UNIVERSITÄT WÜRZBURG

Lehrstuhl für

INFORMATIK I

Exact Algorithms

Sommer Term 2020
Lecture 3. Minimum Dominating Set
Based on: [Exact Exponential Algorithms: §3.2]
Further discussions: [Parameterized Algorithms: §6.1]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Dominating Sets

Def. For a graph $G=(V, E)$, a set $D \subseteq V$ dominates G if every vertex $u \in V \backslash D$ is adjacent to a vertex in D.

Example Application: Placement of cell towers.

Def. Minimum Dominating Set
Given: graph $G=(V, E)$,
Find: minimum-cardinality dominating set D of G
Domination number: $\gamma(G):=|D|$.

Maximal Independent Sets

Def. An independent set I is maximal if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.
Algorithm recursivelS(G)

$$
\begin{aligned}
& \text { if } V(G)=\emptyset \text { then } \\
& L \text { return } \emptyset \\
& \text { choose any } v \in V \\
& \text { return }\{v\} \cup \text { recursivelS }(G-N[v])
\end{aligned}
$$

Obs. Every maximal independent set is a dominating set.

Algorithmic Approach for Min. Dom. Set

Brute Force: $O^{*}\left(2^{n}\right)$ time (subset problem!)

An idea for a smarter algorithm:

- Find a maximal independent set I.
- If I is "small", look at each $D \subseteq V,|D|<|I|$.
- If I is "big", use a dynamic program to ensure that vertices in / do not dominate each other.

Lemma *. Given a maximal independent set / of G, a minimum dominating set of G can be found in $O^{*}\left(2^{n-|1|}\right)$ time.

Proof of Lemma 夫

- Instead of all 2^{n} subsets of V, we consider their $2^{n-|I|}$ projections on $J=V \backslash I$
- We test each subset J^{\prime} of J and extend it to the smallest dominating set $D_{J^{\prime}}$ of G such that $J \cap D_{J^{\prime}}=J^{\prime}$. $\Rightarrow \gamma(G)=\min _{J^{\prime} \subseteq J}\left|D_{J^{\prime}}\right|$.
- How can we find a smallest $D_{J^{\prime}}$ for a given $J^{\prime} \subseteq J$?

Proof (Lemma \star)

independent set: /

- $I^{\prime}=I \backslash N\left(J^{\prime}\right)$ must be completely contained in $D_{J^{\prime}}$ (since $D_{J}, \cap J=J^{\prime}!$)

- The vertices not dominated by I^{\prime} and J^{\prime} are precisely $X:=J \backslash\left(N\left[J^{\prime}\right] \cup N\left(I^{\prime}\right)\right)$.
- Find the smallest set $X^{\prime} \subseteq N\left(J^{\prime}\right) \cap I$ that dominates X.
- $\Rightarrow D_{J^{\prime}}=J^{\prime} \cup I^{\prime} \cup X^{\prime}$ dominates G.

Def. $N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$ for every $S \subseteq V$.

Proof (Lemma *) independent set: /

- Naive idea:
find X^{\prime} for each
X separately.
\Rightarrow runtime $O^{*}\left(3^{|J|}\right)$

- Better idea:

For every subset $X \subseteq J$, we compute a minimum subset of I that dominates X.

- Let $I:=\left\{v_{1}, \ldots, v_{k}\right\}, X \subseteq J$ and define: $T[X, \ell]:=$ a smallest subset of $\left\{v_{1}, \ldots, v_{\ell}\right\}$ dominating X. $\Rightarrow X^{\prime}=T[X, k]$

Proof (Lemma *)

For each $X \subseteq J$:
Dynamic Program

$$
T[X, 0]= \begin{cases}\emptyset & \text { if } X=\emptyset \\ \text { undef. } & \text { if } X \neq \emptyset\end{cases}
$$

For $1 \leq \ell \leq k$:
$T[X, \ell]=$ smaller of $\left\{\begin{array}{l}T[X, \ell-1] \text { and } \\ \left\{v_{\ell}\right\} \cup T\left[X \backslash N\left(v_{\ell}\right), \ell-1\right] \text { if def'd. }\end{array}\right.$

- runtime $O^{*}\left(2^{|J|}\right)$
- For each of the $2^{|J|}$ sets $J^{\prime} \subseteq J$, determine a smallest set $D_{J^{\prime}}=J^{\prime} \cup I^{\prime} \cup X^{\prime}$ that dominates $G \Rightarrow$ runtime: $O^{*}\left(2^{|J|}\right)$
\Rightarrow total runtime of the algorithm: $O^{*}\left(2^{|J|}\right)=O^{*}\left(2^{n-|| |}\right)$
\square

Main Result

Thm. A minimum dominating set of a given graph can be found in $O\left(\beta^{n}\right)$ time, for some $\beta<2$.

