

Exact Algorithms

Sommer Term 2020

Lecture 3. Minimum Dominating Set

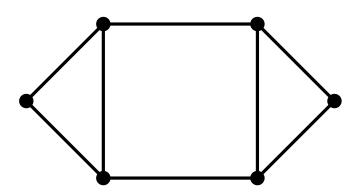
Based on: [Exact Exponential Algorithms: §3.2] Further discussions: [Parameterized Algorithms: §6.1]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

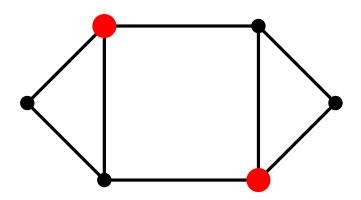
Alexander Wolff

Lehrstuhl für Informatik I

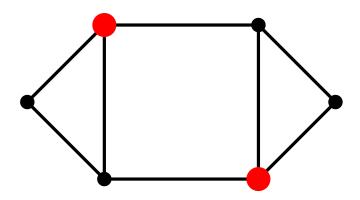
Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if



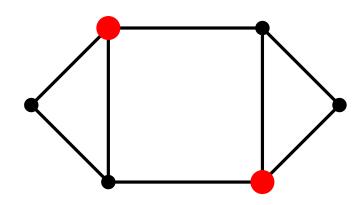
Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if



Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.

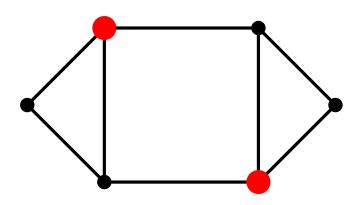


Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.



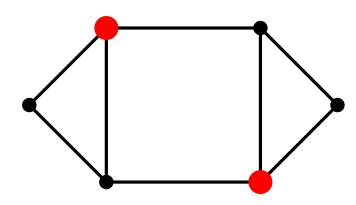
Example Application:

Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.



Example Application: Placement of cell towers.

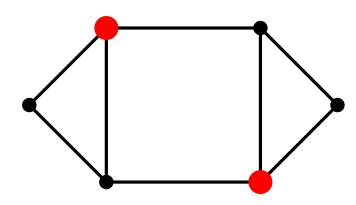
Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.



Example Application: Placement of cell towers.

Def. Minimum Dominating Set Given: Find:

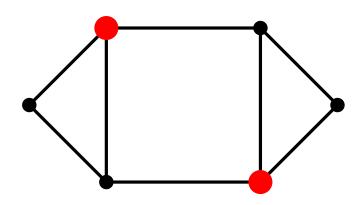
Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.



Example Application: Placement of cell towers.

Def. Minimum Dominating Set Given: graph G = (V, E), Find:

Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.

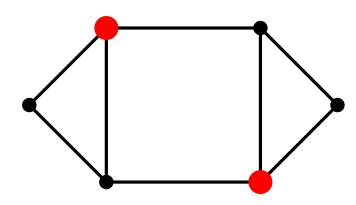


Example Application: Placement of cell towers.

Def.

Minimum Dominating SetGiven:graph G = (V, E),Find:minimum-cardinality dominating set D of G

Def. For a graph G = (V, E), a set $D \subseteq V$ dominates G if every vertex $u \in V \setminus D$ is adjacent to a vertex in D.



Example Application: Placement of cell towers.

Def.

Domination number: $\gamma(G) := |D|$.

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(*G*)

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursivelS(G) **if** $V(G) = \emptyset$ **then** $igstyle return \emptyset$

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursivelS(G) if $V(G) = \emptyset$ then $\ \ return \ \emptyset$ choose any $v \in V$ return

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursivelS(G) **if** $V(G) = \emptyset$ **then** igsquirepsilon **return** \emptyset choose any $v \in V$ **return** $\{v\} \cup$ recursivelS(

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursivelS(G) **if** $V(G) = \emptyset$ **then** igsquirepsilon **return** \emptyset choose any $v \in V$ **return** $\{v\} \cup$ recursivelS(G - N[v])

Def. An independent set *I* is *maximal* if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursivelS(G) if $V(G) = \emptyset$ then igsquirepsilon return \emptyset choose any $v \in V$ return $\{v\} \cup$ recursivelS(G - N[v])

Obs. Every maximal independent set is a dominating set.

Brute Force:

Brute Force:

(subset problem!)

Brute Force: $O^*(2^n)$ time (subset problem!)

Brute Force: $O^*(2^n)$ time (subset problem!)

An idea for a smarter algorithm:

- Find a maximal independent set *I*.
- If I is "small",
- If *I* is "big",

Brute Force: $O^*(2^n)$ time (subset problem!)

An idea for a smarter algorithm:

- Find a maximal independent set *I*.
- If I is "small", look at each $D \subseteq |V|$, |D| < |I|.
- If *I* is "big",

Brute Force: $O^*(2^n)$ time (subset problem!)

An idea for a smarter algorithm:

- Find a maximal independent set *I*.
- If I is "small", look at each $D \subseteq |V|$, |D| < |I|.
- If *I* is "big", use a *dynamic program* to ensure that vertices in *I* do not dominate each other.

Brute Force: $O^*(2^n)$ time (subset problem!)

An idea for a smarter algorithm:

- Find a maximal independent set *I*.
- If I is "small", look at each $D \subseteq |V|$, |D| < |I|.
- If *I* is "big", use a *dynamic program* to ensure that vertices in *I* do not dominate each other.

Lemma \star . Given a maximal independent set I of G, a minimum dominating set of G can be found in $O^*(2^{n-|I|})$ time.

• Instead of all 2^n subsets of V, we consider their $2^{n-|I|}$ projections on $J = V \setminus I$

- Instead of all 2^n subsets of V, we consider their $2^{n-|I|}$ projections on $J = V \setminus I$
- We test each subset J' of J and extend it to the *smallest* dominating set $D_{J'}$ of G such that $J \cap D_{J'} = J'$.

- Instead of all 2^n subsets of V, we consider their $2^{n-|I|}$ projections on $J = V \setminus I$
- We test each subset J' of J and extend it to the *smallest* dominating set $D_{J'}$ of G such that $J \cap D_{J'} = J'$.

 $\Rightarrow \gamma(G) =$

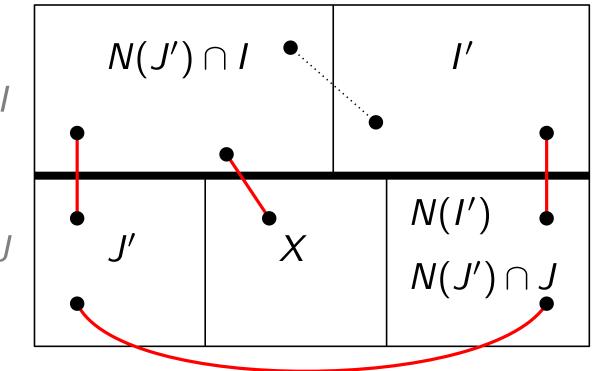
- Instead of all 2^n subsets of V, we consider their $2^{n-|I|}$ projections on $J = V \setminus I$
- We test each subset J' of J and extend it to the *smallest* dominating set $D_{J'}$ of G such that $J \cap D_{J'} = J'$.

