
Based on: [Exact Exponential Algorithms: §4]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 5. Inclusion–Exclusion

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Further reading: [Parameterized Algorithms: §10.1]



Puzzle

How many numbers ≤ 1000 are not divisible
by 2, 3 or 5?

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, . . .



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0}



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0} |P2| = 500



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0}
P3 = {n ∈ U | n mod 3 ≡ 0}

|P2| = 500



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0}
P3 = {n ∈ U | n mod 3 ≡ 0}

|P2| = 500

|P3| = 333



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0}
P3 = {n ∈ U | n mod 3 ≡ 0}
P5 = {n ∈ U | n mod 5 ≡ 0}

|P2| = 500

|P3| = 333



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0}
P3 = {n ∈ U | n mod 3 ≡ 0}
P5 = {n ∈ U | n mod 5 ≡ 0}

|P2| = 500

|P3| = 333

|P5| = 200



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0}
P3 = {n ∈ U | n mod 3 ≡ 0}
P5 = {n ∈ U | n mod 5 ≡ 0}

Goal: |U| − |P2 ∪ P3 ∪ P5|

|P2| = 500

|P3| = 333

|P5| = 200



Puzzle

How many numbers ≤ 1000 are not divisible by 2, 3 or 5?

Universe: U = [1000] := {n ∈ N : 1 ≤ n ≤ 1000}

P2 = {n ∈ U | n mod 2 ≡ 0}
P3 = {n ∈ U | n mod 3 ≡ 0}
P5 = {n ∈ U | n mod 5 ≡ 0}

Goal: |U| − |P2 ∪ P3 ∪ P5|

|P2| = 500

|P3| = 333

|P5| = 200



Inclusion–Exclusion

P2

P3 P5

U



Inclusion–Exclusion

P2

P3 P5

U



Inclusion–Exclusion

P2

P3 P5

U



Inclusion–Exclusion

P2

P3 P5

U

500



Inclusion–Exclusion

P2

P3 P5

U

500



Inclusion–Exclusion

P2

P3 P5

U

500 + 333



Inclusion–Exclusion

P2

P3 P5

U

500 + 333



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200

|P2 ∩ P3|



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166 − 100



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166 − 100



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166 − 100 − 66



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166 − 100 − 66



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166 − 100 − 66 + 33



Inclusion–Exclusion

P2

P3 P5

U

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734



Inclusion–Exclusion

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734

|P2 ∪ P3 ∪ P5| =



Inclusion–Exclusion

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734

+ |P2|+ |P3|+ |P5||P2 ∪ P3 ∪ P5| =



Inclusion–Exclusion

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734

+ |P2|+ |P3|+ |P5||P2 ∪ P3 ∪ P5| =

− |P2 ∩ P3| − |P2 ∩ P5| − |P3 ∩ P5|



Inclusion–Exclusion

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734

+ |P2|+ |P3|+ |P5||P2 ∪ P3 ∪ P5| =

− |P2 ∩ P3| − |P2 ∩ P5| − |P3 ∩ P5|

+ |P2 ∩ P3 ∩ P5|



Inclusion–Exclusion

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734

+ |P2|+ |P3|+ |P5||P2 ∪ P3 ∪ P5| =

− |P2 ∩ P3| − |P2 ∩ P5| − |P3 ∩ P5|

+ |P2 ∩ P3 ∩ P5|

=

∣∣∣∣∣∣
⋃

i∈{2,3,5}

Pi

∣∣∣∣∣∣ =
∑

∅ 6=J⊆{2,3,5}

(−1)|J|−1

∣∣∣∣∣∣
⋂
j∈J

Pj

∣∣∣∣∣∣



Inclusion–Exclusion

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734

+ |P2|+ |P3|+ |P5||P2 ∪ P3 ∪ P5| =

− |P2 ∩ P3| − |P2 ∩ P5| − |P3 ∩ P5|

+ |P2 ∩ P3 ∩ P5|

=

∣∣∣∣∣∣
⋃

i∈{2,3,5}

Pi

∣∣∣∣∣∣ =
∑

∅ 6=J⊆{2,3,5}

(−1)|J|−1

∣∣∣∣∣∣
⋂
j∈J

Pj

∣∣∣∣∣∣



Inclusion–Exclusion

500 + 333 + 200 − 166 − 100 − 66 + 33 = 734

+ |P2|+ |P3|+ |P5||P2 ∪ P3 ∪ P5| =