Proof. Compute a maximal independent set I.

1. If $|I| \leq \alpha n$:
$\Rightarrow \gamma(G) \leq \alpha n$
\Rightarrow Try all αn-subsets of the given n vertices.
Runtime?? TO DO: Analyse this more carefully!
2. If $|I|>\alpha n$: (Note: If $\alpha \geq \frac{1}{2}$, then definitely use 2.)

Apply Lemma \star to obtain a minimum dominating set in $O^{*}\left(2^{(1-\alpha) \cdot n}\right)$ time.

TO DO: Determine the value α^{\star} for α, to balance 1 . and 2 .

Helper Lemma

Lemma. For $\alpha \in\left(0, \frac{1}{2}\right]$, we have

$$
\sum_{i=1}^{\alpha n}\binom{n}{i} \in O^{*}\left(2^{h(\alpha) n}\right)
$$

where $h(\alpha)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)$.

Main Result

Thm. A minimum dominating set of a given graph can be found in $O\left(1.7088^{n}\right)$ time.

Proof.
Compute a maximal independent set I.

1. If $|I| \leq \alpha n$:
$\Rightarrow \gamma(G) \leq \alpha n$
$\Rightarrow \ln O^{*}\left(2^{h(\alpha) n}\right)$ time, locate a minimum dominating set of cardinality $\leq \alpha n$ (by brute force \& helper lemma)
2. If $|I|>\alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^{*}\left(2^{(1-\alpha) \cdot n}\right)$ time.
TO DO: Determine the value α^{\star} for α, to balance 1 . and 2 .

Finding α^{\star} and the Base

For $\alpha^{\star}=0.22711$, we have a total runtime of $O^{*}\left(2^{0.7729 n}\right)=O\left(1.7088^{n}\right)$.

Proof of the Helper Lemma

Recall the For $\alpha \in\left(0, \frac{1}{2}\right]$, we have $\sum_{i=1}^{\alpha n}\binom{n}{i} \in O^{*}\left(2^{h(\alpha) n}\right)$, statement: where $h(\alpha)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)$. $\alpha \in\left(0, \frac{1}{2}\right]$ implies

$$
\sum_{i=1}^{\alpha n}\binom{n}{i} \leq \alpha n \cdot\binom{n}{\alpha n} \in O^{*}\left(\binom{n}{\alpha n}\right),
$$

Note: $\binom{n}{0} \leq\binom{ n}{1} \leq \cdots \leq\binom{ n}{[n / 2\rceil}$.
Stirlings formula: $\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq 2 \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

$$
\begin{aligned}
\binom{n}{k} & =\# \text { of } k \text {-element subsets of an } n \text {-element set } \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Proof of the Helper Lemma (cont'd)

$$
\begin{aligned}
\binom{n}{\alpha n} & \in O^{*}\left(\frac{(\text { nfe })^{n}}{(\alpha \square \nmid e)^{\alpha n} \cdot((1-\alpha) \square \nmid \epsilon)^{(1-\alpha) n}}\right) \\
& =O^{*}\left(\alpha^{-\alpha n} \cdot(1-\alpha)^{-(1-\alpha) n}\right) \\
& =O^{*}\left(2^{-\left(\alpha \log _{2} \alpha\right) \cdot n-(1-\alpha) \log _{2}(1-\alpha) \cdot n}\right) \\
& =O^{*}\left(2^{h(\alpha) \cdot n}\right)
\end{aligned}
$$

\square

Note: $h(\alpha)=-\alpha \log _{2}(\alpha)-(1-\alpha) \log _{2}(1-\alpha)$