 $\Rightarrow \gamma(G) = \min_{J' \subseteq J} |D_{J'}|.$

- Instead of all 2^n subsets of V, we consider their $2^{n-|I|}$ projections on $J = V \setminus I$
- We test each subset J' of J and extend it to the smallest dominating set D_{J'} of G such that J ∩ D_{J'} = J'.
 ⇒ γ(G) = min_{J'⊂J} |D_{J'}|.
- How can we find a smallest $D_{J'}$ for a given $J' \subseteq J$?

Proof (Lemma *)

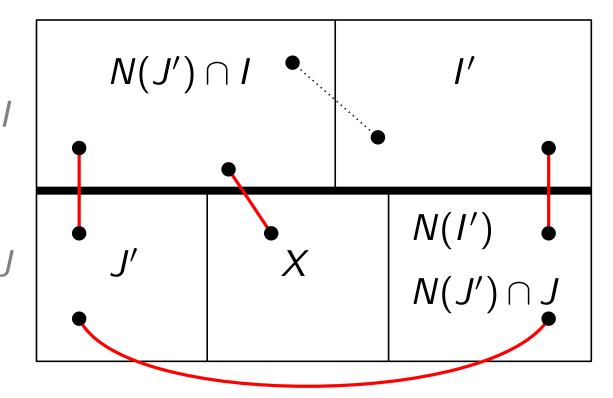
independent set: /

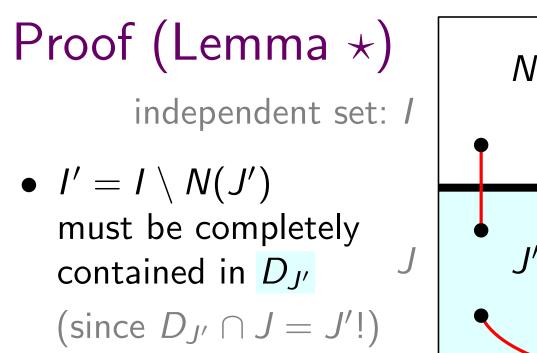


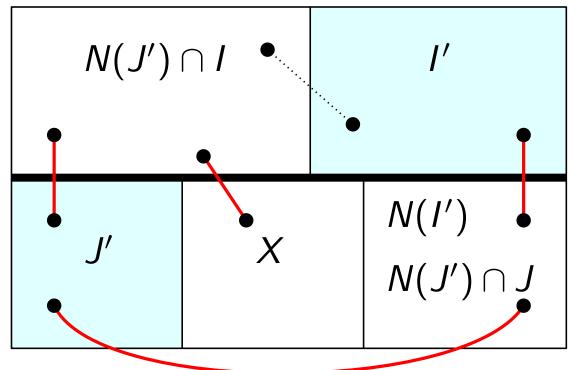
Proof (Lemma *)

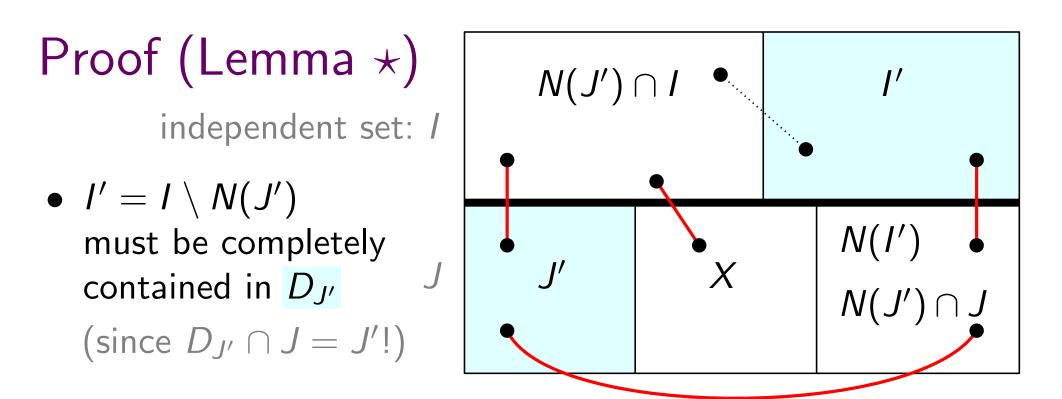
independent set: /

• $I' = I \setminus N(J')$ must be completely contained in $D_{J'}$

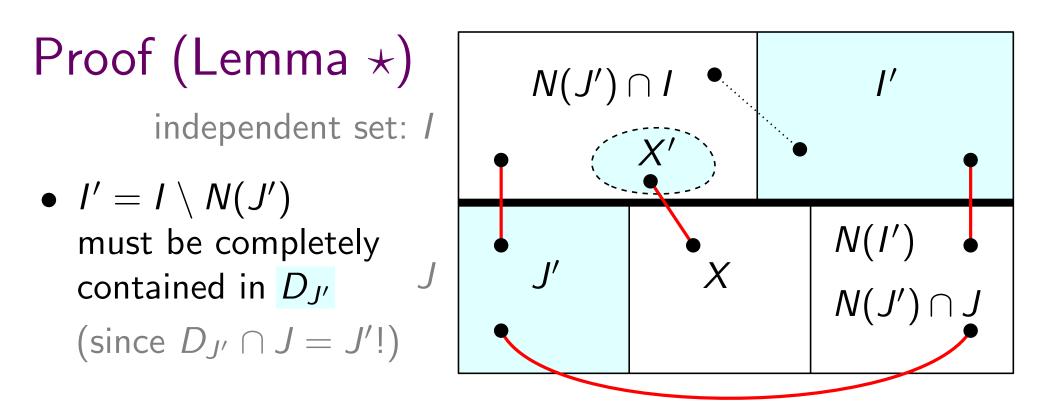




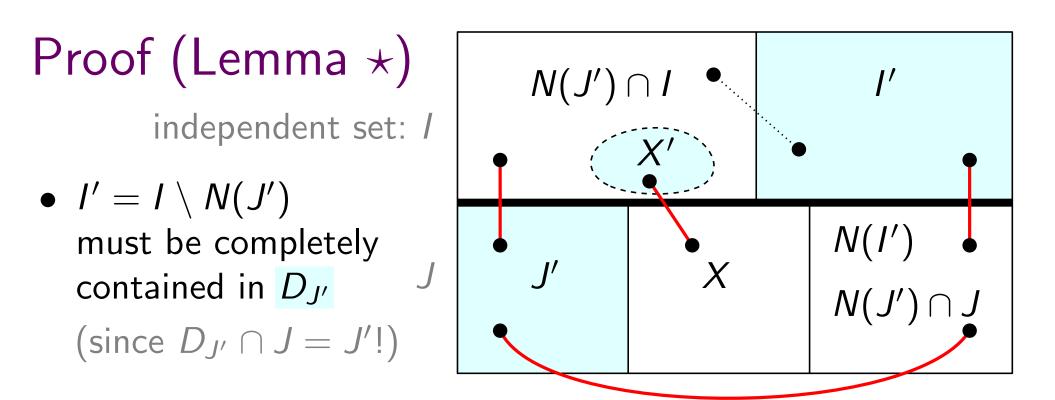




• The vertices not dominated by I' and J' are precisely $X := J \setminus (N[J'] \cup N(I')).$



