
1

Based on: [Exact Exponential Algorithms: §6]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 4. Measure & Conquer

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

2

What is Measure & Conquer?

• Method to analyse branching algorithms

• So far: Measure progress via instance size (|V |, |E|, . . .).

• Now: Finer measure ⇒ improved timing estimates.

• Many of the fastest algorithms use branching and
have their time guarantees established via M & C.

3

Requirements for such a Measure

• The measure of an subinstance obtained by a reduction
rule or a branching rule is smaller than the measure of the
original instance.

• The measure of each instance is nonnegative.

• Measure of input is upperbounded by function of “natural
parameters” of the input, e.g., measure(G) ≤ |V (G)|.
⇒ runtime bounds.

4

Example: Maximum Independent Set

int MIS(undirected graph G)
if ∃v : deg(v) = 0 then

return 1 + MIS(G− v)

if ∃v : deg(v) = 1 then
return 1 + MIS(G−N [v])

if ∆(G) ≥ 3 then
v = arg maxv∈V deg(v)
return max(1 + MIS(G−N [v]), MIS(G− v))

if ∆(G) ≤ 2 then
solution in polytime

Branching vector: (1, deg(v) + 1) ≥ (1, 4)

 Find positive root of x4 − x3 − 1 = 0 ⇒ x ≈ 1.3803.

i.e., runtime O∗().1.3803n

Measure: |V (G)|

5

Better Measure than n?

Obs. Only vertices with degree ≥ 3 lead to branching.

Measure: k1(G) = n≥3 = # vertices of degree ≥ 3

– discarding v reduces the size by ≥ 1.

and (in the worst-case) picking v only removes a
single vertex of degree ≥ 3 from G

–

⇒ branching vector: (1, 1) ⇒ runtime O∗(2n) :-(

Idea. Since degree-2-vertices are not removed immediately,
they should be considered in our measure!

New measure: k2(G) = w2n2 + n≥3

Lemma. Algorithm MIS runs in O∗(1.3248n) time.

(for some weighting 0 <w2 ≤ 1)

Proof. Let’s try w2 = 1/2 and see . . .

≤ n (!!)

6

Analysis with M&C

decrease of k2(G) if N [v] is deleted.IN

decrease of k2(G) if v is deleted.OUT

:=

⇒ IN, OUT ≥ 1, since v is always deleted and deg(v) ≥ 3.

return max(1 + MIS(G−N [v]), MIS(G− v))

Consider w ∈ N(v).

:=

1. If deg(w) ≥ 3

2. If deg(w) = 2

⇒ w holds the value 1 for IN.
1
2 for IN & OUT.

⇒ IN + OUT ≥ 2 + deg(v).

1. If deg(v) ≥ 4

2. If deg(v) = 3

⇒ τ(OUT, IN) ≤ τ(1, 5) < 1.3248

⇒ G has only vertices of degree 2 or 3.
⇒ Deleting v or N [v] reduces k2(G) by ≥ 1

2 per neighbor.
⇒ IN, OUT ≥ 1 + 3

2 ⇒ τ(OUT, IN) ≤ τ
(

5
2 ,

5
2

)
< 1.3196.

Back to v. . .

�

(?)

?) Balancing lemma:
τ(i, j) > τ(i+ ε, j − ε)

for 0 < i < j and 0 < ε < j−i
2

Recall: k2(G) = n2/2 + n≥3

∑

7

Further Fine Tuning

General measure: k(G) =
∑n−1

i=0 wini

Set w0 = w1 = 0
because vertices of degree 0 or 1 do not occur when branching.

Pick 0 ≤ w2 ≤ w3 ≤ 1 and set w4 = w5 = · · · = wn = 1.

Best choices: w2 = 0.596601
w3 = 0.928643

Lemma. Algorithm MIS runs in O∗(1.2905n) time.

Proof. Exercise :-)

≤ n if all wi ∈ [0, 1].

