UNIVERSITÄT WÜRZBURG

Lehrstuhl für

[NFORMATIK I
Algorithmen \& Komplexität

Exact Algorithms

Sommer Term 2020
 Lecture 6. Graph Coloring

Based on: [Exact Exponential Algorithms: §3.1.2, §4.3]
Further reading: [Parameterized Algorithms: §10.1.3]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Graph Coloring

Given: \quad Graph $G=(V, E)$
Find: feasible coloring, i.e., assign a color to each vertex so that adjacent vertices get different colors.

Objective: minimize the number of colors used.

Chromatic number:
$\chi(G)=\min _{k} G$ is k-colorable
Color class:
Set of vertices with the same color.

Complexity
Thm. k-Coloring is NP-complete

[Karp 1972]

Thm. 3-Coloring is NP-complete

k-Coloring by Lawler [1976] Let $C_{k}(S):=G[S]$ is k-colorable.

Binomial Thm.

$$
\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=(x+y)^{n}
$$

$$
C_{k}(S)=\left(\exists S^{\prime} \subseteq S: C_{1}\left(S^{\prime}\right) \wedge C_{k-1}\left(S \backslash S^{\prime}\right)\right)
$$

maximal

Determine: $C_{k}(V) \quad$ Algorithm: Dynamic program
Runtime (fixed k): $\quad \sum_{S \subseteq V} \sum_{S^{\prime} \subseteq S} 1=3^{n}$
Better runtime (k fixed):

3-Coloring (Exercise from 2016)

 Trivial: $O^{*}\left(3^{n}\right)$
maximal

 Lawler 1976]G 3-colorable $\Leftrightarrow \exists S: S$ is independent, $G[V \backslash S]$ 2-colorable
Algorithm: enumerate all $S \subseteq V$ and check properties
Runtime: $O^{*}\left(2^{n}\right) \quad O^{*}\left(\sqrt[3]{3^{n}}\right) \subset O\left(1.4423^{n}\right)$

Schiermeyer 1994: $O\left(1.398^{n}\right)$
Beigel, Eppstein 1995: $O\left(1.3446^{n}\right)$ Beigel, Eppstein 2005: $O\left(1.3289^{n}\right)$
$(3,2)-C S P$

+ reduction rules
+ case distinction

4-Coloring (Exercise from 2016)

G 4-colorable $\Leftrightarrow \exists X \cup Y=V: G[X]$ and $G[Y]$ 2-colorable.
Algorithm: Enumerate all $X \subseteq V$ and check the properties.
Runtime: $\quad O^{*}\left(2^{n}\right)$
G 4-colorable $\Leftrightarrow \exists S: S$ maximal IS and $G[V \backslash S]$ 3-colorable
Algorithm: Enumerate sets S and check properties.
Runtime: $\quad O^{*}\left(\sqrt[3]{3}^{n} \cdot \sqrt[3]{3}^{n}\right)=O^{*}\left(3^{2 n / 3}\right) \subset O^{*}\left(2.0801^{n}\right)$
but our 3 -coloring instance is smaller than $n \ldots$ W.I.o.g., $|S| \geq n / 4$.
$O^{*}\left(\sqrt[3]{3}^{n} \cdot \sqrt[3]{3}^{\frac{3}{4} n}\right)=O^{*}\left(3^{\frac{1}{3} n+\frac{1}{3} \cdot \frac{3}{4} n}\right) \subset O\left(1.8982^{n}\right)$

Independent Sets by Byskov [2004]

Def. $I^{=k}(G):=$ maximal independent sets of size k
Thm. $\forall d \in \mathbb{N}:\left|I^{=k}\right| \leq d^{(d+1) k-n}(d+1)^{n-d k}$
Proof. As in Lecture 1.
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \leq 3^{n / 3}$
\# leaves in the search tree

This time: $B(n, k)=\ldots$

k-Coloring by Byskov [2004]

Def. $I^{=k}(G):=$ maximal independent sets of size k

Procedure 1:

For each maximal independent set $I \subseteq V$ with $|I| \geq n / k$:
Check if $G[V \backslash I]$ is $(k-1)$-colorable.
Runtime for k-coloring: $\sum_{j=[n / k]}^{n}\left|I^{=j}(G)\right| \cdot T_{k-1}(n-j)$
Procedure 2:
For each partition $X \cup Y=V$:
Check if $G[X]$ is $\lfloor k / 2\rfloor$-colorable and $G[Y]$ is $\lceil k / 2\rceil$-colorable.
Runtime for k-coloring: $\sum_{j=0}^{n}\binom{n}{j} \cdot T_{k / 2}(j)$
k-Coloring by Byskov [2004]
3-Coloring: $O\left(1.3289^{n}\right)$ (Begead 1 Eppstén 2005)

Thm. $\forall d \in \mathbb{N}:\left|I^{=k}\right| \leq$ $d^{(d+1) k-n}(d+1)^{n-d k}$

4-Coloring: $O\left(1.7504^{n}\right) \quad O\left(1.7272^{n}\right)$ Fomin, Gaspers, Saurabh (2007)
5-Coloring: $O\left(2.1592^{n}\right) \quad O\left(2.1364^{n}\right)$
6-Coloring: $O\left(2.3289^{n}\right)$
k-Coloring $\quad O^{*}\left(2.4423^{n}\right)$ (Lawler 1976)

Coloring by Björklund \& Husfeldt [2006] and Koivisto [2006]

Theorem. For n-vertex graphs, the graph coloring problem can be solved in $O^{*}\left(2^{n}\right)$ time.

Andreas Björklund

Thore Husfeldt

Mikko Koivisto

Color Classes and Set Partitioning

Color class: Set of vertices of the same color. Each color class is an independent set.

Alternatively:

Find the smallest number of independent sets
so that each node is in exactly one of these independent sets.

Cardinality Set Cover

Given: \quad Set U and family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$,
Find:
Cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ with $\bigcup \mathcal{S}^{\prime}=U$.
Objective: Minimize the cardinality $\left|\mathcal{S}^{\prime}\right|$ of the cover!

Graph Coloring via Cardinality Set Cover

Let $U=V(G)$ and $\mathcal{S}=\mathcal{I}$,
where \mathcal{I} is the family of maximal independent sets of G.
Problem: Color classes must be disjoint!
What if we have a non-disjoint cover?
$V=I_{1} \cup I_{2} \cup \cdots \cup I_{k}$
Make it disjoint: for each $j=1, \ldots, k$ (in order), set

$$
I_{j}^{\prime}:=I_{j}-\bigcup_{j^{\prime}<j} I_{j^{\prime}}
$$

$\Rightarrow V=I_{1}^{\prime} \dot{\cup} I_{2}^{\prime} \dot{\cup} \cdots \dot{\cup} I_{k}^{\prime}$ is a k-coloring.
The family \mathcal{I} can be enumerated in $O^{*}\left(2^{n}\right)$ time :-)

Variations \& Definitions

Consider SC-instances (U, \mathcal{S}) where U is explicit but \mathcal{S} is only implicitly given.

That is, we assume that \mathcal{S} can be enumerated in $O^{*}\left(2^{n}\right)$ time, where $n=|U|$ (w.l.o.g. $S \nsubseteq S^{\prime}$ for any $S \neq S^{\prime} \in \mathcal{S}$).

A k-cover is a set family $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ with $\left|\mathcal{S}^{\prime}\right|=k$ and $\bigcup \mathcal{S}^{\prime}=U$.
An ordered k-cover is a k-tuple $\left(S_{1}, \ldots, S_{k}\right)$ with $S_{i} \in \mathcal{S}$ and $\bigcup_{i=1}^{k} S_{i}=U$.

Objective:
An algorithm to determine the number c_{k} of ordered k-covers.