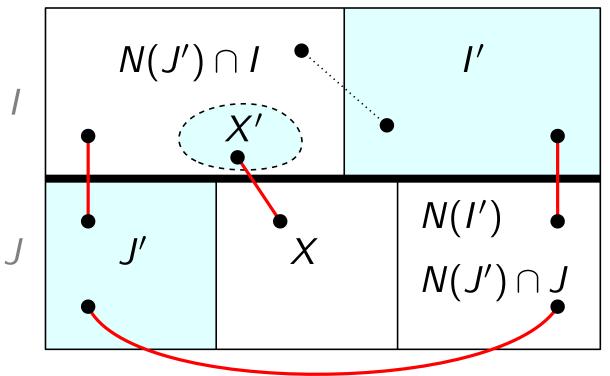
- The vertices not dominated by I' and J' are precisely $X := J \setminus (N[J'] \cup N(I')).$
- Find the smallest set $X' \subseteq N(J') \cap I$ that dominates X.



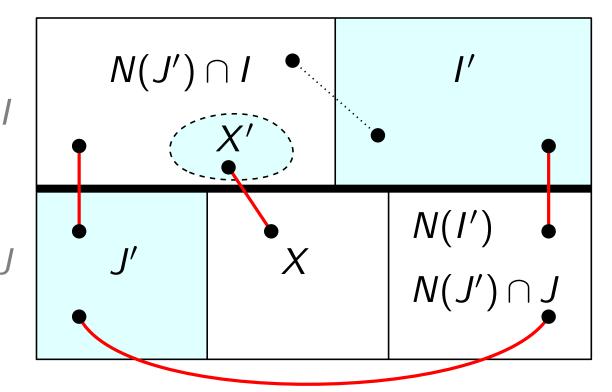
- The vertices not dominated by I' and J' are precisely $X := J \setminus (N[J'] \cup N(I')).$
- Find the smallest set $X' \subseteq N(J') \cap I$ that dominates X.
- $\Rightarrow D_{J'} = J' \cup I' \cup X'$ dominates G.

independent set: /

Naive idea:
 find X' for each
 X separately.

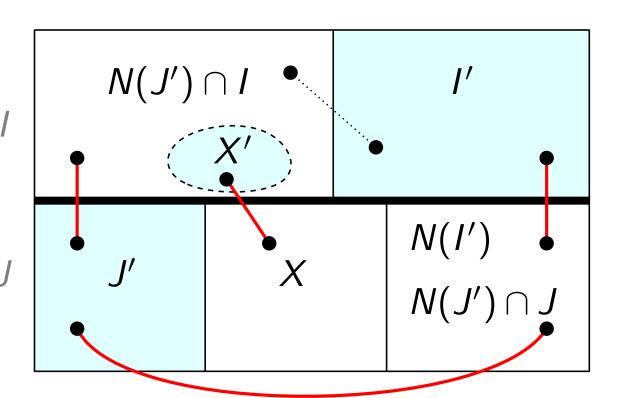


- Naive idea: find X' for each X separately.
 - \Rightarrow runtime $O^*(3^{|J|})$



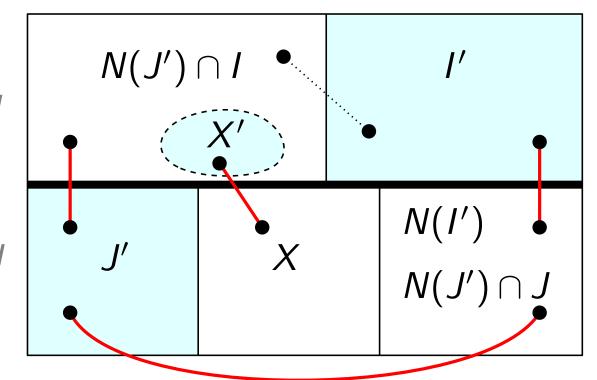
independent set: /

- Naive idea: find X' for each X separately.
 - \Rightarrow runtime $O^*(3^{|J|})$



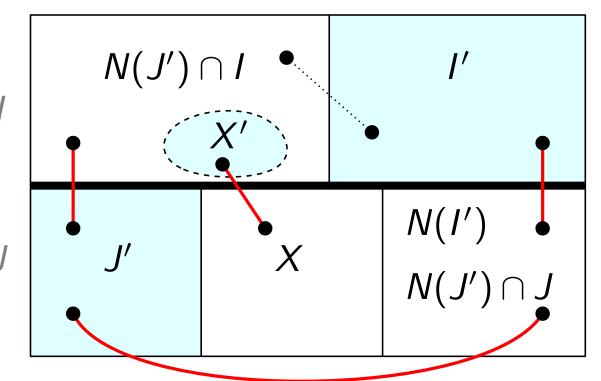
Better idea:
 For every subset X ⊆ J,
 we compute a minimum subset of I that dominates X.

- Naive idea:
 find X' for each
 X separately.
 - \Rightarrow runtime $O^*(3^{|J|})$



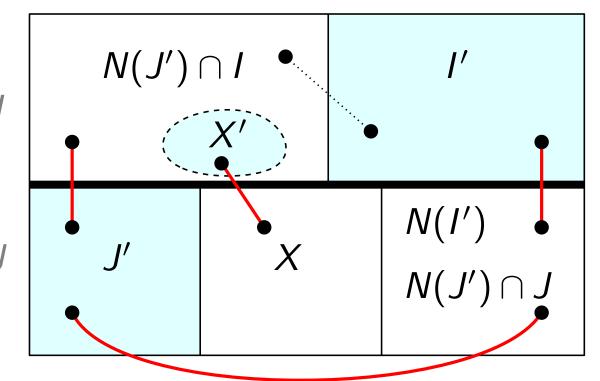
- Better idea:
 For every subset X ⊆ J,
 we compute a minimum subset of I that dominates X.
- Let $I := \{v_1, \ldots, v_k\}$, $X \subseteq J$ and define: $T[X, \ell] :=$ a smallest subset of $\{v_1, \ldots, v_\ell\}$ dominating X.

