Julius-Maximilians-
UNIVERSITAT Lonsunio ||||I - f
WURZBURG INFORMATIK | I |

Algorithmen & Komplexitat Institut fir Informatik

Exact Algorithms

Sommer Term 2020

Lecture 6. Graph Coloring

Alexander Wolff Lehrstuhl fiuir Informatik |

Graph Coloring

Given: Graph G = (V, F)

Find: feasible coloring, i.e., assign a color to each vertex
so that adjacent vertices get different colors.

Objective: minimize the number of colors used.

Chromatic number:
X(G) = ming G is k-colorable

Color class:
Set of vertices with
the same color.

X (3

Complexity

Thm. k-Coloring is NP-complete
Thm. 3-Coloring is NP-complete

clause: x VyVz

k-Coloring by Lawler [1976] o
> (k) Py = (z +y)"

Let Cr(S) := G[S] is k-colorable. k=0
Cu(S) = (38" CS: Ci(S")ACr1(S\S'))
maximal

Determine: C(V) Algorithm: Dynamic program

Runtime (fixed k):)), 1 =3

SCV S'CS

Better runtime (% fixed):

B 3510 N\ smc s n
)DID DTS SEEE Y () FERSITA IR}
SCV s'Cs SCV c=0 € 0(2.4423")
S’ maxlIS

3-Coloring (Exercise from 2016)

Trivial: O*(3"™) maximal

G 3-colorable < 4S5: S is independent, G[V'\ S] 2-colorable

Algorithm: enumerate all S C V' and check properties
Runtime: O*(2") ' O*(¥/3") C O(1.4423")

Schiermeyer 1994: 0(1.398")) (3.2)-CSP
Beigel, Eppstein 1995: O(1.3446™) > -+ reduction rules
Beigel, Eppstein 2005: O(1.3289™) o case distinction

4-Coloring (Exercise from 2016)

G 4-colorable & JX WY =V: G[X] and G[Y] 2-colorable.

Algorithm: Enumerate all X C V and check the properties.
Runtime: O*(2")

G 4-colorable < 45: S maximal IS and G[V'\ S| 3-colorable

Algorithm: Enumerate sets S and check properties.
Runtime: O*(¥/3 -v/3") = 0*(3?"/3) c 0*(2.0801")

but our 3-coloring instance is smaller than n...
W.l.o.g., |S| > n/4

O*(\3/§n ' \3/*177/) _ O*(3%n—|—

W=
Nl

) c O(1.8982")

Independent Sets by Byskov [2004]

Def. I=%(G) := maximal independent sets of size k
Thm. Vd € N : |[[7F| < ld+Dk=n(d 4 1)n—dk
Proof. As in Lecture 1.

B(n)<s-B(n—s)<s-3m=9)/3 = 5 .37/3 < 3n/3
leaves in the search tree Lor .

el /

This time: B(n, k) = . .. -/

(R .I"l

k-Coloring by Byskov [2004]

Def. I=%(G) := maximal independent sets of size k

Procedure 1:

For each maximal independent set I C V with |I| > n/k:

Check if G[V \ I] is (k — 1)-colorable.

Runtime for k-coloring;: Z I79(G)| - Ti—1(n — j)
j=[n/k]

Procedure 2:
For each partition X UY =V
Check if G[X] is |k/2]-colorable and G[Y] is [k/2|-colorable.

Runtime for k-coloring: Z (7;) Ty /2(J)

7=0

k-Coloring by Byskov [2004] Thm. Vd e N: [I7F| <

(d+1)k—n n—dk
3-Coloring: O(l.3289n) (Beigel & Eppstein 2005) i (d T 1)

4-C0|Oring: 0(17504n) 0(17272?7,) Fomin, Gaspers, Saurabh (2007)
5-Coloring: ((2.1592™) (O(2.1364")
6-Coloring: (0(2.3289")

k—CoIoring O*(2.4423n) (Lawler 1976)

Coloring by Bjorklund & Husfeldt
and Kolvisto

Theorem. For n-vertex graphs, the graph coloring problem
can be solved in O*(2") time.

Andreas Bjorklund Thore Husfeldt

2006

2006

10

Color Classes and Set Partitioning

Color class: Set of vertices of the same color.
Each color class is an independent set.

