
1

Based on: [Exact Exponential Algorithms: §3.1.2, §4.3]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 6. Graph Coloring

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Further reading: [Parameterized Algorithms: §10.1.3]

2

Graph Coloring

Given:

Find:

Graph G = (V,E)

feasible coloring, i.e., assign a color to each vertex
so that adjacent vertices get different colors.

Objective: minimize the number of colors used.

Chromatic number:
χ(G) = mink G is k-colorable

χ() = 3Color class:
Set of vertices with
the same color.

3

Complexity

Thm. k-Coloring is NP-complete [Karp 1972]

Thm. 3-Coloring is NP-complete

x

x

y

y

z

z

Palette

F

T
N

clause: x ∨ y ∨ z

4

k-Coloring by Lawler [1976]

Ck(S) =
(
∃S′ ⊆ S : C1(S′) ∧ Ck−1(S \ S′)

)Let Ck(S) := G[S] is k-colorable.

Determine: Ck(V) Algorithm:∑
S⊆V

= 3n

∑
S⊆V

∑
S′⊆S

S′ maxIS

1

∈ O(2.4423n)

Dynamic program

Runtime (fixed k):
∑
S′⊆S

1

=
∑
S⊆V

3
√

3
|S|

= (3
√

3 + 1)n

Better runtime (k fixed):

=
n∑

c=0

(
n

c

)
3
√

3
c

Binomial Thm.
n∑

k=0

(
n

k

)
xkyn−k = (x+ y)n

maximal

5

3-Coloring (Exercise from 2016)

Trivial: O∗(3n)

G 3-colorable ⇔ ∃S : S is independent, G[V \S] 2-colorable

Algorithm: enumerate all S ⊆ V and check properties

Runtime: O∗(2n)

maximal

O∗(3
√

3
n

) ⊂ O(1.4423n)

Schiermeyer 1994: O(1.398n)

Beigel, Eppstein 1995: O(1.3446n)

Beigel, Eppstein 2005: O(1.3289n)

[Lawler 1976]

(3, 2)-CSP
+ reduction rules
+ case distinction

6

4-Coloring (Exercise from 2016)

G 4-colorable ⇔ ∃X ·∪ Y = V : G[X] and G[Y] 2-colorable.

Algorithm: Enumerate all X ⊆ V and check the properties.

Runtime:

G 4-colorable ⇔ ∃S: S maximal IS and G[V \S] 3-colorable

Algorithm: Enumerate sets S and check properties.

Runtime: O∗(3
√

3
n · 3
√

3
n

) = O∗(32n/3) ⊂ O∗(2.0801n)

but our 3-coloring instance is smaller than n...

O∗(3
√

3
n · 3
√

3
3
4n)

W.l.o.g., |S| ≥ n/4.

= O∗(3
1
3n+

1
3 ·

3
4n) ⊂ O(1.8982n)

O∗(2n)

7

Independent Sets by Byskov [2004]

Def. I=k(G) := maximal independent sets of size k

Thm. ∀d ∈ N : |I=k| ≤ d(d+1)k−n(d+ 1)n−dk

Proof. As in Lecture 1.

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3
· 3n/3 ≤ 3n/3

This time: B(n, k) = . . .

s

leaves in the search tree

8

k-Coloring by Byskov [2004]

Procedure 1:
For each maximal independent set I ⊆ V with |I| ≥ n/k:
Check if G[V \ I] is (k − 1)-colorable.

Runtime for k-coloring:
n∑

j=dn/ke

|I=j(G)| · Tk−1(n− j)

Procedure 2:
For each partition X ·∪ Y = V :
Check if G[X] is bk/2c-colorable and G[Y] is dk/2e-colorable.

Runtime for k-coloring:
n∑

j=0

(
n

j

)
· Tk/2(j)

Def. I=k(G) := maximal independent sets of size k

T2(·) polynomial

as by Lawler

9

k-Coloring by Byskov [2004]

4-Coloring: O(1.7504n)

5-Coloring: O(2.1592n)

6-Coloring: O(2.3289n)

k-Coloring O∗(2.4423n) (Lawler 1976)

O(1.7272n) Fomin, Gaspers, Saurabh (2007)

O(2.1364n)

3-Coloring: O(1.3289n) (Beigel & Eppstein 2005)

Thm. ∀d ∈ N : |I=k| ≤
d(d+1)k−n(d+ 1)n−dk

10

Coloring by Björklund & Husfeldt [2006]

Mikko Koivisto

and Koivisto [2006]

Theorem. For n-vertex graphs, the graph coloring problem
can be solved in O∗(2n) time. [FOCS’06]

Andreas Björklund Thore Husfeldt

11

Color Classes and Set Partitioning

Color class: Set of vertices of the same color.

Each color class is an independent set.

Alternatively:
Find the smallest number of independent sets
so that each node is in exactly one of these independent sets.