- Naive idea:
 find X' for each
 X separately.
 - \Rightarrow runtime $O^*(3^{|J|})$



- Better idea:
 For every subset X ⊆ J,
 we compute a minimum subset of I that dominates X.
- Let $I := \{v_1, \ldots, v_k\}, X \subseteq J$ and define: $T[X, \ell] :=$ a smallest subset of $\{v_1, \ldots, v_\ell\}$ dominating X. $\Rightarrow X' =$

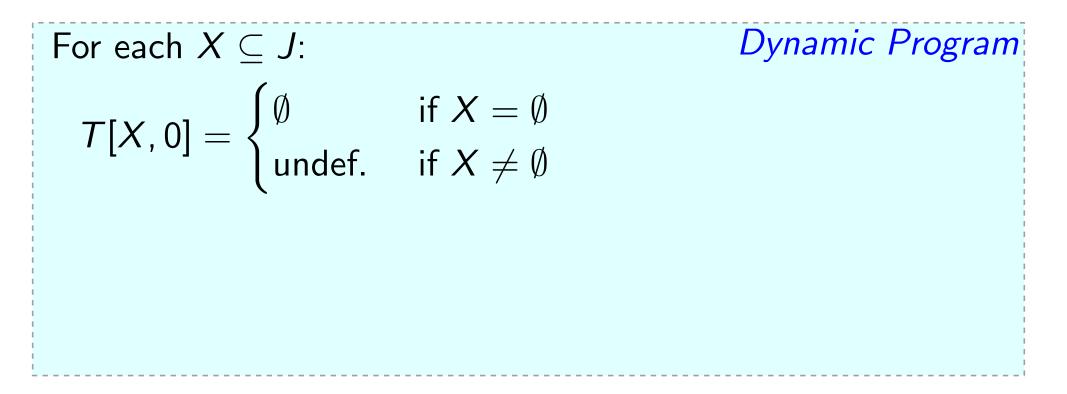
- Naive idea:
 find X' for each
 X separately.
 - \Rightarrow runtime $O^*(3^{|J|})$



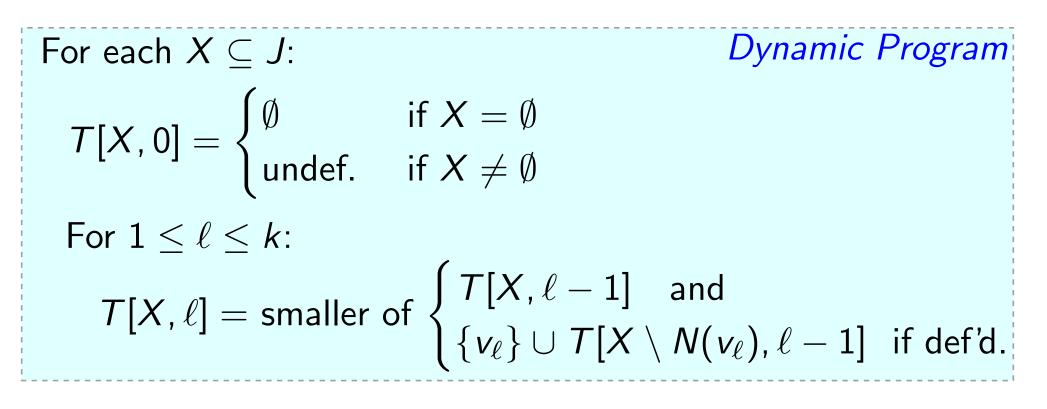
- Better idea:
 For every subset X ⊆ J,
 we compute a minimum subset of I that dominates X.
- Let $I := \{v_1, \ldots, v_k\}, X \subseteq J$ and define: $T[X, \ell] :=$ a smallest subset of $\{v_1, \ldots, v_\ell\}$ dominating X. $\Rightarrow X' = T[X, k]$

For each $X \subseteq J$:

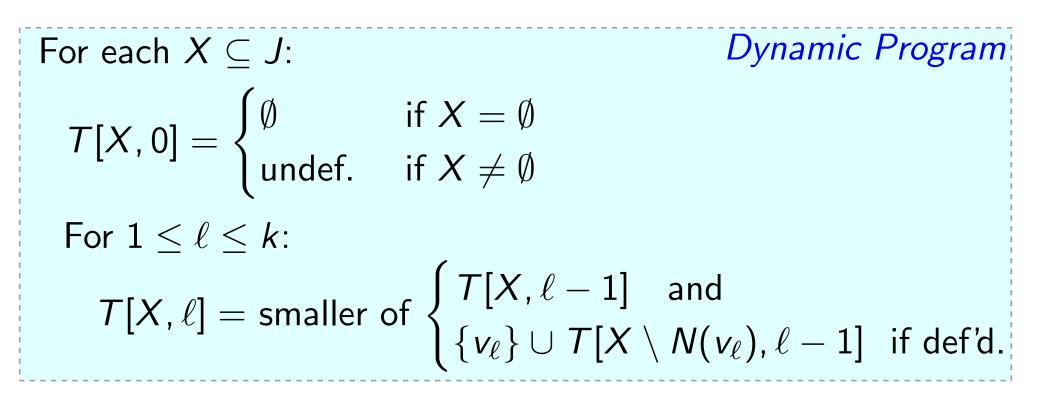
Dynamic Program



For each $X \subseteq J$:Dynamic Program $T[X, 0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$ For $1 \leq \ell \leq k$: $T[X, \ell] = \text{smaller of } \begin{cases} T[X, \ell - 1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell), \ell - 1] & \text{if def'd.} \end{cases}$



• runtime $O^*()$



• runtime $O^*(2^{|J|})$

For each
$$X \subseteq J$$
:Dynamic Program $T[X, 0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$ For $1 \leq \ell \leq k$: $T[X, \ell] = \text{smaller of } \begin{cases} T[X, \ell - 1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell), \ell - 1] & \text{if def'd.} \end{cases}$

- runtime $O^*(2^{|J|})$
- For each of the $2^{|J|}$ sets $J' \subseteq J$, determine a smallest set $D_{J'} = J' \cup I' \cup X'$ that dominates $G \Rightarrow$ runtime:

For each
$$X \subseteq J$$
:Dynamic Program $T[X, 0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$ For $1 \leq \ell \leq k$: $T[X, \ell] = \text{smaller of } \begin{cases} T[X, \ell - 1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell), \ell - 1] & \text{if def'd.} \end{cases}$

