UNIVERSITÄT WÜRZBURG

Lehrstuhl für

INFORMATIK I
Algorithmen \& Komplexität

Exact Algorithms

Sommer Term 2020
Lecture 5. Inclusion-Exclusion
Based on: [Exact Exponential Algorithms: §4]
Further reading: [Parameterized Algorithms: §10.1]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Puzzle

How many numbers ≤ 1000 are not divisible by 2,3 or 5 ?

1, $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, \ldots$

Puzzle

How many numbers ≤ 1000 are not divisible by 2,3 or 5 ?
Universe: $\mathcal{U}=[1000]:=\{n \in \mathbb{N}: 1 \leq n \leq 1000\}$
$P_{2}=\{n \in \mathcal{U} \mid n \bmod 2 \equiv 0\}$ $P_{3}=\{n \in \mathcal{U} \mid n \bmod 3 \equiv 0\}$
$P_{5}=\{n \in \mathcal{U} \mid n \bmod 5 \equiv 0\}$

$$
\begin{aligned}
& \left|P_{2}\right|=500 \\
& \left|P_{3}\right|=333 \\
& \left|P_{5}\right|=200
\end{aligned}
$$

Goal: $|\mathcal{U}|-\left|P_{2} \cup P_{3} \cup P_{5}\right|$

Inclusion-Exclusion

$500+333+200-166-100-66+33=734$

$\left|P_{2} \cup P_{3} \cup P_{5}\right|=\oplus\left|P_{2}\right| \oplus\left|P_{3}\right| \oplus\left|P_{5}\right|$
$\ominus\left|P_{2} \cap P_{3}\right| \ominus\left|P_{2} \cap P_{5}\right| \ominus\left|P_{3} \cap P_{5}\right|$
$+\left|P_{2} \cap P_{3} \cap P_{5}\right|$
$=\left|\bigcup_{i \in\{2,3,5\}} P_{i}\right|=\sum_{\varnothing \neq J \subseteq\{2,3,5\}}(-1)^{|J|-1}\left|\bigcap_{j \in J} P_{j}\right|$
$1 \times$ union
$7 \times$ intersection

An Inclusion-Exclusion Theorem

Given N objects and n properties $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$, for each \mathcal{S} with $\emptyset \subseteq \mathcal{S} \subseteq \mathcal{P}$, let $N(\mathcal{S}):=\#$ objects satisfying the properties in \mathcal{S}.
($N_{0}:=\#$ objects with no property from \mathcal{P}.)
Thm. $\quad N_{0}=\sum_{\mathcal{S} \subseteq \mathcal{P}}(-1)^{|\mathcal{S}|} N(\mathcal{S})$.

1 union
 2^{n} subsets
 Is this useful?

"One of the most useful principles of enumeration in discrete probability and combinatorial theory is the celebrated principle of inclusion-exclusion. When skillfully applied, this principle has yielded the solution to many a combinatorial problem.'
Gian-Carlo Rota [1932-1999]

Proof

Thm. $\quad N_{0}=\sum_{\mathcal{S} \subseteq \mathcal{P}}(-1)^{|\mathcal{S}|} N(\mathcal{S})$.
Proof. Property-less objects are counted exactly once on both sides (on the right side when $\mathcal{S}=\emptyset$).
Consider an object with precisely properties
$\mathcal{S}=\left\{P_{i_{1}}, \ldots, P_{i_{s}}\right\}, s \geq 1$.
We count this object in $N\left(\mathcal{S}^{\prime}\right)$ precisely when $\mathcal{S}^{\prime} \subseteq \mathcal{S}$.
For an object with properties \mathcal{S}, we observe:
$\sum_{\mathcal{S}^{\prime} \subseteq \mathcal{S}}(-1)^{\left|\mathcal{S}^{\prime}\right|}=\sum_{i=0}^{s}\binom{s}{i}(-1)^{i}=\mathbf{0}$, because:

- if s is odd: $\binom{s}{0}-\binom{s}{1}+\binom{s}{2} \mp \cdots-\binom{s}{s-2}+\binom{s}{s-1}-\binom{s}{s}$
- if s is even - exercise!