− |P2 ∩ P3| − |P2 ∩ P5| − |P3 ∩ P5|

+ |P2 ∩ P3 ∩ P5|

=

∣∣∣∣∣∣
⋃

i∈{2,3,5}

Pi

∣∣∣∣∣∣ =
∑

∅ 6=J⊆{2,3,5}

(−1)|J|−1

∣∣∣∣∣∣
⋂
j∈J

Pj

∣∣∣∣∣∣
1 × union 7 × intersection



An Inclusion–Exclusion Theorem

Given N objects and n properties P = {P1, . . . , Pn},



An Inclusion–Exclusion Theorem

Given N objects and n properties P = {P1, . . . , Pn},
for each S with ∅ ⊆ S ⊆ P, let
N(S) := # objects satisfying the properties in S.



An Inclusion–Exclusion Theorem

Given N objects and n properties P = {P1, . . . , Pn},
for each S with ∅ ⊆ S ⊆ P, let
N(S) := # objects satisfying the properties in S.

Thm. N0 =
∑
S⊆P(−1)|S|N(S).

(N0 := # objects with no property from P.)



An Inclusion–Exclusion Theorem

Given N objects and n properties P = {P1, . . . , Pn},
for each S with ∅ ⊆ S ⊆ P, let
N(S) := # objects satisfying the properties in S.

Thm. N0 =
∑
S⊆P(−1)|S|N(S).

1 union 2n subsets

(N0 := # objects with no property from P.)



An Inclusion–Exclusion Theorem

Given N objects and n properties P = {P1, . . . , Pn},
for each S with ∅ ⊆ S ⊆ P, let
N(S) := # objects satisfying the properties in S.

Thm. N0 =
∑
S⊆P(−1)|S|N(S).

1 union 2n subsets Is this useful?

(N0 := # objects with no property from P.)



An Inclusion–Exclusion Theorem

Given N objects and n properties P = {P1, . . . , Pn},
for each S with ∅ ⊆ S ⊆ P, let
N(S) := # objects satisfying the properties in S.

Thm. N0 =
∑
S⊆P(−1)|S|N(S).

1 union 2n subsets Is this useful?

(N0 := # objects with no property from P.)

“One of the most useful principles of enumeration in discrete
probability and combinatorial theory is the celebrated principle
of inclusion–exclusion. When skillfully applied, this principle
has yielded the solution to many a combinatorial problem.”

Gian-Carlo Rota [1932–1999]



Proof

N0 =
∑
S⊆P(−1)|S|N(S).Thm.

Proof.



Proof

N0 =
∑
S⊆P(−1)|S|N(S).Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).



Proof

N0 =
∑
S⊆P(−1)|S|N(S).Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.



Proof

N0 =
∑
S⊆P(−1)|S|N(S).Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.



Proof

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.

0, because:



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

– if s is odd:
(
s
0

)
−
(
s
1

)
+
(
s
2

)
∓ · · · −

(
s

s−2

)
+
(

s
s−1

)
−
(
s
s

)

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.

0, because:



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

– if s is odd:
(
s
0

)
−
(
s
1

)
+
(
s
2

)
∓ · · · −

(
s

s−2

)
+
(

s
s−1

)
−
(
s
s

)

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.

0, because:



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

– if s is odd:
(
s
0

)
−
(
s
1

)
+
(
s
2

)
∓ · · · −

(
s

s−2

)
+
(

s
s−1

)
−
(
s
s

)

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.

0, because:



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

– if s is odd:
(
s
0

)
−
(
s
1

)
+
(
s
2

)
∓ · · · −

(
s

s−2

)
+
(

s
s−1

)
−
(
s
s

)

Thm.

Proof. Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.

0, because:



Proof

s∑
i=0

(
s

i

)
(−1)i =

For an object with properties S, we observe:

N0 =
∑
S⊆P(−1)|S|N(S).

∑
S′⊆S

(−1)|S
′| =

– if s is odd:
(
s
0

)
−
(
s
1

)
+
(
s
2

)
∓ · · · −

(
s

s−2

)
+
(

s
s−1

)
−
(
s
s

)
– if s is even – exercise!

Thm.

Proof.

�

Property-less objects are counted exactly once on both
sides (on the right side when S = ∅).