8

Back to Dominating Set. . .

• Best algorithm from Lecture #3: O∗(1.7088n).

• Next slide: simple branching algorithm

– “Convential” analysis: runtime O∗(1.9052n)

– Measure & Conquer: runtime O∗(1.5259n)

• Model instances of DS as instances (U,S) of Set Cover,
where – U = V and

– S = {N [v] : v ∈ V }.

• There are faster SC algorithms for large |S|: runtime O∗(2n).

• Our Goal: runtime O∗(c|U |+|S|) for some c� 2 for SC.

• W.l.o.g. U =
⋃
S

• Define frequency f(v) = number of sets that contain v.

⇒ input given by S.

⇒ runtime O∗(c2n) for Dom. Set, where n = |V |.

9

Algorithm for Set Cover

int SC(set family S)
if S = ∅ then return 0
if ∃S,R ∈ S and S ⊂ R then return SC(S \ {S})
if ∃v ∈

⋃
S with f(v) = 1 then

S 3 v
return 1 + SC(del(S,S)) // del(S,S)={R \ S 6= ∅ | R ∈ S}

S = arg max{|S′| : S′ ∈ S}
if |S| = 2 then solve S in polytime. // Exercise!
if |S| ≥ 3 then return min(SC(S \ {S}), 1 + SC(del(S,S)))

Standard analysis:

T (k) ≤ T (k − 1) + T (k − 4), T (1, 2, 3, 4) ∈ O(1)

⇒ T (k) ∈ O∗(1.3803k)

⇒ Runtime for DS: O∗(1.38032n) = O∗(1.9052n)

Measure k(S) = |S|+ |
⋃
S|

10

Idea for a Finer Analysis

• Deleting large sets reduces the frequency of many elements.

• Reducing the frequency of an element can eventually lead
to a frequency of 1 selecting a set.

• Deleting a high-frequency element
reduces the size of many sets.

• Reducing the size of sets is useful
since sets contained in other sets are removed.

ni
mj

= # sets of size i in S
= # elements of frequency j in U =

⋃
S

New measure: k(S) =
∑

i≥1 wini +
∑

j≥1 vjmj wi, vj ∈ [0, 1]

Note: |S|+ |U | ⇒ Runtime depends on |S|+ |U |
as desired.

k(S) ≤

11

Simplifying Observations

• wi ≤ wi+1, and vi ≤ vi+1

Our new measure k(S) =
∑

i≥1 wini +
∑

j≥1 vjmj :

• w1 = v1 = 0

• wi = vi = 1 for every i ≥ 6

• ∆wi ≥ ∆wi+1, where ∆wi = wi − wi−1 and ∆vi = vi − vi−1

The analysis breaks into two branches: IN and OUT.

ni
mj

= # sets of size i in S
= # elements of frequency j in U

12

Analysis of SOUT := S \ {S}
kw(S) kv(S)

(a) Reduction in kw(S) from deleting S: w|S|

∑6
i=2 ri ·∆vi

⇒
∑

i≥1 ri = |S|
2

∆vi = 0 for i ≥ 7(c) If r2 > 0:

Let R1, . . . , Rh be the sets 6= S that share at least one
element of frequency 2 with S. ⇒ 1 ≤ h ≤ r2.

Removing S ⇒
r2,i := # frequency-2 elements in Ri ∩ S ⇒

∑h
i=1 r2,i = r2

Ri 6⊆ S ⇒ |Ri| ≥ r2,i + 1. S largest ⇒ |S| ≥ maxi r2,i + 1.

selects R1, . . . , Rh without branching!

w|Ri| ≥Selecting Ri ⇒ reduction in kw(S):

At least one element ei ∈ Ri \ S is covered.

⇒ Reduction in kv(S): at least

Our new measure k(S) =
∑

i≥1 wini +
∑

j≥1 vjmj :

wr2,i+1.

vf(ei) ≥ v2.