Corollary

Recall: N objects and n properties $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$.
Cor. Let $\bar{N}(\mathcal{S})$ be the number of objects that have none of the properties in \mathcal{S}. Then

$$
N(\mathcal{P})=\sum_{\mathcal{S} \subseteq \mathcal{P}}(-1)^{|\mathcal{S}|} \bar{N}(\mathcal{S}) \quad \begin{aligned}
& \text { But is it } \\
& \text { useful? }
\end{aligned}
$$

Proof. Set $P_{i}^{\prime}:=$ "object does not have property $P_{i}{ }^{\prime \prime}$.
Apply Thm. $\quad N_{0}=\sum_{\mathcal{S} \subseteq \mathcal{P}}(-1)^{|\mathcal{S}|} N(\mathcal{S}) \quad$ to:

$$
\begin{aligned}
& N_{0}^{\prime}=N(\mathcal{P}) \\
& N^{\prime}\left(P_{i_{1}}^{\prime}, \ldots, P_{i_{s}}^{\prime}\right)=\bar{N}\left(P_{i_{1}}, \ldots, P_{i_{s}}\right)
\end{aligned}
$$

Directed Hamiltonian Path

Given: \quad Directed Graph $G=(V, E)$, two special vertices $s, t \in V$.

Question: Is there a Hamiltonian path from s to t, i.e., an s - t-path spanning the vertices of G ?

Brute Force? Try all permutations of $V \rightsquigarrow \Theta(n!)=2^{\Theta(n \log n)}$
Another idea: Via TSP $\Rightarrow O^{*}\left(2^{n}\right)$ time and space.

A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths from s to t can be determined in $O^{*}\left(2^{n}\right)$ time using only polynomial space.

Proof. Objects: Directed $s-t$ walks of length $n-1$, not necessarily simple. $\quad V^{\prime}:=V-\{s, t\}$
Property $v \in V^{\prime}: s-t$ walk visits v. For $W \subseteq V^{\prime}$:
$\bar{N}(W):=\# s-t$ walks of length $n-1$, avoiding W. $N\left(V^{\prime}\right):=\#$ directed Hamiltonian $s-t$ paths.
By inclusion-exclusion:

$$
N\left(V^{\prime}\right)=\sum_{W \subseteq V^{\prime}}(-1)^{|W|} \bar{N}(W)
$$

Compute $\bar{N}(W)$ for each $W \subseteq V^{\prime}$ separately. How?

Dynamic Program

For $W \subseteq V^{\prime}, k=0, \ldots, n-1$, and $u \in V \backslash W$, set:

$$
\begin{aligned}
P_{W}[u, k] & :=\# s-u \text { walks of length } k \text {, avoiding } W \\
\bar{N}(W) & :=P_{W}[t, n-1]
\end{aligned}
$$

Recurrence for the DP:

- for $k=0$
- for $k \geq 1$

$$
P_{W}[u, 0]= \begin{cases}0 & \text { when } u \neq s \\ 1 & \text { when } u=s\end{cases}
$$

$$
P_{W}[u, k]=\sum_{\substack{v u \in E \\ v \notin W}} P_{W}[v, k-1]
$$

Algorithmic Application of the IE Formula

 verylongint NumHamPath $(G, s, t)$$V^{\prime} \leftarrow V \backslash\{s, t\}$
$N\left(V^{\prime}\right) \leftarrow 0$
foreach $W \subseteq V^{\prime}$ do

$$
\text { compute } \bar{N}(W)=P_{W}[t, n-1] \text { using the DP }\left\{\begin{array}{l}
O\left(m^{2} n\right) \\
\text { time }
\end{array}\right.
$$

$$
N\left(V^{\prime}\right) \leftarrow N\left(V^{\prime}\right)+(-1)^{|W|} \bar{N}(W)
$$

[Note that numbers in P_{W} can be exponential in $m!]$

Runtime: $O\left(m^{2} n \cdot 2^{n}\right)$
Space: $\quad O(m n)$ - if we reuse the memory used by the DP in each iteration of the loop.
How can we use this to find a Hamiltonian Path? \rightsquigarrow Exercise!