- runtime $O^*(2^{|J|})$
- For each of the $2^{|J|}$ sets $J' \subseteq J$, determine a smallest set $D_{J'} = J' \cup I' \cup X'$ that dominates $G \Rightarrow$ runtime:

Dynamic Program For each $X \subset J$: $T[X, 0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$ For $1 < \ell < k$: $T[X, \ell] =$ smaller of $\begin{cases} T[X, \ell - 1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell), \ell - 1] & \text{if def'd.} \end{cases}$ • runtime $O^*(2^{|J|})$ • For each of the $2^{|J|}$ sets $J' \subseteq J$, determine a smallest set $D_{J'} = J' \cup I' \cup X'$ that dominates $G \Rightarrow$ runtime:

Dynamic Program For each $X \subset J$: $T[X, 0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$ For $1 < \ell < k$: $T[X, \ell] = \text{smaller of} \begin{cases} T[X, \ell - 1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell), \ell - 1] & \text{if def'd.} \end{cases}$ • runtime $O^*(2^{|J|})$ • For each of the $2^{|J|}$ sets $J' \subseteq J$, determine a smallest set $D_{J'} = J' \cup I' \cup X'$ that dominates $G \Rightarrow$ runtime: $O^*(2^{|J|})$

For each
$$X \subseteq J$$
:
 $T[X, 0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$
For $1 \leq \ell \leq k$:
 $T[X, \ell] = \text{smaller of } \begin{cases} T[X, \ell - 1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell), \ell - 1] & \text{if def'd.} \end{cases}$
• runtime $O^*(2^{|J|})$
• For each of the $2^{|J|}$ sets $J' \subseteq J$, determine a smallest set $D_{J'} = J' \cup I' \cup X'$ that dominates $G \Rightarrow$ runtime: $O^*(2^{|J|})$

 \Rightarrow total runtime of the algorithm:

For each
$$X \subseteq J$$
:
 $T[X, 0] = \begin{cases} \emptyset & \text{if } X = \emptyset \\ \text{undef.} & \text{if } X \neq \emptyset \end{cases}$
For $1 \leq \ell \leq k$:
 $T[X, \ell] = \text{smaller of } \begin{cases} T[X, \ell - 1] & \text{and} \\ \{v_\ell\} \cup T[X \setminus N(v_\ell), \ell - 1] & \text{if def'd.} \end{cases}$
• runtime $O^*(2^{|J|})$
• For each of the $2^{|J|}$ sets $J' \subseteq J$, determine a smallest set $D_{J'} = J' \cup I' \cup X'$ that dominates $G \Rightarrow$ runtime: $O^*(2^{|J|})$

 \Rightarrow total runtime of the algorithm: $O^*(2^{|J|}) = O^*(2^{n-|I|})$

Thm.

Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.

Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.

Proof. Compute a maximal independent set *I*.

Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.

Proof. Compute a maximal independent set *I*. 1. If $|I| \leq \alpha n$:

2. If $|I| > \alpha n$:

Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.

Proof. Compute a maximal independent set *I*.

1. If $|I| \leq \alpha n$: $\Rightarrow \gamma(G) \leq \alpha n$

2. If $|I| > \alpha n$:

- Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.
- *Proof.* Compute a maximal independent set *I*.
- 1. If $|I| \leq \alpha n$:
- $\Rightarrow \gamma(G) \leq \alpha n$
- ⇒ Try all αn -subsets of the given n vertices. Runtime??
- 2. If $|I| > \alpha n$:

- Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.
- *Proof.* Compute a maximal independent set *I*.
- 1. If $|I| \leq \alpha n$:
- $\Rightarrow \gamma(G) \leq \alpha n$
- ⇒ Try all αn -subsets of the given n vertices. Runtime??

2. If $|I| > \alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

- Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.
- *Proof.* Compute a maximal independent set *I*.
- 1. If $|I| \leq \alpha n$:
- $\Rightarrow \gamma(G) \leq \alpha n$
- \Rightarrow Try all αn -subsets of the given n vertices. Runtime?? TO DO: Analyse this more carefully!

2. If $|I| > \alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

- Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.
- *Proof.* Compute a maximal independent set *I*.
- 1. If $|I| \leq \alpha n$:
- $\Rightarrow \gamma(G) \leq \alpha n$
- \Rightarrow Try all αn -subsets of the given n vertices. Runtime?? TO DO: Analyse this more carefully!

2. If $|I| > \alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO:

- Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.
- *Proof.* Compute a maximal independent set *I*.
- 1. If $|I| \leq \alpha n$:
- $\Rightarrow \gamma(G) \leq \alpha n$
- \Rightarrow Try all αn -subsets of the given n vertices. Runtime?? TO DO: Analyse this more carefully!

2. If $|I| > \alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO: Determine the value α^* for α , to balance 1. and 2.

Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.

Proof. Compute a maximal independent set *I*.

1. If $|I| \leq \alpha n$: $\Rightarrow \gamma(G) \leq \alpha n$ \Rightarrow Try all αn -subsets of the given n vertices. Runtime?? TO DO: Analyse this more carefully!

2. If $|I| > \alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO: Determine the value α^* for α , to balance 1. and 2.

Thm. A minimum dominating set of a given graph can be found in $O(\beta^n)$ time, for some $\beta < 2$.

Proof. Compute a maximal independent set *I*.

1. If $|I| \leq \alpha n$:

 $\Rightarrow \gamma(G) \leq \alpha n$

⇒ Try all αn -subsets of the given n vertices. Runtime?? TO DO: Analyse this more carefully!

2. If $|I| > \alpha n$: (Note: If $\alpha \ge \frac{1}{2}$, then definitely use 2.) Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO: Determine the value α^* for α , to balance 1. and 2.

Lemma. For $\alpha \in (0, \frac{1}{2}]$, we have

where
$$h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$$
.

Lemma. For $\alpha \in (0, \frac{1}{2}]$, we have

$$\begin{split} &\sum_{i=1}^{\alpha n} \binom{n}{i} \in O^* \Bigl(2^{h(\alpha)n} \Bigr), \\ \text{where } h(\alpha) &= -\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha). \\ & \text{(That's the binary entropy function.)} \end{split}$$

Lemma. For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} \binom{n}{i} \in O^*(2^{h(\alpha)n}),$ where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha)$. (That's the binary entropy function.) $h(\alpha)$ 1.00.8n 0.60.40.2

0.2

0.3

0.4

0.1

 α

0.5

(Proof at the end!)

Lemma. For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} \binom{n}{i} \in O^*(2^{h(\alpha)n}),$ where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha)$. (That's the binary entropy function.) $h(\alpha)$ 1.00.8n 0.60.40.2 α 0.10.20.30.40.5

Thm. A minimum dominating set of a given graph can be found in O(n) time.

Proof.

Compute a maximal independent set *I*.

