
Based on: [Exact Exponential Algorithms: §3.2]

Further discussions: [Parameterized Algorithms: §6.1]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 3. Minimum Dominating Set

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Example Application:

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Example Application: Placement of cell towers.

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Example Application:

Def. Minimum Dominating Set
Given:
Find:

Placement of cell towers.

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Example Application:

Def. Minimum Dominating Set
Given: graph G = (V ,E),
Find:

Placement of cell towers.

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Example Application:

Def. Minimum Dominating Set
Given: graph G = (V ,E),
Find: minimum-cardinality dominating set D of G

Placement of cell towers.

Dominating Sets

Def. For a graph G = (V ,E), a set D ⊆ V dominates G
if every vertex u ∈ V \D is adjacent to a vertex in D.

Example Application:

Def. Minimum Dominating Set
Given: graph G = (V ,E),
Find: minimum-cardinality dominating set D of G

Placement of cell towers.

Domination number: γ(G) := |D|.

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(G)
if V (G) = ∅ then

return ∅
choose any v ∈ V
return {v} ∪ recursiveIS(G − N[v])

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(G)
if V (G) = ∅ then

return ∅
choose any v ∈ V
return {v} ∪ recursiveIS(G − N[v])

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(G)
if V (G) = ∅ then

return ∅
choose any v ∈ V
return {v} ∪ recursiveIS(G − N[v])

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(G)
if V (G) = ∅ then

return ∅
choose any v ∈ V
return {v} ∪ recursiveIS(G − N[v])

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(G)
if V (G) = ∅ then

return ∅
choose any v ∈ V
return {v} ∪ recursiveIS(G − N[v])

Maximal Independent Sets

Def. An independent set I is maximal
if no proper superset of it is an independent set.

Lemma. A maximal independent set can be found efficiently.

Algorithm recursiveIS(G)
if V (G) = ∅ then

return ∅
choose any v ∈ V
return {v} ∪ recursiveIS(G − N[v])

Obs. Every maximal independent set is a dominating set.

Algorithmic Approach for Min. Dom. Set

Brute Force:

Algorithmic Approach for Min. Dom. Set

Brute Force: (subset problem!)

Algorithmic Approach for Min. Dom. Set

Brute Force: O∗(2n) time (subset problem!)

Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

O∗(2n) time (subset problem!)

Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

O∗(2n) time (subset problem!)

Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

O∗(2n) time (subset problem!)

Algorithmic Approach for Min. Dom. Set

Brute Force:

An idea for a smarter algorithm:
• Find a maximal independent set I .
• If I is “small”, look at each D ⊆ V , |D| < |I |.
• If I is “big”, use a dynamic program to ensure that vertices

in I do not dominate each other.

Lemma ?. Given a maximal independent set I of G ,
a minimum dominating set of G can be found in
O∗(2n−|I |) time.

O∗(2n) time (subset problem!)

Proof of Lemma ?

• Instead of all 2n subsets of V , we consider their 2n−|I |

projections on J = V \ I

Proof of Lemma ?

• Instead of all 2n subsets of V , we consider their 2n−|I |

projections on J = V \ I

• We test each subset J ′ of J and extend it to the
smallest dominating set DJ′ of G such that J ∩ DJ′ = J ′.

Proof of Lemma ?

• Instead of all 2n subsets of V , we consider their 2n−|I |

projections on J = V \ I

• We test each subset J ′ of J and extend it to the
smallest dominating set DJ′ of G such that J ∩ DJ′ = J ′.

⇒ γ(G) =

Proof of Lemma ?

• Instead of all 2n subsets of V , we consider their 2n−|I |

projections on J = V \ I

• We test each subset J ′ of J and extend it to the
smallest dominating set DJ′ of G such that J ∩ DJ′ = J ′.

⇒ γ(G) = minJ′⊆J |DJ′ |.

Proof of Lemma ?

• Instead of all 2n subsets of V , we consider their 2n−|I |

projections on J = V \ I

• We test each subset J ′ of J and extend it to the
smallest dominating set DJ′ of G such that J ∩ DJ′ = J ′.

⇒ γ(G) =

• How can we find a smallest DJ′ for a given J ′ ⊆ J?

minJ′⊆J |DJ′ |.

Proof (Lemma ?)
independent set: I

J

Def. N(S) =
⋃

v∈S N(v) and N[S] = N(S) ∪ S for every S⊆V.

J ′ X
N(I ′)

N(J ′)∩ J

N(J ′) ∩ I I ′

Proof (Lemma ?)
independent set: I

J

Def. N(S) =
⋃

v∈S N(v) and N[S] = N(S) ∪ S for every S⊆V.

