

Exact Algorithms

Summer Term 2020

Lecture 7. A General Approach to Inclusion-Exclusion

Based on: [Exact Exponential Algorithms: §3.1.2, §4.3.3]

Further reading: [Parameterized Algorithms: §10.1.3, 10.2]

see also: [J. Nederlof, J.M.M. van Rooij, T.C. van Dijk: Algorithmica (2014), https://doi.org/10.1007/s00453-013-9759-2]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Thomas van Dijk

Lehrstuhl für Informatik I

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} \bar{N}(S)$$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} \bar{N}(S)$$

Idea: Sometimes it is easier to compute $\bar{N}(\cdot)$ than $N(\cdot)$.

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} \bar{N}(S)$$

Idea: Sometimes it is easier to compute $\bar{N}(\cdot)$ than $N(\cdot)$.

"Simplified Problem"

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} \bar{N}(S)$$

Idea: Sometimes it is easier to compute $\bar{N}(\cdot)$ than $N(\cdot)$.

Example: st-Hamiltonpath

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Thm (as before):
$$N(\mathcal{P}) = \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} \bar{N}(S)$$

Idea: Sometimes it is easier to compute $\bar{N}(\cdot)$ than $N(\cdot)$.

Example: st-Hamiltonpath

- $\mathcal{U} = \{st\text{-walks of length } n\}$
- $\mathcal{P} = \{P_v \mid v \in V, \text{ and } P_v = \text{"walk goes through } v\text{"}\}$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid$

e satisfies all properties in R and none in $F \mid \mid$

Required Forbidden

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid$

e satisfies all properties in R and none in F

Obs.: For $S \subseteq \mathcal{P}$, N(S) =

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid$

e satisfies all properties in R and none in $F \mid \mid$

Obs.: For $S \subseteq \mathcal{P}$, $N(S) = N(S, \varnothing, \mathcal{P} \setminus S)$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid$

e satisfies all properties in R and none in $F \mid \mid$

Obs.: For $S \subseteq \mathcal{P}$, $N(S) = N(S, \varnothing, \mathcal{P} \setminus S)$

Obs.: For $S \subseteq \mathcal{P}$, $\bar{N}(S) = N(\varnothing, S, \mathcal{P} \setminus S)$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid e \in \mathcal{U} \mid e \in \mathcal{U} \mid e \in \mathcal{U} \mid e \in \mathcal{U}\}|$

e satisfies all properties in R and none in $F \mid \} \mid$

Obs.: For $R \cup F \cup O \cup \{p\} = \mathcal{P}$,

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid e \in \mathcal$

e satisfies all properties in R and none in $F \mid \} \mid$

Obs.: For $R \cup F \cup O \cup \{p\} = \mathcal{P}$, $N(R, F, O \cup \{p\}) = N(R \cup \{p\}, F, O) + N(R, F \cup \{p\}, O)$

Notation: Universe \mathcal{U} , Properties \mathcal{P}

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies all properties in } S \}|$

Def. (as before): Let $S \subseteq \mathcal{P}$. $N(S) := |\{e \in \mathcal{U} \mid e \text{ satisfies no properties in } S \}|$

Def.: Let $R \cup F \cup O = \mathcal{P}$. $N(R, F, O) := |\{e \in \mathcal{U} \mid$

e satisfies all properties in R and none in $F \mid \mid$

Obs.: For $R \cup F \cup O \cup \{p\} = \mathcal{P}$,

$$N(R, F, O \cup \{p\}) = N(R \cup \{p\}, F, O) + N(R, F \cup \{p\}, O)$$

$$N(R \cup \{p\}, F, O) = N(R, F, O \cup \{p\}) - N(R, F \cup \{p\}, O)$$

Thm: For $R \cup F \cup O = \mathcal{P}$ and $e \in R$, $N(R, F, O) = N(R \setminus \{p\}, F, O \cup \{p\}) - N(R \setminus \{p\}, F \cup \{p\}, O)$

