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o U/ = {st-walks of length n}
e P={P,|veV, P, ="walk goes through v" }
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Problem: # Independent Sets
e U/ = {Independent Sets}
e P={P, | veV, where P, = "set contains v"

Solution: N(2,a,V)
Easier Problem: N(R, F,O) is easy when O = &

Strategy: For v € O,
N(R,F,0)=N((RU{v}, F,O\{v})+ N(R, FuJ{e}, O\ {v})

standard branching algorithm
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U = {k-tuple of independent sets in G}
P={P,|veV, where P, = "tuple contains a set

with v in it"}
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Def.: a(S) := # independent sets that avoid S
Lemma: N(S) = a(5)"
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Thm. )
Graph Coloring can be solved with 2™ queries of N(-).

U = {k-tuple of independent sets in G}

P={P, | veV, where P, = "tuple contains a set
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Def.: a(S) := # independent sets that avoid S

Algorithm 1:
Enumerate all subsets of V' \ S: test independence

Runtime: O*(Qn—|5|) Binomial Thm:

- n n— n
D <k>fﬁky b= (z+y)
Thm. w=0
Using Algorithm 1 for Graph Coloring gives us

0O*(3") f:( " ,)2“—Z’poly(n) Time

: n —1
=0

polynomial  Space
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Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S

Algorithm 2:
Enumerate all maximal independent sets of G[V \ 5]

Runtime: O*(v/3"~151)

Thm:
Using Algorithm 2 for Graph Coloring gives us
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Counting Independent Sets

Def.: a/(S) := # maximal independent sets that avoid S
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Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 3:
Use the algorithm of Fiirer & Kasiviswanathan (2007)

Runtime: O(1.1247")

F&K enumerates satisfying assignments for 2-SAT instances.
~~ enumeration of independent sets :)

Thm:
Using Algorithm 3 for Graph Coloring gives us
5- and 6-coloring from last week are now obsolete
0(2.1247™") > O((1 + 1.1247)™) Time

Lawler: O(2.4423")
polynomial Space



Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

11



Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

Time

Space

11



Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

O*(2™) Time

Space

11



Counting Independent Sets

Def.: a(5) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

O*(2™) Time

O*(2") Space

11



Counting Independent Sets

Def.: a(S) := # independent sets that avoid S

Algorithm 4:
Compute a(S) for each S C V by DP

Runtime: O*(2") in total

Thm:
Using Algorithm 4 for Graph Coloring gives us

O*(2™) Time

O*(2") Space

11



Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

12



Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

12



Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)

12



Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F,2) =



Dynamic Program for a(S5), S CV

Def.

: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R

Obs
Obs

and avoid F'.

2 For SCV, a(S)=a(a,5,V\S9)
2 For RUF =V, a(R, F,2) = [R independent?] € {0,1}



12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, ) = [R independent?] € {0, 1}

Lemma: For RUF U0 U{v} =V,
a(R,F,OUY{v}) =a(RU{v}, F,O)+ a(R, FU{v}, O)



Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)

DP with parameters R J F'lJ O seems like it would use O*(3")
time and space... but does it?

12



12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)
Obs.: For R C V, R not independent = a(R,-,-) =0



12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

/— independent

Obs.: For S CV, a(S)=a(2,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R,F,OUY{v}) =a(RU{v}, F,O)+ a(R, FU{v}, O)
Obs.: For R C V, R not independent = a(R,-,-) =0



Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)
Obs.: For RiUF1 U0 =Ry F>, O =YV, and R;'s indep.

12



12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V, a(R, F, o) = [R independent?] € {0,1}
Lemma: For RUFUJOU{v} =V,

a(R, F,OU{v}) =a(RU{v}, F,0)+ a(R, F U {v}, O)

Obs.: For RiUF1 U0 =Ry F>, O =YV, and R;'s indep.
B edge between R; and O = a(R1, F1,0) = a(Ry, 5, O).



Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

12



Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1
Lemma: For RUFUO =V and v € O,

a(R,F,0) =a(R,FU{v},O\ {v})
+ a(RU{v}, FUU(v),0\ Ulv])

12



12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUJO =V andv e, U = neighborhood

a(R,F,0)=a(R,FU{v}, O\ {v‘}/j
+ a(RYU {v}, FUU(v),0\ Ulv])



Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1
Lemma: For RUFUO =V and v € O,

a(R,F,0) =a(R, FJ{v}, O\ {v})
independent T a(RU{v}, FUU(v), 0\ Ulv])

12



Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUO =V and v € O,
a(R,F,0)=a(R,FU{v}, O\ {v})
independent T a(RU{v}, FUU(v),0\ Ulv])

no edges between R {v} and O \ U|[v] /

12



12

Dynamic Program for a(S5), S CV

Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUF UO =V and v € O, ¢ e e and O
a(R,F,0)=a(R,FU{v}, O\ {v})
independent + a(RU{v}, FUU(v),0 \ Ulv])

no edges between R {v} and O \ U|[v] /



12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1
Lemma: For RUF UO =V and v € O, ¢ e e and O

a(R, F,0) =a(R, FU{v},O\ {v})
+ a(RU{v}, FUU(v), 0\ Ulv])



12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

. . . - nd R ind ndent,
Lemma- For R U F U O _ V and (% E O’ znd 39 edg:pbeetvfeen R and O

CL(-.°, O) — CL(-, 5 O \ {U})
+ CL(-, 5 O \ U[U])



12

Dynamic Program for a(S5), S CV
Def.: a(5) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

. . . - nd R ind ndent,
Lemma- For R U F U O _ V and (% E O’ znd 39 edg:pbeetvfeen R and O

b(0) = 0(0\ {v})
+ (0 \ Ulv])



12

Dynamic Program for a(S5), S CV
Def.: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For S CV, a(S)=a(g,5,V\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUO =V and v € O, 25 derendent. w0
b(0) = b(O \ {v})
+H(0\ ULy
b(o) =1



12

Dynamic Program for a(S5), S CV
Def.: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For SCV, a(S)=a(a,5,V\S) =bV\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

Lemma: For RUFUO =V and v € O, 25 derendent. w0
b(0) = b(O \ {v})
+H(0\ ULy
b(o) =1



Dynamic Program for a(S5), S CV
Def.: a(S) := # independent sets that avoid S

Def.: a(R, F,O) := # independent sets that contain R
and avoid F'.

Obs.: For SCV, a(S)=a(a,5,V\S) =bV\S9)
Obs.: For RUF =V and R indep.. a(R,F,0)=1

. . . - nd R ind ndent,
Lemma- For R U F U O _ V and (% E O’ znd 39 edg:pbeetvfeen R and O

b(O) = b(O \ {v}) Thm: Table with

a(S) foreach S CV
+ (0 \ Uv)) can be computed in
(o) =1 O*(2") time.
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P={P, | veV, where P, = "tuple contains a set
with v in it"}

Algorithm:
e Compute N(S) = a(S)* for each SCV
e Apply Inclusion-Exclusion

Thm: Graph Coloring can be decided using
O*(2™) time and space
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