UNIVERSITÄT WÜRZBURG

Lehrstuhl für

INFORMATIK I

Exact Algorithms

Sommer Term 2020
Lecture 4. Measure \& Conquer Based on: [Exact Exponential Algorithms: §6]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

What is Measure \& Conquer?

- Method to analyse branching algorithms
- So far: Measure progress via instance size $(|V|,|E|, \ldots)$.
- Now: Finer measure \Rightarrow improved timing estimates.
- Many of the fastest algorithms use branching and have their time guarantees established via M \& C.

Requirements for such a Measure

- The measure of an subinstance obtained by a reduction rule or a branching rule is smaller than the measure of the original instance.
- The measure of each instance is nonnegative.
- Measure of input is upperbounded by function of "natural parameters" of the input, e.g., measure $(G) \leq|V(G)|$. \Rightarrow runtime bounds.

Example: Maximum Independent Set

 int MIS(undirected graph G) if $\exists v: \operatorname{deg}(v)=0$ then return $1+\operatorname{MIS}(G-v)$if $\exists v: \operatorname{deg}(v)=1$ then return $1+\operatorname{MIS}(G-N[v])$
if $\Delta(G) \geq 3$ then
$v=\arg \max _{v \in V} \operatorname{deg}(v)$
return $\max (1+\operatorname{MIS}(G-N[v]), \operatorname{MIS}(G-v))$
if $\Delta(G) \leq 2$ then
solution in polytime
Measure: $|V(G)| \quad$ Branching vector: $(1, \operatorname{deg}(v)+1) \geq(1,4)$
\rightsquigarrow Find positive root of $x^{4}-x^{3}-1=0 \Rightarrow x \approx 1.3803$. i.e., runtime $O^{*}\left(1.3803^{n}\right)$.

Better Measure than n ?

Obs. Only vertices with degree ≥ 3 lead to branching. Measure: $k_{1}(G)=n_{\geq 3}=\#$ vertices of degree ≥ 3 - discarding v reduces the size by ≥ 1.

- and (in the worst-case) picking v only removes a single vertex of degree ≥ 3 from G
\Rightarrow branching vector: $(1,1) \Rightarrow$ runtime $O^{*}\left(2^{n}\right):-($
Idea. Since degree-2-vertices are not removed immediately, they should be considered in our measure!
New measure: $k_{2}(G)=w_{2} n_{2}+n_{\geq 3} \leq n(!!)$
Lemma. Algorithm MIS runs in $O^{*}\left(1.3248^{n}\right)$ time.
Proof. Let's try $w_{2}=1 / 2$ and see \ldots

Analysis with M \& C

*) Balancing lemma:
$\tau(i, j)>\tau(i+\epsilon, j-\epsilon)$ for $0<i<j$ and $0<\epsilon<\frac{j-i}{2}$
return $\max (1+\operatorname{MIS}(G-N[v]), \operatorname{MIS}(G-v))$
IN $:=$ decrease of $k_{2}(G)$ if $N[v]$ is deleted.
OUT $:=$ decrease of $k_{2}(G)$ if v is deleted.
$\Rightarrow \mathbf{I N}$, OUT ≥ 1, since v is always deleted and $\operatorname{deg}(v) \geq 3$.
Consider $w \in N(v)$. Recall: $k_{2}(G)=n_{2} / 2+n_{\geq 3}$

1. If $\operatorname{deg}(w) \geq 3 \Rightarrow w$ holds the value 1 for IN.
2. If $\operatorname{deg}(w)=2 \quad \frac{1}{2}$ for IN \& OUT.
$\stackrel{\Sigma}{\Rightarrow} \mathrm{IN}+$ OUT $\geq 2+\operatorname{deg}(v)$. Back to $v \ldots$
3. If $\operatorname{deg}(v) \geq 4 \Rightarrow \tau($ OUT, IN $) \leq \tau(1,5)<1.3248$
4. If $\operatorname{deg}(v)=3 \Rightarrow G$ has only vertices of degree 2 or 3 .
\Rightarrow Deleting v or $N[v]$ reduces $k_{2}(G)$ by $\geq \frac{1}{2}$ per neighbor.
$\Rightarrow \mathrm{IN}, \mathrm{OUT} \geq 1+\frac{3}{2} \Rightarrow \tau(\mathrm{OUT}, \mathrm{IN}) \leq \tau\left(\frac{5}{2}, \frac{5}{2}\right)<1.3196$.