Suppose: N(R, F, O) is easy when $R = \emptyset$

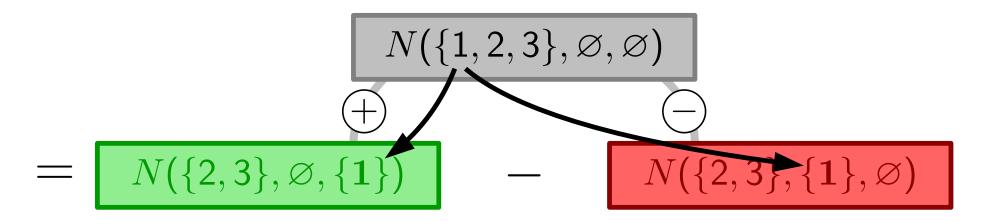
$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$= N(\{2,3\},\varnothing,\{1\})$$

$$\uparrow$$
too many

$$N(\{1,2,3\},\varnothing,\varnothing)$$
 $+$
 $N(\{2,3\},\varnothing,\{1\})$
 $N(\{2,3\},\{1\},\varnothing)$



$$N(\{1,2,3\},\varnothing,\varnothing)$$
 $+$
 $N(\{2,3\},\varnothing,\{1\})$
 $N(\{2,3\},\{1\},\varnothing)$

$$N(\{1,2,3\},\varnothing,\varnothing)$$
 $=N(\{2,3\},\varnothing,\{1\})$
 $N(\{1,2,3\},\varnothing,\varnothing)$
 $N(\{2,3\},\{1\},\varnothing)$
 $N(\{2,3\},\{1\},\varnothing)$
 $N(\{2,3\},\{1\},\varnothing)$
 $N(\{2,3\},\{1\},\varnothing)$

$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$= N(\{2,3\},\varnothing,\{1\}) - N(\{2,3\},\{1\},\varnothing)$$

$$= \{3\},\varnothing,\{1,2\} - \{3\},\{2\},\{1\}$$

$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$= N(\{2,3\},\varnothing,\{1\}) - N(\{2,3\},\{1\},\varnothing)$$

$$= \{3\},\varnothing,\{1,2\} - \{3\},\{2\},\{1\} - (\{3\},\{1\},\{2\} - \{3\},\{1,2\},\varnothing)$$

$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$= N(\{2,3\},\varnothing,\{1\}) - N(\{2,3\},\{1\},\varnothing)$$

$$= \{3\},\varnothing,\{1,2\} - \{3\},\{2\},\{1\} - \{3\},\{1\},\{2\} + \{3\},\{1,2\},\varnothing$$