12

Cardinality Set Cover

Given:

Find:

Set U and family S ⊆ 2U with
⋃
S = U ,

Cover S ′ ⊆ S with
⋃
S ′ = U .

Objective: Minimize the cardinality |S ′| of the cover!

S2 S3 S4

S5

S6

S1

13

Graph Coloring via Cardinality Set Cover

Let U = V (G) and S = I,
where I is the family of maximal independent sets of G.

Problem: Color classes must be disjoint!

What if we have a non-disjoint cover?
V = I1 ∪ I2 ∪ · · · ∪ Ik

Make it disjoint: for each j = 1, . . . , k (in order), set

I ′j := Ij −
⋃
j′<j

Ij′

⇒ V = I ′1 ∪̇ I ′2 ∪̇ · · · ∪̇ I ′k is a k-coloring.

The family I can be enumerated in O∗(2n) time :-)

14

Variations & Definitions

Consider SC-instances (U,S)
where U is explicit but S is only implicitly given.

That is, we assume that S can be enumerated in O∗(2n) time,
where n = |U | (w.l.o.g. S 6⊆ S′ for any S 6= S′ ∈ S).

A k-cover is a set family S ′ ⊆ S with |S ′| = k and
⋃
S ′ = U .

An ordered k-cover is a k-tuple (S1, . . . , Sk) with Si ∈ S and⋃k
i=1 Si = U .

Objective:
An algorithm to determine the number ck of ordered k-covers.

15

The Number of Ordered k-Covers

For each W ⊆ U , let

S[W] = {S ∈ S | S ∩W = ∅ }
s[W] = |S[W]|

Lemma. The number of ordered k-covers of (U,S) is

ck =
∑
W⊆U

(−1)|W |s[W]k.

16

Proof of the Lemma

Lemma.

Proof.

N̄ [W] = number of k-tuples avoiding W =

ck = N(U)
IE
=
∑
W⊆U

(−1)|W |N̄ [W]

=
∑
W⊆U

(−1)|W |s[W]k

The number of ordered k-covers of (U,S) is

ck =
∑
W⊆U

(−1)|W |s[W]k.

�

(We allow duplicates.)

Apply IE-Theorem:

– Properties:

– Objects:

s[W]k

(ordered) k-tuples (S1, . . . , Sk) ∈ Sk

for each u ∈ U : u ∈
⋃

i Si

S[W] = {S ∈ S | S ∩W = ∅ }
s[W] = |S[W]|

17

Computing the Number of k-Covers

Theorem. The number of ordered k-covers of (U,S) can be
determined in O∗(2n) time.

Proof. Compute s[W] for every W ⊆ U via a DP in
O∗(2n) total time.

Order the elements U = {u1, . . . , un}.

Want to compute ck =
∑

W⊆U (−1)|W |s[W]k.

. . . but how to find s[W]?

18

A “Backward” DP

gi(W) = |{S ∈ S[W] : {u1, . . . , ui} \W ⊆ S }|

s[W] =

Recurrence:

gn(W) =

{
1 if U \W ∈ S
0 otherwise

and, for 0 < i ≤ n:

gi−1(W) =

{
gi(W) if ui ∈W
gi(W) + gi(W ∪ {ui}) if ui /∈W

Note: g0(W) for every W ⊆ U

= # subsets of S avoiding W and
containing {u1, . . . , ui} \W .

Let

subsets with ui # subsets without ui

19

A “Backward” DP (cont’d)

Algorithm Num-k-Covers(U,S)
foreach W ⊆ U do

gn(W)← 0

foreach S ∈ S do
gn(U \ S)← 1

for i← n downto 1 do
foreach W ⊆ U do

if ui ∈W then
gi−1(W)← gi(W)

else
gi−1(W)← gi(W) + gi(W ∪ {ui})

foreach W ⊆ U do
s[W]← g0(W)

Finally, compute ck =
∑

W⊆U (−1)|W |s[W]k. �

20

Runtime and Space Consumption

Corollary. The graph coloring problem can be solved in
O∗(2n) time and space.

Proof. Determine the smallest k so that there is a
k-cover for (V, I).

This yields χ(G). But how do we get a coloring?

�

How much slower do we get if we insist on polynomial space?

	k-Coloring by Lawler [1976]
	3-Coloring (Exercise from 2016)
	4-Coloring (Exercise from 2016)
	Independent Sets by Byskov [2004]
	k-Coloring by Byskov [2004]
	k-Coloring by Byskov [2004]
	Coloring by Bj\"orklund \& Husfeldt [2006]
	Color Classes and Set Partitioning
	Cardinality Set Cover
	Graph Coloring via Cardinality Set Cover
	Variations \& Definitions
	The Number of Ordered k-Covers
	Proof of the Lemma
	Computing the Number of k-Covers
	A ``Backward'' DP
	A ``Backward'' DP (cont'd)
	Runtime and Space Consumption