Further Fine Tuning

General measure: $k(G)=\sum_{i=0}^{n-1} w_{i} n_{i} \leq n$ if all $w_{i} \in[0,1]$.
Set $w_{0}=w_{1}=0$
because vertices of degree 0 or 1 do not occur when branching.
Pick $0 \leq w_{2} \leq w_{3} \leq 1$ and set $w_{4}=w_{5}=\cdots=w_{n}=1$.
Best choices: $w_{2}=0.596601$

$$
w_{3}=0.928643
$$

Lemma. Algorithm MIS runs in $O^{*}\left(1.2905^{n}\right)$ time.
Proof. Exercise :-)

Back to Dominating Set. . .

- Best algorithm from Lecture $\# 3: O^{*}\left(1.7088^{n}\right)$.
- Next slide: simple branching algorithm
- "Convential" analysis: runtime $O^{*}\left(1.9052^{n}\right)$
- Measure \& Conquer: runtime $O^{*}\left(1.5259^{n}\right)$
- Model instances of DS as instances (U, \mathcal{S}) of Set Cover, where $\quad-U=V$ and

$$
-\mathcal{S}=\{N[v]: v \in V\} .
$$

- There are faster SC algorithms for large $|\mathcal{S}|$: runtime $O^{*}\left(2^{n}\right)$.
- Our Goal: runtime $O^{*}\left(c^{|U|+|\mathcal{S}|}\right)$ for some $c \ll 2$ for SC.
\Rightarrow runtime $O^{*}\left(c^{2 n}\right)$ for Dom. Set, where $n=|V|$.
- W.I.o.g. $U=\bigcup \mathcal{S} \Rightarrow$ input given by \mathcal{S}.
- Define frequency $f(v)=$ number of sets that contain v.

Algorithm for Set Cover

int SC(set family \mathcal{S})
if $\mathcal{S}=\emptyset$ then return 0
if $\exists S, R \in \mathcal{S}$ and $S \subset R$ then return $\operatorname{SC}(\mathcal{S} \backslash\{S\})$
if $\exists v \in \bigcup \mathcal{S}$ with $f(v)=1$ then

$$
S \ni v
$$

return $1+\operatorname{SC}(\operatorname{del}(S, \mathcal{S})) / / \operatorname{del}(S, \mathcal{S})=\{R \backslash S \neq \emptyset \mid R \in \mathcal{S}\}$
$S=\arg \max \left\{\left|S^{\prime}\right|: S^{\prime} \in \mathcal{S}\right\}$
if $|S|=2$ then solve \mathcal{S} in polytime.
Exercise! if $|S| \geq 3$ then return $\min (\mathrm{SC}(\mathcal{S} \backslash\{S\}), 1+\mathrm{SC}(\operatorname{del}(S, \mathcal{S})))$

Standard analysis: Measure $k(\mathcal{S})=|\mathcal{S}|+|\bigcup \mathcal{S}|$ $T(k) \leq T(k-1)+T(k-4), T(1,2,3,4) \in O(1)$
$\Rightarrow T(k) \in O^{*}\left(1.3803^{k}\right)$
\Rightarrow Runtime for DS: $O^{*}\left(1.3803^{2 n}\right)=O^{*}\left(1.9052^{n}\right)$