$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$+ \qquad -$$

$$= N(\{2,3\},\varnothing,\{1\}) \qquad - \qquad N(\{2,3\},\{1\},\varnothing)$$

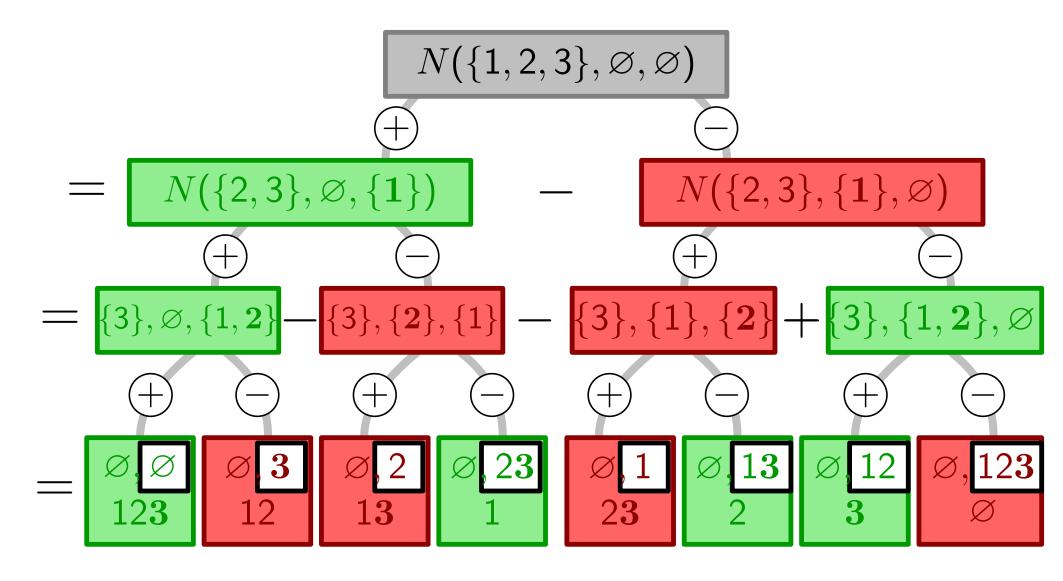
$$+ \qquad -$$

$$= \{3\},\varnothing,\{1,2\} - \{3\},\{2\},\{1\} - \{3\},\{1\},\{2\} + \{3\},\{1,2\},\varnothing$$

$$+ \qquad -$$

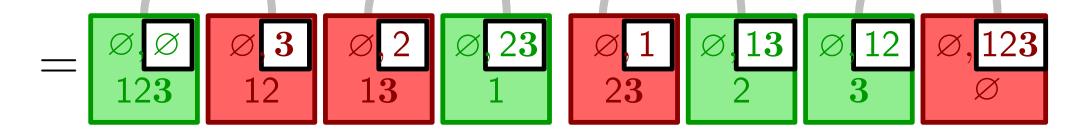
$$= \emptyset,\varnothing \qquad \varnothing,3 \qquad \varnothing,2 \qquad \varnothing,23 \qquad 1$$

$$= \emptyset,\varnothing \qquad \varnothing,3 \qquad \varnothing,2 \qquad \varnothing,23 \qquad 1$$



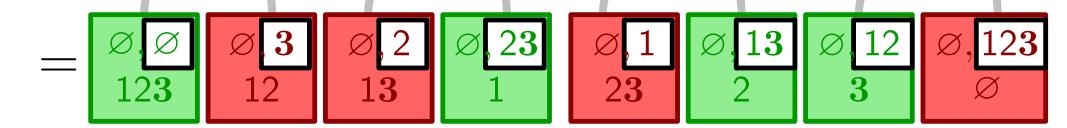
$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$N(\mathcal{P})\stackrel{\mathsf{def}}{=} N(\mathcal{P},\varnothing,\varnothing)$$



$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$egin{aligned} N(\mathcal{P}) &\stackrel{\mathsf{def}}{=} N(\mathcal{P}, \varnothing, \varnothing) \ &= \sum_{F \subseteq \mathcal{P}} (-1)^{|F|} N(\varnothing, F, \mathcal{P} \setminus F) \end{aligned}$$

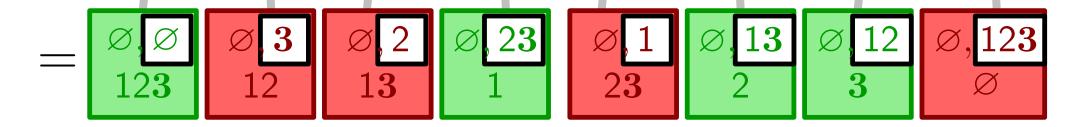


N(R, F, O) – Required, Forbidden, Optional

Thm: For $R \cup F \cup O = \mathcal{P}$ and $e \in R$, $N(R, F, O) = N(R \setminus \{p\}, F, O \cup \{p\}) - N(R \setminus \{p\}, F \cup \{p\}, O)$

$$N(\{1,2,3\},\varnothing,\varnothing)$$

$$egin{aligned} N(\mathcal{P}) &\stackrel{\mathsf{def}}{=} N(\mathcal{P}, \varnothing, \varnothing) \ &= \sum_{F \subseteq \mathcal{P}} (-1)^{|F|} N(\varnothing, F, \mathcal{P} \setminus F) \ &\stackrel{\mathsf{def}}{=} \sum_{S \subseteq \mathcal{P}} (-1)^{|S|} ar{N}(S) \end{aligned}$$



Problem: st-Hamiltonian Path

- $\mathcal{U} = \{st\text{-walks of length } n\}$
- ullet $\mathcal{P}=\{P_v\mid v\in V,\, P_v= ext{"walk goes through v"}\}$

