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An Inclusion–Exclusion Theorem

Given N objects and n properties P = {P1, . . . , Pn},
for each S with ∅ ⊆ S ⊆ P, let
N(S) := # objects satisfying the properties in S.

Thm. N0 =
∑
S⊆P(−1)|S|N(S).

1 union 2n subsets Is this useful?

(N0 := # objects with no property from P.)

“One of the most useful principles of enumeration in discrete
probability and combinatorial theory is the celebrated principle
of inclusion–exclusion. When skillfully applied, this principle
has yielded the solution to many a combinatorial problem.”

Gian-Carlo Rota [1932–1999]
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Given: Directed Graph G = (V,E),
two special vertices s, t ∈ V .

Question: Is there a Hamiltonian path from s to t,
i.e., an s-t-path spanning the vertices of G?

Brute Force? Try all permutations of V  Θ(n!) = 2Θ(n log n)

Another idea: Via TSP ⇒ O∗(2n) time and space.
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Thm. The number of directed Hamiltonian paths
from s to t can be determined in O∗(2n) time
using only polynomial space. [Karp ’82]

Proof. Directed s–t walks of length n− 1,
not necessarily simple. V ′ := V − {s, t}

Objects:

Property v ∈ V ′: s–t walk visits v.

N̄(W ) :=

N(V ′) :=

N(V ′) =
∑

W⊆V ′

(−1)|W |N̄(W )

Compute N̄(W ) for each W ⊆ V ′ separately. How?
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# directed Hamiltonian s–t paths.

By inclusion–exclusion:
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