Idea for a Finer Analysis

- Deleting large sets reduces the frequency of many elements.
- Reducing the frequency of an element can eventually lead to a frequency of $1 \rightsquigarrow$ selecting a set.
- Deleting a high-frequency element reduces the size of many sets.
- Reducing the size of sets is useful since sets contained in other sets are removed.
$n_{i}=\#$ sets of size i in \mathcal{S}
$m_{j}=\#$ elements of frequency j in $U=\bigcup \mathcal{S}$
New measure: $k(\mathcal{S})=\sum_{i \geq 1} w_{i} n_{i}+\sum_{j \geq 1} v_{j} m_{j} \quad w_{i}, v_{j} \in[0,1]$
Note: $k(\mathcal{S}) \leq|\mathcal{S}|+|U| \Rightarrow$ Runtime depends on $|\mathcal{S}|$

Simplifying Observations

Our new measure $k(\mathcal{S})=\sum_{i \geq 1} w_{i} n_{i}+\sum_{j \geq 1} v_{j} m_{j}$:

$$
n_{i}=\# \text { sets of size } i \text { in } \mathcal{S}
$$

$m_{j}=\#$ elements of frequency j in U

- $w_{i} \leq w_{i+1}$, and $v_{i} \leq v_{i+1}$
- $w_{1}=v_{1}=0$
- $w_{i}=v_{i}=1$ for every $i \geq 6$
- $\Delta w_{i} \geq \Delta w_{i+1}$, where $\Delta w_{i}=w_{i}-w_{i-1}$ and $\Delta v_{i}=v_{i}-v_{i-1}$

The analysis breaks into two branches: IN and OUT.

Our new measure $k(\mathcal{S})=\sum_{i \geq 1} w_{i} n_{i}+\sum_{j \geq 1} v_{j} m_{j}$:
(a) Reduction in $k_{w}(\mathcal{S})$ from deleting S :
(b) $r_{i}:=\#$ elements in S of frequency i Reduction in $k_{v}(\mathcal{S})$ from deleting $S: \quad \sum_{i=2}^{6} r_{i} \cdot \Delta v_{i}$
(c) If $r_{2}>0$:
$\Delta v_{i}=0$ for $i \geq 7$
Let R_{1}, \ldots, R_{h} be the sets $\neq S$ that share at least one element of frequency 2 with $S . \quad \Rightarrow 1 \leq h \leq r_{2}$.
Removing $S \Rightarrow$ selects R_{1}, \ldots, R_{h} without branching! $r_{2, i}:=\#$ frequency-2 elements in $R_{i} \cap S \Rightarrow \sum_{i=1}^{h} r_{2, i}=r_{2}$ $R_{i} \nsubseteq S \Rightarrow\left|R_{i}\right| \geq r_{2, i}+1$. S largest $\Rightarrow|S| \geq \max _{i} r_{2, i}+1$. Selecting $R_{i} \Rightarrow$ reduction in $k_{w}(\mathcal{S}): w_{\left|R_{i}\right|} \geq w_{r_{2, i}+1}$.
At least one element $e_{i} \in R_{i} \backslash S$ is covered.
\Rightarrow Reduction in $k_{v}(\mathcal{S})$: at least $v_{f\left(e_{i}\right)} \geq v_{2}$.

Analysis of $\mathcal{S}_{\text {OUT }}$ (cont'd)

Measure reduced by at least (case distinction)
$\Delta k^{\prime}= \begin{cases}0 & \text { when } r_{2}=0, \\ v_{2}+w_{2} & r_{2}=1, \\ v_{2}+\min \left\{2 w_{2}, w_{3}\right\} & r_{2}=2, \\ v_{2}+\min \left\{3 w_{2}, w_{2}+w_{3}\right\} & r_{2} \geq 3,|S|=3, \\ v_{2}+\min \left\{3 w_{2}, w_{2}+w_{3}, w_{4}\right\} & r_{2} \geq 3,|S| \geq 4 .\end{cases}$