Problem: st-Hamiltonian Path

- $\mathcal{U} = \{st\text{-walks of length } n\}$
- ullet $\mathcal{P}=\{P_v\mid v\in V,\, P_v= ext{"walk goes through v"}\}$

Solution: $N(V, \emptyset, \emptyset)$

Problem: st-Hamiltonian Path

- $\mathcal{U} = \{st\text{-walks of length } n\}$
- ullet $\mathcal{P}=\{P_v\mid v\in V,\, P_v= ext{"walk goes through v"}\}$

Solution: $N(V, \emptyset, \emptyset)$

Easier Problem: N(R, F, O) is easy when $R = \emptyset$

Problem: st-Hamiltonian Path

- $\mathcal{U} = \{st\text{-walks of length } n\}$
- ullet $\mathcal{P}=\{P_v\mid v\in V,\, P_v= ext{"walk goes through v"}\}$

Solution: $N(V, \emptyset, \emptyset)$

Easier Problem: N(R, F, O) is easy when $R = \emptyset$

Strategy: For $e \in R$.

 $N(R, F, O) = N(R \setminus \{e\}, F, O \cup \{e\}) - N(R \setminus \{e\}, F \cup \{e\}, O)$

Problem: st-Hamiltonian Path

- $\mathcal{U} = \{st\text{-walks of length } n\}$
- ullet $\mathcal{P}=\{P_v\mid v\in V,\, P_v= ext{"walk goes through v"}\}$

Solution: $N(V, \emptyset, \emptyset)$

Easier Problem: N(R, F, O) is easy when $R = \emptyset$

Strategy: For $e \in R$.

$$N(R, F, O) = N(R \setminus \{e\}, F, O \cup \{e\}) - N(R \setminus \{e\}, F \cup \{e\}, O)$$

"Inclusion-Exclusion"

Problem: # Independent Sets

- *U* = {Independent Sets}
- $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"set contains } v\text{"}\}$

Problem: # Independent Sets

- *U* = {Independent Sets}
- $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"set contains } v\text{"}\}$

Solution: $N(\varnothing, \varnothing, V)$

Problem: # Independent Sets

- *U* = {Independent Sets}
- $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"set contains } v\text{"}\}$

Solution: $N(\varnothing, \varnothing, V)$

Easier Problem: N(R, F, O) is easy when $O = \emptyset$

Problem: # Independent Sets

- *U* = {Independent Sets}
- $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"set contains } v\text{"}\}$

Solution: $N(\varnothing, \varnothing, V)$

Easier Problem: N(R, F, O) is easy when $O = \emptyset$

Strategy: For $v \in O$,

 $N(R, F, O) = N(R \cup \{v\}, F, O \setminus \{v\}) + N(R, F \cup \{e\}, O \setminus \{v\})$

Problem: # Independent Sets

- *U* = {Independent Sets}
- $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"set contains } v\text{"}\}$

Solution: $N(\varnothing, \varnothing, V)$

Easier Problem: N(R, F, O) is easy when $O = \emptyset$

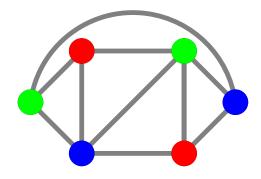
Strategy: For $v \in O$,

 $N(R, F, O) = N(R \cup \{v\}, F, O \setminus \{v\}) + N(R, F \cup \{e\}, O \setminus \{v\})$

standard branching algorithm

Given: Graph G = (V, E), number k

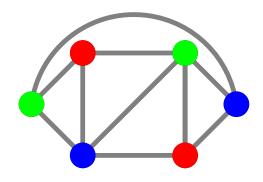
Question: \exists proper coloring of V with k colors?



Given: Graph G = (V, E), number k

Question: \exists proper coloring of V with k colors?

 $\equiv \exists$ cover of V by k independent sets?



Given: Graph G = (V, E), number k

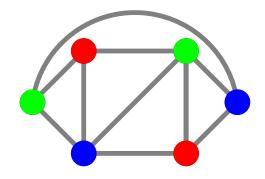
Question: \exists proper coloring of V with k colors?