Alternatively:
Find the smallest number of independent sets
so that each node is in exactly one of these independent sets.

11

12

Cardinality Set Cover

Given: Set U and family S C 2Y with | JS = U,
Find: Cover §' C S with | &' =U.

Objective: Minimize the cardinality |S’| of the cover!

Graph Coloring via Cardinality Set Cover

Let U = V(G) and § =7,
where Z is the family of maximal independent sets of G.

Problem: Color classes must be disjoint!

What if we have a non-disjoint cover?
V=LULU---UlI;

Make it disjoint: for each 5 =1,...,k (in order), set

I=1-)1

7'<g
= V=1 UI,U .- U] is a k-coloring.

The family Z can be enumerated in O*(2") time :-)

13

Variations & Definitions

Consider SC-instances (U, S)
where U is explicit but S is only implicitly given.

That is, we assume that & can be enumerated in O*(2™) time,
where n = |U]|

A k-cover is a set family S" C S with |[§'| =k and | JS' =U.

An ordered k-cover is a k-tuple (S1,...,S5%) with S; € S and
Uf:l 5; = U.

Objective:
An algorithm to determine the number c;, of ordered k-covers.

14

The Number of Ordered k-Covers

For each W C U, let
SWl={SeS|SNW =090}
s|W] = [S[W]]

Lemma. The number of ordered k-covers of (U, S) is

Cr = Z (—=1)Wls[w]*.

WCU

15

SW]={SeS|SnW=0}

s[W] = |S[W]]
Lemma. The number of ordered k-covers of (U, S) is

Ck = Z (=) Wls[w*.

WCU

Proof of the Lemma

Proof. Apply IE-Theorem:
— Objects: (ordered) k-tuples (S1,...,S5:) € S*
— Properties: for each u € U: u € |, S;

N[W] = number of k-tuples avoiding W = s[W]*

o =N(U)= Y (~1)"IN[W]

= > ()"lsw)*

WCU

Computing the Number of k-Covers

Theorem. The number of ordered k-covers of (U,S) can be
determined in O*(2™) time.

Proof. Compute s[W] for every W C U via a DP in
O*(2™) total time.

Order the elements U = {uy,...,u,}.
Want to compute ¢ = EWQU(—1)|W|5[W]’“.

... but how to find s[W]?

17

18

A “Backward’ DP

Let g;(W)=|{S e S[W]: {uy,...,u;} \ W C S}
= # subsets of S avoiding W and
containing {uq,...,u;} \ W.
Note: s[W] = go(W)

Recurrence:

)

1 fU\WeS
g (W) = < VY
0 otherwise

\

and, for 0 < 1 < n:

| _ (gz(W) if u, e W
9i-1(W) <\ g(W)+g(WU{u}) ifugW

subsets with u # subsets without wu

19

A “Backward” DP (cont'd)

Algorithm Num-k-Covers(U, S)
foreach W C U do

L gn(W) + 0
foreach S € S do

| g (U\S) <1
for 1 <+ n downto 1 do
foreach W C U do

if u;, € W then
gi—1(W) < g:(W)
else

 9ia(W) = gi(W) + gs(W U {u;})

fc:reach W CU do
L S[W] — go(W)

Finally, compute ¢ = ZWQU(—1)|W|S[W]k.

20

Runtime and Space Consumption

Corollary. The graph coloring problem can be solved in
O*(2™) time and space.

Proof. Determine the smallest k£ so that there is a
k-cover for (V,I).

This yields x(G). But how do we get a coloring?

How much slower do we get if we insist on polynomial space?

	k-Coloring by Lawler [1976]
	3-Coloring (Exercise from 2016)
	4-Coloring (Exercise from 2016)
	Independent Sets by Byskov [2004]
	k-Coloring by Byskov [2004]
	k-Coloring by Byskov [2004]
	Coloring by Bj\"orklund \& Husfeldt [2006]
	Color Classes and Set Partitioning
	Cardinality Set Cover
	Graph Coloring via Cardinality Set Cover
	Variations \& Definitions
	The Number of Ordered k-Covers
	Proof of the Lemma
	Computing the Number of k-Covers
	A ``Backward'' DP
	A ``Backward'' DP (cont'd)
	Runtime and Space Consumption