Consider an object with precisely properties
S = {Pi1 , . . . , Pis}, s ≥ 1.

We count this object in N(S ′) precisely when S ′ ⊆ S.

0, because:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

N objects and n properties P = {P1, . . . , Pn}.Recall:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Proof. Set Pi
′ := “object does not have property Pi”.

N objects and n properties P = {P1, . . . , Pn}.Recall:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Proof. Set Pi
′ := “object does not have property Pi”.

N objects and n properties P = {P1, . . . , Pn}.Recall:

Apply N0 =
∑
S⊆P(−1)|S|N(S)Thm. to:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Proof. Set Pi
′ := “object does not have property Pi”.

N ′0 =

N objects and n properties P = {P1, . . . , Pn}.Recall:

Apply N0 =
∑
S⊆P(−1)|S|N(S)Thm. to:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Proof. Set Pi
′ := “object does not have property Pi”.

N ′0 =

N objects and n properties P = {P1, . . . , Pn}.Recall:

Apply

N(P)

N0 =
∑
S⊆P(−1)|S|N(S)Thm. to:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Proof. Set Pi
′ := “object does not have property Pi”.

N ′0 =

N ′(P ′i1
, . . . , P ′is) =

N objects and n properties P = {P1, . . . , Pn}.Recall:

Apply

N(P)

N0 =
∑
S⊆P(−1)|S|N(S)Thm. to:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Proof. Set Pi
′ := “object does not have property Pi”.

N ′0 =

N ′(P ′i1
, . . . , P ′is) =

N objects and n properties P = {P1, . . . , Pn}.

�

Recall:

Apply

N(P)

N̄(Pi1 , . . . , Pis)

N0 =
∑
S⊆P(−1)|S|N(S)Thm. to:



Corollary

Cor. Let N̄(S) be the number of objects that have none
of the properties in S. Then

N(P) =
∑
S⊆P

(−1)|S|N̄(S)

Proof. Set Pi
′ := “object does not have property Pi”.

N ′0 =

N ′(P ′i1
, . . . , P ′is) =

But is it
useful?

N objects and n properties P = {P1, . . . , Pn}.

�

Recall:

Apply

N(P)

N̄(Pi1 , . . . , Pis)

N0 =
∑
S⊆P(−1)|S|N(S)Thm. to:



Directed Hamiltonian Path

Given: Directed Graph G = (V,E),
two special vertices s, t ∈ V .

Question: Is there a Hamiltonian path from s to t,
i.e., an s-t-path spanning the vertices of G?



Directed Hamiltonian Path

Given: Directed Graph G = (V,E),
two special vertices s, t ∈ V .

Question: Is there a Hamiltonian path from s to t,
i.e., an s-t-path spanning the vertices of G?

Brute Force?



Directed Hamiltonian Path

Given: Directed Graph G = (V,E),
two special vertices s, t ∈ V .

Question: Is there a Hamiltonian path from s to t,
i.e., an s-t-path spanning the vertices of G?

Brute Force? Try all permutations of V  Θ(n!) = 2Θ(n log n)



Directed Hamiltonian Path

Given: Directed Graph G = (V,E),
two special vertices s, t ∈ V .

Question: Is there a Hamiltonian path from s to t,
i.e., an s-t-path spanning the vertices of G?

Brute Force? Try all permutations of V  Θ(n!) = 2Θ(n log n)

Another idea:



Directed Hamiltonian Path

Given: Directed Graph G = (V,E),
two special vertices s, t ∈ V .

Question: Is there a Hamiltonian path from s to t,
i.e., an s-t-path spanning the vertices of G?

Brute Force? Try all permutations of V  Θ(n!) = 2Θ(n log n)

Another idea: Via TSP ⇒



Directed Hamiltonian Path

Given: Directed Graph G = (V,E),
two special vertices s, t ∈ V .

Question: Is there a Hamiltonian path from s to t,
i.e., an s-t-path spanning the vertices of G?

Brute Force? Try all permutations of V  Θ(n!) = 2Θ(n log n)

Another idea: Via TSP ⇒ O∗(2n) time and space.



A Better Algorithm for Hamiltonian Path



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple.

Objects:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v. For W ⊆ V ′:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

For W ⊆ V ′:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

For W ⊆ V ′:

# s–t walks of length n− 1



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .

# directed Hamiltonian s–t paths.



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .

# directed Hamiltonian s–t paths.

By inclusion–exclusion:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

N(V ′) =
∑

W⊆V ′

(−1)|W |N̄(W )

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .

# directed Hamiltonian s–t paths.

By inclusion–exclusion:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

N(V ′) =
∑

W⊆V ′

(−1)|W |N̄(W )

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .

# directed Hamiltonian s–t paths.

By inclusion–exclusion:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

N(V ′) =
∑

W⊆V ′

(−1)|W |N̄(W )

Compute N̄(W ) for each W ⊆ V ′ separately.

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .

# directed Hamiltonian s–t paths.

By inclusion–exclusion:



A Better Algorithm for Hamiltonian Path

Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

N(V ′) =
∑

W⊆V ′

(−1)|W |N̄(W )

Compute N̄(W ) for each W ⊆ V ′ separately. How?

For W ⊆ V ′:

# s–t walks of length n− 1, avoiding W .

# directed Hamiltonian s–t paths.

By inclusion–exclusion:



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]

Recurrence for the DP:



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]

Recurrence for the DP:

• for k = 0

PW [u, 0] =

{
0 when u 6= s

1 when u = s



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]

Recurrence for the DP:

• for k = 0

PW [u, 0] =

{
0 when u 6= s

1 when u = s



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]

Recurrence for the DP:

• for k = 0

PW [u, 0] =

{
0 when u 6= s

1 when u = s

• for k ≥ 1

PW [u, k] =
∑
vu∈E
v/∈W

PW [v, k − 1] v

us



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]

Recurrence for the DP:

• for k = 0

PW [u, 0] =

{
0 when u 6= s

1 when u = s

• for k ≥ 1

PW [u, k] =
∑
vu∈E
v/∈W

PW [v, k − 1] v

us



Dynamic Program

For W ⊆ V ′, k = 0, . . . , n− 1, and u ∈ V \W , set:

PW [u, k] := # s–u walks of length k, avoiding W

N̄(W ) := PW [t, n− 1]

Recurrence for the DP:

• for k = 0

PW [u, 0] =

{
0 when u 6= s

1 when u = s

• for k ≥ 1

PW [u, k] =
∑
vu∈E
v/∈W

PW [v, k − 1] v

us



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime:



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime: PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime: PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]

fix!



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime: PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]

fix!

O(m2n)
time

{
[Note that
numbers in
PW can be
exponential in
m!]



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime: O(m2n · 2n) PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]

fix!

O(m2n)
time

{
[Note that
numbers in
PW can be
exponential in
m!]



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime:

Space:

O(m2n · 2n) PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]

fix!

O(m2n)
time

{
[Note that
numbers in
PW can be
exponential in
m!]



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime:

O(mn) – if we reuse the memory used by the DP in
each iteration of the loop.

Space:

O(m2n · 2n) PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]

fix!

O(m2n)
time

{
[Note that
numbers in
PW can be
exponential in
m!]



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime:

O(mn) – if we reuse the memory used by the DP in
each iteration of the loop.

How can we use this to find a Hamiltonian Path?

Space:

O(m2n · 2n) PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]

fix!

O(m2n)
time

{
[Note that
numbers in
PW can be
exponential in
m!]



Algorithmic Application of the IE Formula

verylongint NumHamPath(G, s, t)
V ′ ← V \ {s, t}
N(V ′)← 0
foreach W ⊆ V ′ do

compute N̄(W ) = PW [t, n− 1] using the DP

N(V ′)← N(V ′) + (−1)|W |N̄(W )

return N(V ′)

Runtime:

O(mn) – if we reuse the memory used by the DP in
each iteration of the loop.

How can we use this to find a Hamiltonian Path?

 Exercise!

Space:

O(m2n · 2n)

�

PW [u, k] =
∑

vu∈E
v/∈W

PW [v, k − 1]

fix!

O(m2n)
time

{
[Note that
numbers in
PW can be
exponential in
m!]


	Puzzle
	Inclusion--Exclusion
	An Inclusion--Exclusion Theorem
	Proof
	Corollary
	Directed Hamiltonian Path
	A Better Algorithm for Hamiltonian Path
	Dynamic Program
	Algorithmic Application of the IE Formula