 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

$$\mathcal{U} =$$

$$\mathcal{U} =$$
 $\mathcal{P} =$



Given: Graph G = (V, E), number k

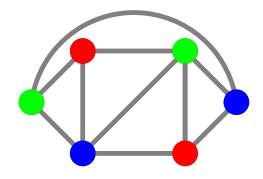
Question: \exists proper coloring of V with k colors?

 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

$$\mathcal{P} =$$



Given: Graph G = (V, E), number k

Question: \exists proper coloring of V with k colors?

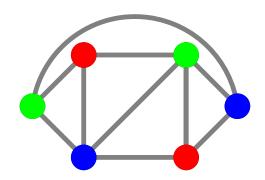
 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

ordered! (different from the others!)

 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

$$\mathcal{P} =$$



Given: Graph G = (V, E), number k

Question: \exists proper coloring of V with k colors?

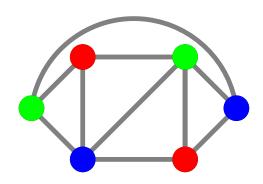
 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

$$\mathcal{P} = \{P_v \mid v \in V,$$

where $P_v =$ "tuple contains a set with v in it"}



Given: Graph G = (V, E), number k

Question: \exists proper coloring of V with k colors?

 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

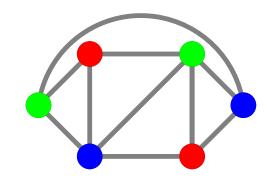
 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

$$\mathcal{P} = \{P_v \mid v \in V,$$

where $P_v =$ "tuple contains a set with v in it"}

Lemma:

Graph Coloring: G k-colorable $\Leftrightarrow N(\mathcal{P}) > 0$



Given: Graph G = (V, E), number k

Question: \exists proper coloring of V with k colors?

 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

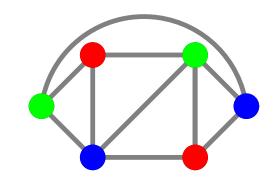
 $\mathcal{U} = \{k \text{-tuple of independent sets in } G\}$

$$\mathcal{P} = \{P_v \mid v \in V,$$

where $P_v = "tuple contains a set with <math>v$ in it"}

Thm.

Graph Coloring can be decided by $2^{|\mathcal{P}|} = 2^n$ queries of $\bar{N}(\cdot)$



Given: Graph G = (V, E), number k

Question: \exists proper coloring of V with k colors?

 $\equiv \exists$ cover of V by k independent sets?

IE-Formulation:

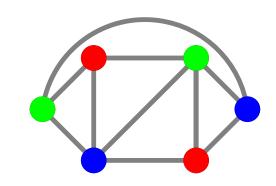
 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

$$\mathcal{P} = \{P_v \mid v \in V,$$

where $P_v =$ "tuple contains a set with v in it"}

Thm.

Graph Coloring can be decided by $2^{|\mathcal{P}|} = 2^n$ queries of $\bar{N}(\cdot)$



Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

```
\mathcal{U} = \{k-tuple of independent sets in G\}
```

$$\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$$

Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

$$\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$$

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?

Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

$$\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$$

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

$$\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$$

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Def.: a(S) := # independent sets that avoid S

Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

 $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Def.: a(S) := # independent sets that avoid S

Lemma: $\bar{N}(S) =$

Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

 $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Def.: a(S) := # independent sets that avoid S

Lemma: $\bar{N}(S) = a(S)^k$

Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

 $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Def.: a(S) := # independent sets that avoid S

Lemma: $\bar{N}(S) = a(S)^k$ **Proof:** k sets, each from a(S) (with replacement)

Thm.

Graph Coloring can be solved with 2^n queries of $\bar{N}(\cdot)$.

 $\mathcal{U} = \{k$ -tuple of independent sets in $G\}$

 $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$

What is the inuitive meaning of $\bar{N}(S)$ for $S \subseteq \mathcal{P}$?

"How many k-tuples of independent sets are there that avoid the vertices in S?"

Def.: a(S) := # independent sets that avoid S

Lemma: $\bar{N}(S) = a(S)^k$ **Proof:** k sets, each from a(S) (with replacement)

Def.: a(S) := # independent sets that avoid S

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Thm.

Using Algorithm 1 for Graph Coloring gives us

Time

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Thm.