Thm. A minimum dominating set of a given graph can be found in O(n) time.

Proof.

Compute a maximal independent set *I*.

1. If $|I| \leq \alpha n$:

2. If $|I| > \alpha n$:

Thm. A minimum dominating set of a given graph can be found in O(n) time.

Proof.

Compute a maximal independent set *I*.

1. If $|I| \leq \alpha n$: $\Rightarrow \gamma(G) \leq \alpha n$

2. If $|I| > \alpha n$:

Main Result

Thm. A minimum dominating set of a given graph can be found in O(n) time.

Proof.

Compute a maximal independent set *I*.

1. If $|I| \leq \alpha n$: $\Rightarrow \gamma(G) \leq \alpha n$ $\Rightarrow \ln O^*(2^{h(\alpha)n})$ time, locate a minimum dominating set of cardinality $\leq \alpha n$ (by brute force & helper lemma)

2. If $|I| > \alpha n$:

Main Result

Thm. A minimum dominating set of a given graph can be found in O(n) time.

Proof.

Compute a maximal independent set *I*.

1. If $|I| \leq \alpha n$: $\Rightarrow \gamma(G) \leq \alpha n$ $\Rightarrow \ln O^*(2^{h(\alpha)n})$ time, locate a minimum dominating set of cardinality $\leq \alpha n$ (by brute force & helper lemma)

2. If $|I| > \alpha n$:

Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO: Determine the value α^* for α , to balance 1. and 2.

Main Result

Thm. A minimum dominating set of a given graph can be found in $O(1.7088^n)$ time.

Proof.

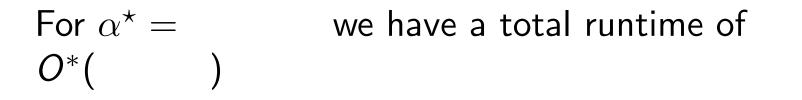
Compute a maximal independent set *I*.

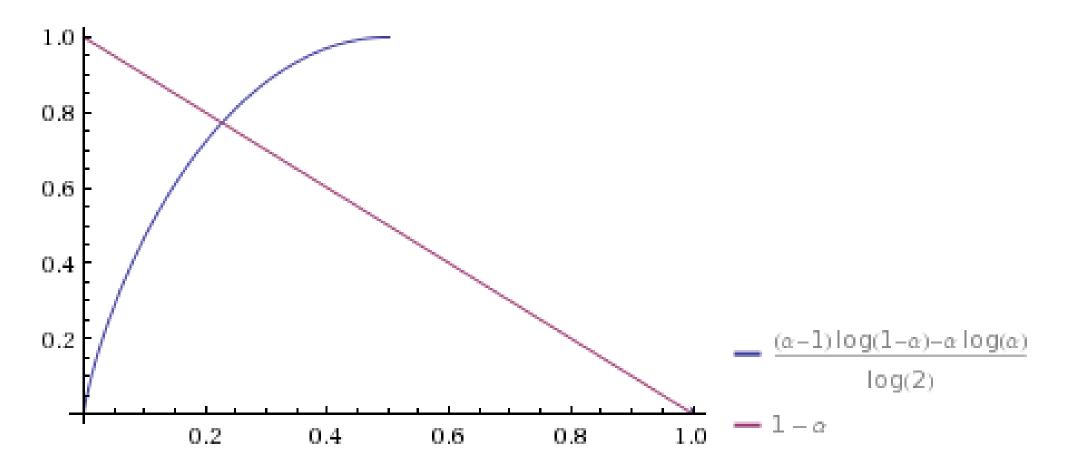
1. If $|I| \leq \alpha n$: $\Rightarrow \gamma(G) \leq \alpha n$ $\Rightarrow \ln O^*(2^{h(\alpha)n})$ time, locate a minimum dominating set of cardinality $\leq \alpha n$ (by brute force & helper lemma)

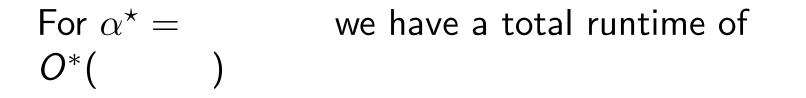
2. If $|I| > \alpha n$:

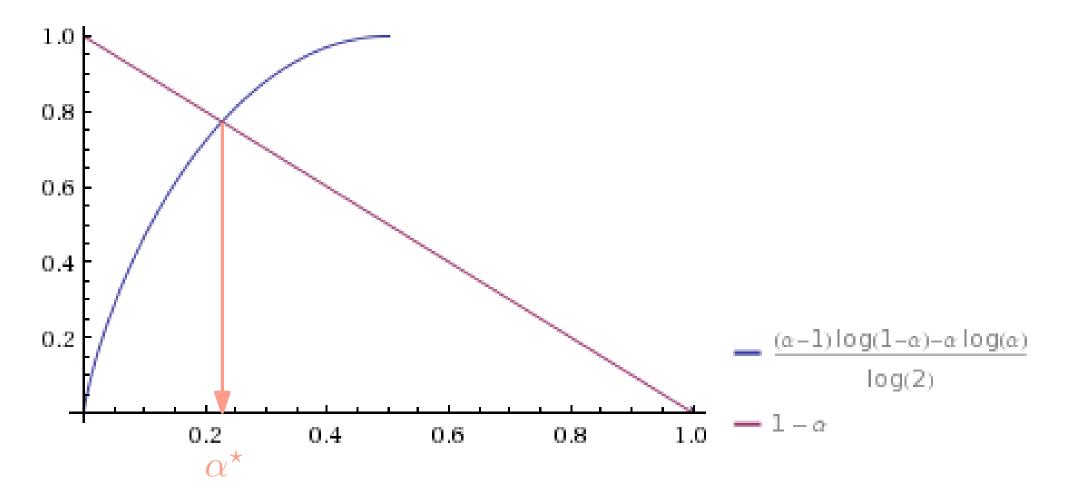
Apply Lemma \star to obtain a minimum dominating set in $O^*(2^{(1-\alpha)\cdot n})$ time.

TO DO: Determine the value α^* for α , to balance 1. and 2.

