

Exact Algorithms

Sommer Term 2020

Lecture 3. Minimum Dominating Set

Based on: [Exact Exponential Algorithms: §3.2]

Further discussions: [Parameterized Algorithms: §6.1]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

Dominating Sets

Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.

Example Application: Placement of cell towers.

Def. Minimum Dominating Set

Given: graph G = (V, E),

Find: minimum-cardinality dominating set D of G

Domination number: $\gamma(G) := |D|$.

Maximal Independent Sets

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

```
Algorithm recursive S(G)

if V(G) = \emptyset then

\bot return \emptyset

choose any v \in V

return \{v\} \cup \text{recursive} | S(G - N[v])
```

Obs. Every maximal independent set is a dominating set.

Algorithmic Approach for Min. Dom. Set

Brute Force: $O^*(2^n)$ time (subset problem!)

An idea for a smarter algorithm:

- Find a maximal independent set 1.
- If I is "small", look at each $D \subseteq V$, |D| < |I|.
- If *I* is "big", use a *dynamic program* to ensure that vertices in *I* do not dominate each other.

Lemma *. Given a maximal independent set I of G, a minimum dominating set of G can be found in $O^*(2^{n-|I|})$ time.

Proof of Lemma *

- Instead of all 2^n subsets of V, we consider their $2^{n-|I|}$ projections on $J = V \setminus I$
- We test each subset J' of J and extend it to the smallest dominating set $D_{J'}$ of G such that $J \cap D_{J'} = J'$. $\Rightarrow \gamma(G) = \min_{J' \subseteq J} |D_{J'}|$.
- How can we find a smallest $D_{J'}$ for a given $J' \subseteq J$?

Proof (Lemma *)

independent set: /

• $I' = I \setminus N(J')$ must be completely contained in $D_{J'}$ (since $D_{J'} \cap J = J'!$)

- The vertices not dominated by I' and J' are precisely $X := J \setminus (N[J'] \cup N(I'))$.
- Find the smallest set $X' \subseteq N(J') \cap I$ that dominates X.
- $\Rightarrow D_{J'} = J' \cup I' \cup X'$ dominates G.

Def. $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$ for every $S \subseteq V$.

Proof (Lemma ★)

independent set: /

- Naive idea: find X' for each X separately.
 - \Rightarrow runtime $O^*(3^{|J|})$
- Better idea: For every subset $X \subseteq J$, we compute a minimum subset of I that dominates X.
- Let $I := \{v_1, \ldots, v_k\}, X \subseteq J \text{ and define:}$ $T[X, \ell] := \text{a smallest subset of } \{v_1, \ldots, v_\ell\} \text{ dominating } X.$ $\Rightarrow X' = T[X, k]$

Proof (Lemma ★)

For each $X \subseteq J$:

Dynamic Program

$$T[X,0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$$

For $1 < \ell < k$:

For
$$1 \le \ell \le k$$
:
$$T[X,\ell] = \text{smaller of } \begin{cases} T[X,\ell-1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell),\ell-1] & \text{if def'd.} \end{cases}$$
 • runtime $O^*(2^{|J|})$

- For each of the $2^{|J|}$ sets $J' \subseteq J$, determine a smallest set $D_{J'} = J' \cup I' \cup X'$ that dominates $G \Rightarrow$ runtime: $O^*(2^{|J|})$

$$\Rightarrow$$
 total runtime of the algorithm: $O^*(2^{|J|}) = O^*(2^{n-|I|})$

Main Result

Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.

Proof. Compute a maximal independent set *I*.

- 1. If $|I| \leq \alpha n$:
- $\Rightarrow \gamma(G) \leq \alpha n$
- \Rightarrow Try all αn -subsets of the given n vertices. Runtime?? TO DO: Analyse this more carefully!
- 2. If $|I| > \alpha n$: (Note: If $\alpha \ge \frac{1}{2}$, then definitely use 2.) Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO: Determine the value α^* for α , to balance 1. and 2.

Lemma. For $\alpha \in (0, \frac{1}{2}]$, we have

$$\sum_{i=1}^{\alpha n} \binom{n}{i} \in O^*\left(2^{h(\alpha)n}\right),$$

where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha)$.

Main Result

Thm.

A minimum dominating set of a given graph can be found in $O(1.7088^n)$ time.

Proof.

Compute a maximal independent set 1.

- 1. If $|I| \leq \alpha n$:
- $\Rightarrow \gamma(G) \leq \alpha n$
- \Rightarrow In $O^*(2^{h(\alpha)n})$ time, locate a minimum dominating set of cardinality $\leq \alpha n$ (by brute force & helper lemma)
- 2. If $|I| > \alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO: Determine the value α^* for α , to balance 1. and 2.

Finding α^* and the Base

For $\alpha^* = 0.22711$, we have a total runtime of $O^*(2^{0.7729n}) = O(1.7088^n)$.

Proof of the Helper Lemma

Recall the statement:

For
$$\alpha \in (0, \frac{1}{2}]$$
, we have $\sum_{i=1}^{\alpha n} \binom{n}{i} \in O^*(2^{h(\alpha)n})$, where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha)$.

 $\alpha \in (0, \frac{1}{2}]$ implies

$$\sum_{i=1}^{\alpha n} \binom{n}{i} \leq \alpha n \cdot \binom{n}{\alpha n} \in O^*\left(\binom{n}{\alpha n}\right),$$

Note:
$$\binom{n}{0} \leq \binom{n}{1} \leq \cdots \leq \binom{n}{\lceil n/2 \rceil}$$
.

Stirlings formula: $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le 2\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

$$\binom{n}{k} = \# \text{ of } k\text{-element subsets of an } n\text{-element set}$$

$$= \frac{n!}{k!(n-k)!}$$

Proof of the Helper Lemma (cont'd)

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} \in O^* \left(\frac{(p/e)^n}{(\alpha p/e)^{\alpha n} \cdot ((1-\alpha)p/e)^{(1-\alpha)n}} \right)$$

$$= O^* \left(\alpha^{-\alpha n} \cdot (1-\alpha)^{-(1-\alpha)n} \right)$$

$$= O^* \left(2^{-(\alpha \log_2 \alpha) \cdot n - (1-\alpha) \log_2 (1-\alpha) \cdot n} \right)$$

$$= O^* \left(2^{h(\alpha) \cdot n} \right)$$

Note:
$$h(\alpha) = -\alpha \log_2(\alpha) - (1 - \alpha) \log_2(1 - \alpha)$$