Using Algorithm 1 for Graph Coloring gives us

$$\sum_{S \subseteq V} 2^{n-|S|} \mathsf{poly}(n) \quad \mathsf{Time}$$

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Thm.

Using Algorithm 1 for Graph Coloring gives us

$$\sum_{i=0}^{n} \binom{n}{n-i} 2^{n-i} \operatorname{poly}(n) \quad \text{Time}$$

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Binomial Thm:

$$\sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = (x+y)^n$$

Thm.

Using Algorithm 1 for Graph Coloring gives us

$$\sum_{i=0}^{n} \binom{n}{n-i} 2^{n-i} \operatorname{poly}(n) \quad \text{Time}$$

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Binomial Thm:

$$\sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = (x+y)^n$$

Thm.

Using Algorithm 1 for Graph Coloring gives us

$$O^*(3^n) \ni \sum_{i=0}^n \binom{n}{n-i} 2^{n-i} \operatorname{poly}(n)$$
 Time

Def.: a(S) := # independent sets that avoid S

Algorithm 1:

Enumerate all subsets of $V \setminus S$: test independence

Runtime: $O^*(2^{n-|S|})$

Binomial Thm:

$$\sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = (x+y)^n$$

Thm.

Using Algorithm 1 for Graph Coloring gives us

$$O^*(3^n) \ni \sum_{i=0}^n \binom{n}{n-i} 2^{n-i} \operatorname{poly}(n)$$
 Time

Def.: a'(S) := # maximal independent sets that avoid S

Algorithm 2:

Enumerate all maximal independent sets of $G[V \setminus S]$

Def.: a'(S) := # maximal independent sets that avoid S

Algorithm 2:

Enumerate all maximal independent sets of $G[V \setminus S]$

Runtime: $O^*(\sqrt[3]{3^{n-|S|}})$ [as in Lecture 1]

Def.: a'(S) := # maximal independent sets that avoid S

Algorithm 2:

Enumerate all maximal independent sets of $G[V \setminus S]$

Runtime: $O^*(\sqrt[3]{3^{n-|S|}})$ [as in Lecture 1]

Thm:

Using Algorithm 2 for Graph Coloring gives us

Time

Def.: a'(S) := # maximal independent sets that avoid S

Algorithm 2:

Enumerate all maximal independent sets of $G[V \setminus S]$

Runtime: $O^*(\sqrt[3]{3^{n-|S|}})$ [as in Lecture 1]

Thm:

Using Algorithm 2 for Graph Coloring gives us

$$O^*(\sum_{S\subseteq V}\sqrt[3]{3^{n-|S|}})$$
 Time

Def.: a'(S) := # maximal independent sets that avoid S

Algorithm 2:

Enumerate all maximal independent sets of $G[V \setminus S]$

Runtime: $O^*(\sqrt[3]{3^{n-|S|}})$ [as in Lecture 1]

Thm:

Using Algorithm 2 for Graph Coloring gives us

$$O^*((1+\sqrt[3]{3})^n)$$
 Time

Def.: a'(S) := # maximal independent sets that avoid S

Algorithm 2:

Enumerate all maximal independent sets of $G[V \setminus S]$

Runtime: $O^*(\sqrt[3]{3^{n-|S|}})$ [as in Lecture 1]

Thm:

Using Algorithm 2 for Graph Coloring gives us

$$O(2.4423^n) \supset O^*((1+\sqrt[3]{3})^n)$$
 Time Runtime from Lawler (1976) polynomial Space

Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances.

Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances. How does this help us for independent sets?

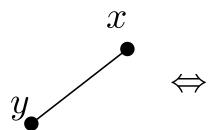
Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances. How does this help us for independent sets?



Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances. How does this help us for independent sets?

$$y \Leftrightarrow (\neg x \lor \neg y)$$

Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances. \rightsquigarrow enumeration of independent sets :)

$$y \Leftrightarrow (\neg x \lor \neg y)$$

Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances. \rightsquigarrow enumeration of independent sets :)

Thm:

Using Algorithm 3 for Graph Coloring gives us

$$O(2.1247^n) \supset O((1+1.1247)^n)$$
 Time

Lawler: $O(2.4423^n)$

Def.: a(S) := # independent sets that avoid S

Algorithm 3:

Use the algorithm of Fürer & Kasiviswanathan (2007)

Runtime: $O(1.1247^n)$

F&K enumerates satisfying assignments for 2-SAT instances. \rightsquigarrow enumeration of independent sets :)

Thm:

Using Algorithm 3 for Graph Coloring gives us

5- and 6-coloring from last week are now obsolete

$$O(2.1247^n) \supset O((1+1.1247)^n)$$
 Time

Lawler: $O(2.4423^n)$

Def.: a(S) := # independent sets that avoid S

Algorithm 4:

Compute a(S) for each $S \subseteq V$ by DP

Runtime: $O^*(2^n)$ in total

Def.: a(S) := # independent sets that avoid S

Algorithm 4:

Compute a(S) for each $S \subseteq V$ by DP

Runtime: $O^*(2^n)$ in total

Thm:

Using Algorithm 4 for Graph Coloring gives us

Time

Space

Def.: a(S) := # independent sets that avoid S

Algorithm 4:

Compute a(S) for each $S \subseteq V$ by DP

Runtime: $O^*(2^n)$ in total

Thm:

Using Algorithm 4 for Graph Coloring gives us

$$O^*(2^n)$$
 Time

Space

Def.: a(S) := # independent sets that avoid S

Algorithm 4:

Compute a(S) for each $S \subseteq V$ by DP

Runtime: $O^*(2^n)$ in total

Thm:

Using Algorithm 4 for Graph Coloring gives us

 $O^*(2^n)$ Time

 $O^*(2^n)$ Space

Def.: a(S) := # independent sets that avoid S

Algorithm 4:

Compute a(S) for each $S \subseteq V$ by DP

Runtime: $O^*(2^n)$ in total

Thm:

Using Algorithm 4 for Graph Coloring gives us

 $O^*(2^n)$ Time

 $O^*(2^n)$ Space

Def.: a(S) := # independent sets that avoid S

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) =$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) = [R \text{ independent?}] \in \{0, 1\}$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) = [R \text{ independent?}] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

 $a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) = [R \text{ independent?}] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

$$a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$$

DP with parameters $R \cup F \cup O$ seems like it would use $O^*(3^n)$ time and space... but does it?

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) = [R \text{ independent?}] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

$$a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$$

Obs.: For $R \subseteq V$, R not independent $\Rightarrow a(R, \cdot, \cdot) = 0$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F. independent

Obs.: For $S \subseteq V$, $a(S) = a(\varnothing, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) = [R \text{ independent?}] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

$$a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$$

Obs.: For $R \subseteq V$, R not independent $\Rightarrow a(R, \cdot, \cdot) = 0$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) = [R \text{ independent?}] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

$$a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$$

Obs.: For $R_1 \cup F_1 \cup O = R_2 \cup F_2 \cup O = V$, and R_i 's indep.

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$, $a(R, F, \varnothing) = [R \text{ independent?}] \in \{0, 1\}$

Lemma: For $R \cup F \cup O \cup \{v\} = V$,

$$a(R, F, O \cup \{v\}) = a(R \cup \{v\}, F, O) + a(R, F \cup \{v\}, O)$$

Obs.: For $R_1 \cup F_1 \cup O = R_2 \cup F_2 \cup O = V$, and R_i 's indep.

 \nexists edge between R_i and $O \Rightarrow a(R_1, F_1, O) = a(R_2, F_2, O)$.