Total reduction for $\mathcal{S}_{\text {Out }}$ is:

Analysis of $\mathcal{S}_{\text {IN }}:=\operatorname{del}(S, \mathcal{S})$

(a) Reduction in $k_{w}(\mathcal{S})$ by dropping $S: w_{|S|}$
(b) Reduction in $k_{v}(\mathcal{S})$ by dropping $S: \sum_{i=2}^{6} r_{i} v_{i}+r_{\geq 7}$
(c) Reduction in $k_{w}(\mathcal{S})$ from shrinking sets that intersect S :

Let R be a set with $S \cap R \neq \emptyset$, and $v \in R \cap S$.
Then v contributes to the reduction: $\Delta w_{|R|} \geq \Delta w_{|S|}$. i.e. reduction $\geq \quad \Delta k^{\prime \prime}:=\Delta w_{|S|} \cdot\left(\sum_{i=2}^{6}(i-1) r_{i}+6 r_{\geq 7}\right)$

Each element of frequency i belongs to $i-1$ sets $\neq S$.
$\Rightarrow \Delta_{\mathrm{IN}}=w_{|S|}+\sum_{i=2}^{6} r_{i} v_{i}+r_{\geq 7}+\Delta k^{\prime \prime}$.
\Rightarrow Recurrence for fixed weights v and w :
For each $|S| \geq 3$ and $\left(r_{i}\right)_{i}$ with $|S|=\sum r_{i}$:
$T(k) \leq T\left(k-\Delta_{\text {OUT }}\right)+T\left(k-\Delta_{\text {IN }}\right)$. What's the worst case?

Optimizing the Branching Vector

Obs. Every branching vector for $|S| \geq 7$ is dominated by some branching vector for $|S|=7$.

Reason: Consider formulas for $\Delta_{\text {OUT }}$ and $\Delta_{\text {IN }}$:

$$
\begin{aligned}
\Delta_{\mathrm{OUT}} & =w_{|S|}+\sum_{i=2}^{6} r_{i} \Delta v_{i}+\Delta k^{\prime} \\
\Delta_{\mathrm{IN}} & =w_{|S|}+\left(\sum_{i=2}^{6} r_{i} v_{i}+r_{\geq 7}\right)+\Delta w_{|S|} \cdot(\ldots)
\end{aligned}
$$

Shrinking $|S|$ will only reduce the terms. Important point here is $\Delta w_{|S|}$ in $\Delta_{\text {IN }} \ldots$ but $\Delta w_{|S|}$ is 0 when $|S| \geq 7$.

Obs. Hence it is sufficient to consider configurations with $3 \leq|S| \leq 7$, and all possible combinations of $\left(r_{i}\right)_{i}$'s.

Wrap-Up

For each fixed 8-tuple $(w, v)=\left(w_{2}, \ldots, w_{5}, v_{2}, \ldots, v_{5}\right)$, the runtime is bounded by α^{k}, where α is the largest root of

$$
x^{t}-x^{t-\Delta_{\mathrm{OUT}}}-x^{t-\Delta_{\mathrm{IN}}}=0
$$

and $t=\max \left(\Delta_{\text {OUT }}, \Delta_{\text {IN }}\right)$ over all choices of $|S|, r_{1}, \ldots, r_{|S|}$.
Each (w, v) yields the runtime bound $O^{*}\left(\alpha_{(w, v)}^{k}\right)$.
Goal:
Find (w, v) that minimizes $\alpha_{(w, v)}$!
(Use quasi-convex optimization.)
The approximate best solution found here is $\alpha_{\left(w^{\star}, v^{\star}\right)}<1.2353$.
Thm. SC can be solved in $O^{*}\left(1.2353^{|U|+|\mathcal{S}|}\right)$ time.
Corollary. DS can be solved in $O^{*}\left(1.2353^{2 n}\right)=O^{*}\left(1.5259^{n}\right)$

