, a(S)=a(a,5,V\S) =bV\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

. . . - nd R ind ndent,
Lemma- For R U F U O _ V and (% E O’ znd 39 edg:pbeetvfeen R and O

b(O) = b(O \ {v}) Thm: Table with

a(S) foreach S CV
+ (0 \ Uv)) can be computed in
(o) =1 O*(2") time.

12

Graph Coloring: Summary

Given: Graph G = (V, F), number k

Question: 3 proper k-coloring of V7

13

Graph Coloring: Summary

Given: Graph G = (V, E), number k
Question: 3 proper k-coloring of V7
IE-Formulation:

U = {k-tuple of independent sets from G}

P={P, | veV, where P, = "tuple contains a set
with v in it"}

13

Graph Coloring: Summary

Given: Graph G = (V, F), number k
Question: 3 proper k-coloring of V7
|E-Formulation:

U = {k-tuple of independent sets from G}

P={P, | veV, where P, = "tuple contains a set
with v in it"}

Algorithm:
e Compute N(S) = a(S)* for each SCV
e Apply Inclusion-Exclusion

13

Graph Coloring: Summary

Given: Graph G = (V, F), number k
Question: 3 proper k-coloring of V7
|E-Formulation:

U = {k-tuple of independent sets from G}

P={P, | veV, where P, = "tuple contains a set
with v in it"}

Algorithm:
e Compute N(S) = a(S)* for each SCV
e Apply Inclusion-Exclusion

Thm: Graph Coloring can be decided using
O*(2™) time and space

13