• I ′ = I \ N(J ′)
must be completely
contained in DJ′ J ′ X

N(I ′)

N(J ′)∩ J

N(J ′) ∩ I I ′

Proof (Lemma ?)
independent set: I

J

Def. N(S) =
⋃

v∈S N(v) and N[S] = N(S) ∪ S for every S⊆V.

• I ′ = I \ N(J ′)
must be completely
contained in DJ′ J ′ X

N(I ′)

N(J ′)∩ J
(since DJ′ ∩ J = J ′!)

N(J ′) ∩ I I ′

Proof (Lemma ?)
independent set: I

J

Def. N(S) =
⋃

v∈S N(v) and N[S] = N(S) ∪ S for every S⊆V.

• I ′ = I \ N(J ′)
must be completely
contained in DJ′

• The vertices not dominated by I ′ and J ′ are precisely
X := J \ (N[J ′] ∪ N(I ′)).

J ′ X
N(I ′)

N(J ′)∩ J
(since DJ′ ∩ J = J ′!)

N(J ′) ∩ I I ′

Proof (Lemma ?)
independent set: I

J

X ′

Def. N(S) =
⋃

v∈S N(v) and N[S] = N(S) ∪ S for every S⊆V.

• I ′ = I \ N(J ′)
must be completely
contained in DJ′

• The vertices not dominated by I ′ and J ′ are precisely
X := J \ (N[J ′] ∪ N(I ′)).

• Find the smallest set X ′ ⊆ N(J ′) ∩ I that dominates X .

J ′ X
N(I ′)

N(J ′)∩ J
(since DJ′ ∩ J = J ′!)

N(J ′) ∩ I I ′

Proof (Lemma ?)
independent set: I

J

X ′

Def. N(S) =
⋃

v∈S N(v) and N[S] = N(S) ∪ S for every S⊆V.

• I ′ = I \ N(J ′)
must be completely
contained in DJ′

• The vertices not dominated by I ′ and J ′ are precisely
X := J \ (N[J ′] ∪ N(I ′)).

• ⇒ DJ′ = J ′ ∪ I ′ ∪ X ′ dominates G .

• Find the smallest set X ′ ⊆ N(J ′) ∩ I that dominates X .

J ′ X
N(I ′)

N(J ′)∩ J
(since DJ′ ∩ J = J ′!)

N(J ′) ∩ I I ′

Proof (Lemma ?)

• Naive idea:
find X ′ for each
X separately.

independent set: I

J

N(J ′) ∩ I I ′

X ′

J ′ X
N(I ′)

N(J ′)∩ J

Proof (Lemma ?)

• Naive idea:
find X ′ for each
X separately.

⇒ runtime O∗(3|J|)

independent set: I

J

N(J ′) ∩ I I ′

X ′

J ′ X
N(I ′)

N(J ′)∩ J

Proof (Lemma ?)

• Naive idea:
find X ′ for each
X separately.

• Better idea:
For every subset X ⊆ J,
we compute a minimum subset of I that dominates X .

⇒ runtime O∗(3|J|)

independent set: I

J

N(J ′) ∩ I I ′

X ′

J ′ X
N(I ′)

N(J ′)∩ J

Proof (Lemma ?)

• Naive idea:
find X ′ for each
X separately.

• Better idea:
For every subset X ⊆ J,
we compute a minimum subset of I that dominates X .

• Let I := {v1, . . . , vk}, X ⊆ J and define:
T [X , `] := a smallest subset of {v1, . . . , v`} dominating X .

⇒ runtime O∗(3|J|)

independent set: I

J

N(J ′) ∩ I I ′

X ′

J ′ X
N(I ′)

N(J ′)∩ J

Proof (Lemma ?)

• Naive idea:
find X ′ for each
X separately.

• Better idea:
For every subset X ⊆ J,
we compute a minimum subset of I that dominates X .

⇒ X ′ =

• Let I := {v1, . . . , vk}, X ⊆ J and define:
T [X , `] := a smallest subset of {v1, . . . , v`} dominating X .

⇒ runtime O∗(3|J|)

independent set: I

J

N(J ′) ∩ I I ′

X ′

J ′ X
N(I ′)

N(J ′)∩ J

Proof (Lemma ?)

• Naive idea:
find X ′ for each
X separately.

• Better idea:
For every subset X ⊆ J,
we compute a minimum subset of I that dominates X .