Reduction in kv(S) from deleting S:

(b) ri := # elements in S of frequency i

13

Analysis of SOUT (cont’d)

Measure reduced by at least (case distinction)

∆k′ =

0 when r2 = 0,

v2 + w2 r2 = 1,

v2 + min{2w2, w3} r2 = 2,

v2 + min{3w2, w2 + w3} r2 ≥ 3, |S| = 3,

v2 + min{3w2, w2 + w3, w4} r2 ≥ 3, |S| ≥ 4.

Total reduction for SOUT is:

∆OUT = w|S| +
∑6

i=2 ri ·∆vi + ∆k′

(b) freq. of elements in S (c) freq. & size of
frequency-2 elements in S

(a) size of S

14

Analysis of SIN := del(S,S)
(a) Reduction in kw(S) by dropping S: w|S|

(b) Reduction in kv(S) by dropping S:
∑6

i=2 rivi + r≥7

(c) Reduction in kw(S) from shrinking sets that intersect S:

Let R be a set with S ∩R 6= ∅, and v ∈ R ∩ S.

Then v contributes to the reduction: ∆w|R| ≥ ∆w|S|.

i.e. reduction ≥ ∆k′′ := ∆w|S| ·
(∑6

i=2(i− 1)ri + 6r≥7

)
⇒ ∆IN = w|S| +

∑6
i=2 rivi + r≥7 + ∆k′′.

Each element of frequency i belongs to i − 1 sets 6= S.

⇒ Recurrence for fixed weights v and w:

For each |S| ≥ 3 and (ri)i with |S| =
∑
ri:

T (k) ≤ T (k −∆OUT) + T (k −∆IN). What’s the worst case?

15

Optimizing the Branching Vector

Obs. Every branching vector for |S| ≥ 7 is dominated by
some branching vector for |S| = 7.

Consider formulas for ∆OUT and ∆IN:

Shrinking |S| will only reduce the terms.

Important point here is ∆w|S| in ∆IN . . .

but ∆w|S| is 0 when |S| ≥ 7.

Reason:

∆OUT = w|S| +
∑6

i=2 ri∆vi + ∆k′

= w|S| +
(∑6

i=2 rivi + r≥7

)
+ ∆w|S| · (. . .).∆IN

Obs. Hence it is sufficient to consider configurations with
3 ≤ |S| ≤ 7, and all possible combinations of (ri)i’s.

16

Wrap-Up

For each fixed 8-tuple (w, v) = (w2, . . . , w5, v2, . . . , v5),
the runtime is bounded by αk, where α is the largest root of

xt − xt−∆OUT − xt−∆IN = 0

and t = max(∆OUT,∆IN) over all choices of |S|, r1, . . . , r|S|.

Each (w, v) yields the runtime bound O∗(αk
(w,v)).

Goal:

The approximate best solution found here is α(w?,v?) < 1.2353.

Thm.

Find (w, v) that minimizes α(w,v)!

SC can be solved in O∗(1.2353|U |+|S|) time.

Corollary. DS can be solved in O∗(1.23532n) = O∗(1.5259n)
time.

(Use quasi-convex optimization.)

.377 .399
.755 .768
.909 .930
.976 .986

	What is Measure \& Conquer?
	Requirements for such a Measure
	Example: Maximum Independent Set
	Better Measure than n?
	Analysis with M$\,$\&$\,$C
	Further Fine Tuning
	Back to Dominating Set\dots
	Algorithm for Set Cover
	Idea for a Finer Analysis
	Simplifying Observations
	Analysis of $\mathcal{S}_\mathrm{OUT} := \mathcal{S}\setminus \{S\}$
	Analysis of $\cal S_\mathrm{OUT}$ (cont'd)
	Analysis of $\mathcal{S}_\mathrm{IN} := \text{del}(S,\mathcal{S})$
	Optimizing the Branching Vector
	Wrap-Up