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, $a(R, F, O) = a(R, F \cup \{v\}, O \setminus \{v\}) + a(R \cup \{v\}, F \cup U(v), O \setminus U[v])$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, U := neighborhood $a(R,F,O) = a(R,F \cup \{v\},O \setminus \{v\}) + a(R \cup \{v\},F \cup U(v),O \setminus U[v])$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$,

$$a(R, F, O) = a(R, F \cup \{v\}, O \setminus \{v\})$$
 independent
$$+ a(R \cup \{v\}, F \cup U(v), O \setminus U[v])$$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \varnothing) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$,

$$a(R, F, O) = a(R, F \cup \{v\}, O \setminus \{v\})$$
 independent
$$+ a(R \cup \{v\}, F \cup U(v), O \setminus U[v])$$

no edges between $R \cup \{v\}$ and $O \setminus U[v]$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** Rand **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \varnothing) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and R independent, and \nexists edge between R and O

$$a(R, F, O) = a(R, F \cup \{v\}, O \setminus \{v\})$$

 $a(R,F,O) = a(R,F \cup \{v\},O \setminus \{v\})$ independent $+ a(R \cup \{v\},F \cup U(v),O \setminus U[v])$

no edges between $R \cup \{v\}$ and $O \setminus U[v]$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and \emptyset independent, and \emptyset edge between \emptyset and \emptyset

$$a(R, F, O) = a(R, F \cup \{v\}, O \setminus \{v\})$$
$$+ a(R \cup \{v\}, F \cup U(v), O \setminus U[v])$$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and $v \in O$ and $v \in O$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and $v \in O$ and $v \in O$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and $A = A \cap A$ and A = A and

and R independent, and \nexists edge between R and O

$$b(O) = b(O \setminus \{v\})$$

 $+ b(O \setminus U[v])$
 $b(\varnothing) = 1$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S) = b(V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \emptyset) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$,

and R independent, and $\not\equiv$ edge between R and O

$$b(O) = b(O \setminus \{v\})$$

 $+ b(O \setminus U[v])$
 $b(\varnothing) = 1$

Def.: a(S) := # independent sets that avoid S

Def.: a(R, F, O) := # independent sets that **contain** R and **avoid** F.

Obs.: For $S \subseteq V$, $a(S) = a(\emptyset, S, V \setminus S) = b(V \setminus S)$

Obs.: For $R \cup F = V$ and R indep.. $a(R, F, \varnothing) = 1$

Lemma: For $R \cup F \cup O = V$ and $v \in O$, and f independent, and f edge between f and f and f independent, and f independent f ind

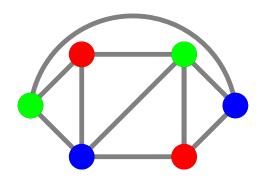
$$b(O) = b(O \setminus \{v\})$$

 $+ b(O \setminus U[v])$
 $b(\varnothing) = 1$

Thm: Table with a(S) for each $S \subseteq V$ can be computed in $O^*(2^n)$ time. \square

Given: Graph G = (V, E), number k

Question: \exists proper k-coloring of V?



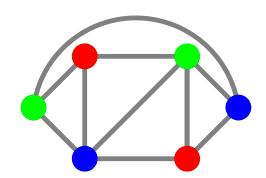
Given: Graph G = (V, E), number k

Question: \exists proper k-coloring of V?

IE-Formulation:

 $\mathcal{U} = \{k \text{-tuple of independent sets from } G\}$

$$\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$$



Given: Graph G = (V, E), number k

Question: \exists proper k-coloring of V?

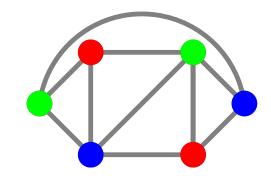
IE-Formulation:

 $\mathcal{U} = \{k \text{-tuple of independent sets from } G\}$

 $\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$

Algorithm:

- Compute $\bar{N}(S) = a(S)^k$ for each $S \subseteq V$
- Apply Inclusion-Exclusion



Given: Graph G = (V, E), number k

Question: \exists proper k-coloring of V?

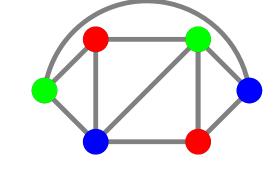
IE-Formulation:

 $\mathcal{U} = \{k$ -tuple of independent sets from $G\}$

$$\mathcal{P} = \{P_v \mid v \in V, \text{ where } P_v = \text{"tuple contains a set with } v \text{ in it"} \}$$

Algorithm:

- Compute $\bar{N}(S) = a(S)^k$ for each $S \subseteq V$
- Apply Inclusion-Exclusion



Thm: Graph Coloring can be decided using $O^*(2^n)$ time and space