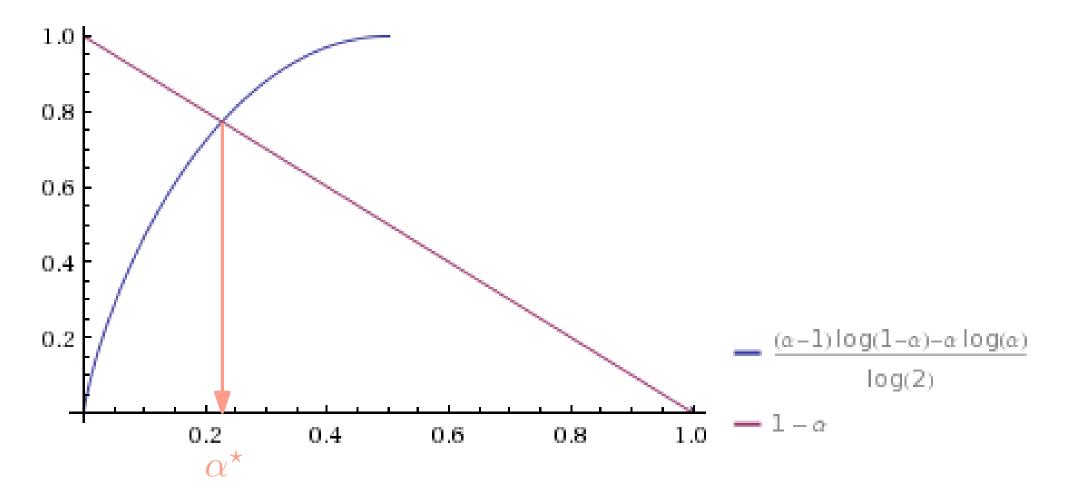




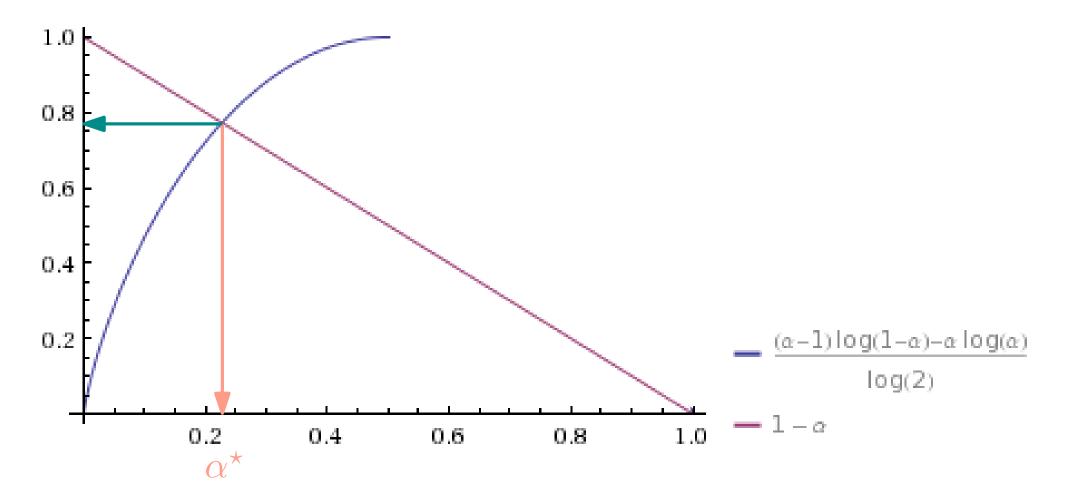




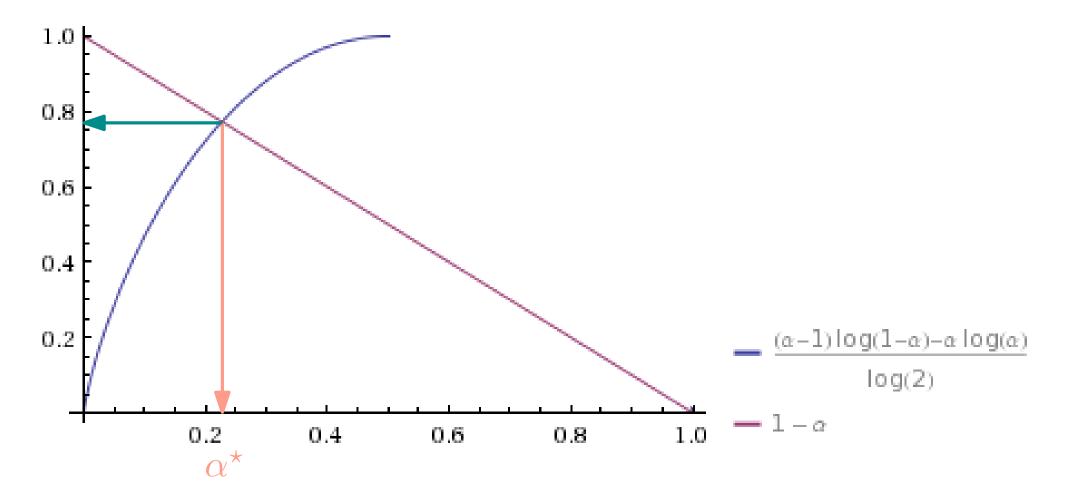
For $\alpha^{\star} = 0.22711$, we have a total runtime of $O^{*}($



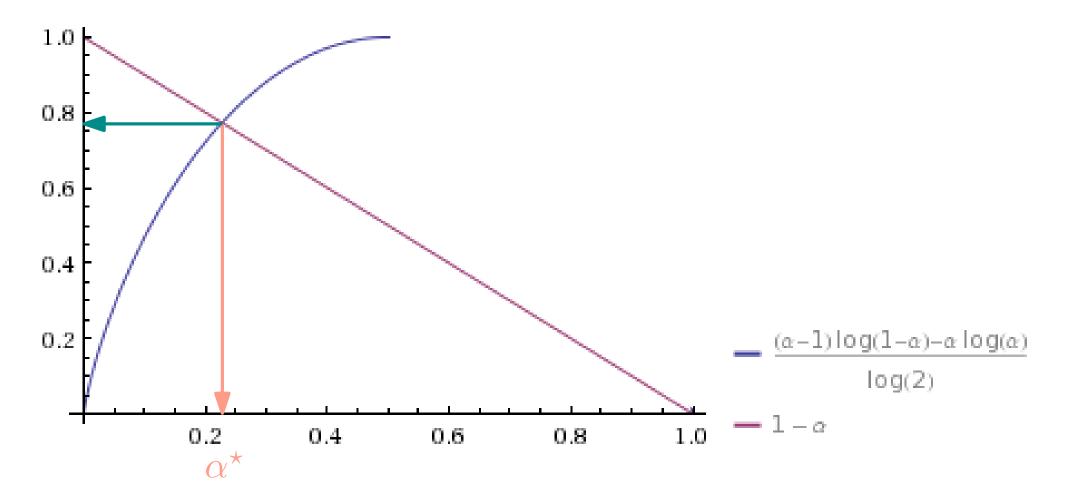
For $\alpha^{\star} = 0.22711$, we have a total runtime of $O^{*}($



For $\alpha^{\star} = 0.22711$, we have a total runtime of $O^{*}(2^{0.7729n})$



For $\alpha^* = 0.22711$, we have a total runtime of $O^*(2^{0.7729n}) = O(1.7088^n)$.



