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Dominating Sets

Def. For a graph G = (V ,E ), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Example Application:

Def. Minimum Dominating Set
Given: graph G = (V ,E ),
Find: minimum-cardinality dominating set D of G

Placement of cell towers.

Domination number: γ(G ) := |D|.
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Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(G )
if V (G ) = ∅ then

return ∅
choose any v ∈ V
return {v} ∪ recursiveIS(G − N[v ])

Obs. Every maximal independent set is a dominating set.



Algorithmic Approach for Min. Dom. Set

Brute Force:



Algorithmic Approach for Min. Dom. Set

Brute Force: (subset problem!)



Algorithmic Approach for Min. Dom. Set

Brute Force: O∗(2n) time (subset problem!)



Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

O∗(2n) time (subset problem!)



Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

O∗(2n) time (subset problem!)



Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

O∗(2n) time (subset problem!)



Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

Lemma ?. Given a maximal independent set I of G ,
a minimum dominating set of G can be found in
O∗(2n−|I |) time.

O∗(2n) time (subset problem!)
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Proof of Lemma ?

• Instead of all 2n subsets of V , we consider their 2n−|I |

projections on J = V \ I

• We test each subset J ′ of J and extend it to the
smallest dominating set DJ′ of G such that J ∩ DJ′ = J ′.

⇒ γ(G ) =

• How can we find a smallest DJ′ for a given J ′ ⊆ J?

minJ′⊆J |DJ′ |.
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• I ′ = I \ N(J ′)
must be completely
contained in DJ′

• The vertices not dominated by I ′ and J ′ are precisely
X := J \ (N[J ′] ∪ N(I ′)).
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• Naive idea:
find X ′ for each
X separately.

• Better idea:
For every subset X ⊆ J,
we compute a minimum subset of I that dominates X .

⇒ X ′ =

• Let I := {v1, . . . , vk}, X ⊆ J and define:
T [X , `] := a smallest subset of {v1, . . . , v`} dominating X .

T [X , k]

⇒ runtime O∗(3|J|)
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Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

⇒ total runtime of the algorithm:

• For each of the 2|J| sets J ′ ⊆ J, determine a smallest set
DJ′ = J ′ ∪ I ′ ∪ X ′ that dominates G ⇒ runtime: O∗(2|J|)

O∗(2|J|) = O∗(2n−|I |)

For each X ⊆ J:

as
T
[X
, k
]

�
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Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

⇒ γ(G ) ≤ αn

TO DO: Determine the value α? for α, to balance 1. and 2.

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

TO DO: Analyse this more carefully!

(Note: If α ≥ 1
2 , then definitely use 2.)
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Helper Lemma

Lemma. For α ∈ (0, 1
2 ], we have

αn∑
i=1

(
n

i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

h(α)

(Proof at the end!)

α

h

(That’s the binary entropy function.)
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Proof of the Helper Lemma

Recall the
statement:

For α ∈ (0, 1
2 ], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).
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