The Number of Ordered k-Covers

For each $W \subseteq U$, let

$$
\begin{aligned}
\mathcal{S}[W] & =\{S \in \mathcal{S} \mid S \cap W=\varnothing\} \\
s[W] & =|\mathcal{S}[W]|
\end{aligned}
$$

Lemma. The number of ordered k-covers of (U, \mathcal{S}) is

$$
c_{k}=\sum_{W \subseteq U}(-1)^{|W|} s[W]^{k} .
$$

Proof of the Lemma

$$
\begin{aligned}
\mathcal{S}[W] & =\{S \in \mathcal{S} \mid S \cap W=\varnothing\} \\
s[W] & =|\mathcal{S}[W]|
\end{aligned}
$$

Lemma. The number of ordered k-covers of (U, \mathcal{S}) is

$$
c_{k}=\sum_{W \subseteq U}(-1)^{|W|} S[W]^{k} .
$$

Proof. Apply IE-Theorem:

- Objects: \quad (ordered) k-tuples $\left(S_{1}, \ldots, S_{k}\right) \in \mathcal{S}^{k}$
- Properties: for each $u \in U: u \in \bigcup_{i} S_{i}$
$\bar{N}[W]=$ number of k-tuples avoiding $W=s[W]^{k}$
(We allow duplicates.)

$$
\begin{align*}
c_{k}=N(U) & \stackrel{\text { IE }}{=} \sum_{W \subseteq U}(-1)^{|W|} \bar{N}[W] \\
& =\sum_{W \subseteq U}(-1)^{|W|} s[W]^{k}
\end{align*}
$$

Computing the Number of k-Covers

Theorem. The number of ordered k-covers of (U, \mathcal{S}) can be determined in $O^{*}\left(2^{n}\right)$ time.

Proof.
Compute $s[W]$ for every $W \subseteq U$ via a DP in $O^{*}\left(2^{n}\right)$ total time.

Order the elements $U=\left\{u_{1}, \ldots, u_{n}\right\}$.
Want to compute $c_{k}=\sum_{W \subseteq U}(-1)^{|W|} s[W]^{k}$.
\ldots but how to find $s[W]$?

A "Backward" DP

Let $\quad g_{i}(W)=\left|\left\{S \in \mathcal{S}[W]:\left\{u_{1}, \ldots, u_{i}\right\} \backslash W \subseteq S\right\}\right|$ $=\#$ subsets of \mathcal{S} avoiding W and containing $\left\{u_{1}, \ldots, u_{i}\right\} \backslash W$.
Note: $\quad s[W]=g_{0}(W)$ for every $W \subseteq U$

Recurrence:

$$
g_{n}(W)= \begin{cases}1 & \text { if } U \backslash W \in \mathcal{S} \\ 0 & \text { otherwise }\end{cases}
$$

and, for $0<i \leq n$:

$$
g_{i-1}(W)= \begin{cases}g_{i}(W) & \text { if } u_{i} \in W \\ g_{i}(W)+g_{i}\left(W \cup\left\{u_{i}\right\}\right) & \text { if } u_{i} \notin W\end{cases}
$$

A "Backward" DP (cont'd)
Algorithm Num- k-Covers (U, \mathcal{S})

foreach $W \subseteq U$ do

$\left\lfloor g_{n}(W) \leftarrow 0\right.$
foreach $S \in \mathcal{S}$ do
$\left\lfloor g_{n}(U \backslash S) \leftarrow 1\right.$
for $i \leftarrow n$ downto 1 do
foreach $W \subseteq U$ do
if $u_{i} \in W$ then
$\mid g_{i-1}(W) \leftarrow g_{i}(W)$
else
$\left\lfloor g_{i-1}(W) \leftarrow g_{i}(W)+g_{i}\left(W \cup\left\{u_{i}\right\}\right)\right.$
foreach $W \subseteq U$ do $s[W] \leftarrow g_{0}(W)$

Finally, compute $c_{k}=\sum_{W \subseteq U}(-1)^{|W|} s[W]^{k}$.

Runtime and Space Consumption

Corollary. The graph coloring problem can be solved in $O^{*}\left(2^{n}\right)$ time and space.

Proof. Determine the smallest k so that there is a k-cover for (V, \mathcal{I}).

This yields $\chi(G)$. But how do we get a coloring?
How much slower do we get if we insist on polynomial space?