Recall the For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} {n \choose i} \in O^*(2^{h(\alpha)n})$, statement: where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$.

Recall the For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} {n \choose i} \in O^*(2^{h(\alpha)n})$, statement: where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$.

 $\alpha \in (0, \frac{1}{2}]$ implies

$$\sum_{i=1}^{\alpha n} \binom{n}{i} \leq \alpha n \cdot \binom{n}{\alpha n} \in O^* \binom{n}{\alpha n},$$

Recall the For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} {n \choose i} \in O^*(2^{h(\alpha)n})$, statement: where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$.

 $\alpha \in \left(0, \frac{1}{2}\right] \text{ implies}$ $\sum_{i=1}^{\alpha n} \binom{n}{i} \leq \alpha n \cdot \binom{n}{\alpha n} \in O^*\left(\binom{n}{\alpha n}\right),$ Note: $\binom{n}{0} \leq \binom{n}{1} \leq \cdots \leq \binom{n}{\lceil n/2 \rceil}.$

Recall the For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} {n \choose i} \in O^*(2^{h(\alpha)n})$, statement: where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$.

 $\alpha \in \left(0, \frac{1}{2}\right] \text{ implies}$ $\sum_{i=1}^{\alpha n} \binom{n}{i} \leq \alpha n \cdot \binom{n}{\alpha n} \in O^*\left(\binom{n}{\alpha n}\right),$ Note: $\binom{n}{0} \leq \binom{n}{1} \leq \cdots \leq \binom{n}{\lceil n/2 \rceil}.$

Stirlings formula:

Recall the For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} {n \choose i} \in O^*(2^{h(\alpha)n})$, statement: where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$.

 $\alpha \in \left(0, \frac{1}{2}\right] \text{ implies}$ $\sum_{i=1}^{\alpha n} \binom{n}{i} \leq \alpha n \cdot \binom{n}{\alpha n} \in O^*\left(\binom{n}{\alpha n}\right),$ Note: $\binom{n}{0} \leq \binom{n}{1} \leq \cdots \leq \binom{n}{\lceil n/2 \rceil}.$ Stirlings formula: $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \leq n! \leq 2\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Recall the For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} {n \choose i} \in O^*(2^{h(\alpha)n})$, statement: where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$.

 $\alpha \in (0, \frac{1}{2}]$ implies $\sum_{i=1}^{n} \binom{n}{i} \leq \alpha n \cdot \binom{n}{\alpha n} \in O^*\left(\binom{n}{\alpha n}\right),$ Note: $\binom{n}{0} \leq \binom{n}{1} \leq \cdots \leq \binom{n}{\lceil n/2 \rceil}$. Stirlings formula: $\sqrt{2\pi n} \left(\frac{n}{2}\right)^n \leq n! \leq 2\sqrt{2\pi n} \left(\frac{n}{2}\right)^n$ $\binom{n}{k} = \#$ of k-element subsets of an *n*-element set

Recall the For $\alpha \in (0, \frac{1}{2}]$, we have $\sum_{i=1}^{\alpha n} {n \choose i} \in O^*(2^{h(\alpha)n})$, statement: where $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2(1 - \alpha)$.

 $\alpha \in (0, \frac{1}{2}]$ implies $\sum_{i=1}^{n} \binom{n}{i} \leq \alpha n \cdot \binom{n}{\alpha n} \in O^*\left(\binom{n}{\alpha n}\right),$ Note: $\binom{n}{0} \leq \binom{n}{1} \leq \cdots \leq \binom{n}{\lceil n/2 \rceil}$. Stirlings formula: $\sqrt{2\pi n} \left(\frac{n}{2}\right)^n \leq n! \leq 2\sqrt{2\pi n} \left(\frac{n}{2}\right)^n$ $\binom{n}{k} = \#$ of k-element subsets of an *n*-element set $=\frac{n!}{k!(n-k)!}$

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} \in O^* \left(\frac{(n/e)^n}{(\alpha n/e)^{\alpha n} \cdot ((1-\alpha)n/e)^{(1-\alpha)n}} \right)$$

$$= O^* \left(\qquad)$$

$$= O^* \left(\qquad) \right)$$

$$= O^* \left(\qquad)$$

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} \in O^* \left(\frac{(p/e)^n}{(\alpha p/e)^{\alpha n} \cdot ((1-\alpha)p/e)^{(1-\alpha)n}} \right)$$

$$= O^* \left(\qquad)$$

$$= O^* \left(\qquad)$$

$$= O^* \left(\qquad)$$

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} \in O^* \left(\frac{(p/e)^n}{(\alpha p/e)^{\alpha n} \cdot ((1-\alpha)p/e)^{(1-\alpha)n}} \right)$$

$$= O^* \left(\alpha^{-\alpha n} \cdot (1-\alpha)^{-(1-\alpha)n} \right)$$

$$= O^* \left(\qquad \right)$$

$$= O^* \left(\qquad \right)$$

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} \in O^* \left(\frac{(p/e)^n}{(\alpha p/e)^{\alpha n} \cdot ((1-\alpha)p/e)^{(1-\alpha)n}} \right)$$

$$= O^* \left(\alpha^{-\alpha n} \cdot (1-\alpha)^{-(1-\alpha)n} \right)$$

$$= O^* \left(2^{-(\alpha \log_2 \alpha) \cdot n - (1-\alpha) \log_2(1-\alpha) \cdot n} \right)$$

$$= O^* \left(\right)$$

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} \in O^* \left(\frac{(p/e)^n}{(\alpha p/e)^{\alpha n} \cdot ((1-\alpha)p/e)^{(1-\alpha)n}} \right)$$

$$= O^* \left(\alpha^{-\alpha n} \cdot (1-\alpha)^{-(1-\alpha)n} \right)$$

$$= O^* \left(2^{-(\alpha \log_2 \alpha) \cdot n - (1-\alpha) \log_2(1-\alpha) \cdot n} \right)$$

$$= O^* \left(\right)$$

Note: $h(\alpha) = -\alpha \log_2(\alpha) - (1 - \alpha) \log_2(1 - \alpha)$

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} \in O^* \left(\frac{(p/e)^n}{(\alpha p/e)^{\alpha n} \cdot ((1-\alpha)p/e)^{(1-\alpha)n}} \right)$$

$$= O^* \left(\alpha^{-\alpha n} \cdot (1-\alpha)^{-(1-\alpha)n} \right)$$

$$= O^* \left(2^{-(\alpha \log_2 \alpha) \cdot n - (1-\alpha) \log_2(1-\alpha) \cdot n} \right)$$

$$= O^* \left(2^{h(\alpha) \cdot n} \right)$$

Note: $h(\alpha) = -\alpha \log_2(\alpha) - (1 - \alpha) \log_2(1 - \alpha)$