⇒ X ′ =

• Let I := {v1, . . . , vk}, X ⊆ J and define:
T [X , `] := a smallest subset of {v1, . . . , v`} dominating X .

T [X , k]

⇒ runtime O∗(3|J|)

independent set: I

J

N(J ′) ∩ I I ′

X ′

J ′ X
N(I ′)

N(J ′)∩ J

Proof (Lemma ?)

Dynamic ProgramFor each X ⊆ J:

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For each X ⊆ J:

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

For each X ⊆ J:

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

For each X ⊆ J:

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

For each X ⊆ J:

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

• For each of the 2|J| sets J ′ ⊆ J, determine a smallest set
DJ′ = J ′ ∪ I ′ ∪ X ′ that dominates G ⇒ runtime:

For each X ⊆ J:

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

• For each of the 2|J| sets J ′ ⊆ J, determine a smallest set
DJ′ = J ′ ∪ I ′ ∪ X ′ that dominates G ⇒ runtime:

For each X ⊆ J:

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

• For each of the 2|J| sets J ′ ⊆ J, determine a smallest set
DJ′ = J ′ ∪ I ′ ∪ X ′ that dominates G ⇒ runtime:

For each X ⊆ J:

as
T
[X
, k
]

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

• For each of the 2|J| sets J ′ ⊆ J, determine a smallest set
DJ′ = J ′ ∪ I ′ ∪ X ′ that dominates G ⇒ runtime: O∗(2|J|)

For each X ⊆ J:

as
T
[X
, k
]

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

⇒ total runtime of the algorithm:

• For each of the 2|J| sets J ′ ⊆ J, determine a smallest set
DJ′ = J ′ ∪ I ′ ∪ X ′ that dominates G ⇒ runtime: O∗(2|J|)

For each X ⊆ J:

as
T
[X
, k
]

Proof (Lemma ?)

Dynamic Program

T [X , 0] =

{
∅ if X = ∅
undef. if X 6= ∅

For 1 ≤ ` ≤ k:

T [X , `] = smaller of

{
T [X , `− 1] and

{v`} ∪ T [X \ N(v`), `− 1] if def’d.

• runtime O∗(2|J|)

⇒ total runtime of the algorithm:

• For each of the 2|J| sets J ′ ⊆ J, determine a smallest set
DJ′ = J ′ ∪ I ′ ∪ X ′ that dominates G ⇒ runtime: O∗(2|J|)

O∗(2|J|) = O∗(2n−|I |)

For each X ⊆ J:

as
T
[X
, k
]

�

Main Result

Thm.

Main Result

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

Main Result

Proof. Compute a maximal independent set I .

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

Main Result

Proof. Compute a maximal independent set I .

1. If |I | ≤ αn:

2. If |I | > αn:

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

Main Result

Proof. Compute a maximal independent set I .

1. If |I | ≤ αn:

2. If |I | > αn:

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

TO DO: Analyse this more carefully!

Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

⇒ γ(G) ≤ αn

TO DO:

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

TO DO: Analyse this more carefully!

Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

⇒ γ(G) ≤ αn

TO DO: Determine the value α? for α, to balance 1. and 2.

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

TO DO: Analyse this more carefully!

Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

⇒ γ(G) ≤ αn

TO DO: Determine the value α? for α, to balance 1. and 2.

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

TO DO: Analyse this more carefully!

Main Result

Proof. Compute a maximal independent set I .

⇒ Try all αn-subsets of the given n vertices.
Runtime??

1. If |I | ≤ αn:

2. If |I | > αn:

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

⇒ γ(G) ≤ αn

TO DO: Determine the value α? for α, to balance 1. and 2.

A minimum dominating set of a given graph can be
found in O(βn) time, for some β < 2.

Thm.

TO DO: Analyse this more carefully!

(Note: If α ≥ 1
2 , then definitely use 2.)

Helper Lemma

Lemma. For α ∈ (0, 1
2], we have

αn∑
i=1

(
n

i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Helper Lemma

Lemma. For α ∈ (0, 1
2], we have

αn∑
i=1

(
n

i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

(That’s the binary entropy function.)

Helper Lemma

Lemma. For α ∈ (0, 1
2], we have

αn∑
i=1

(
n

i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

h(α)

α

h

(That’s the binary entropy function.)

Helper Lemma

Lemma. For α ∈ (0, 1
2], we have

αn∑
i=1

(
n

i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

h(α)

(Proof at the end!)

α

h

(That’s the binary entropy function.)

Main Result

Proof.
Compute a maximal independent set I .

A minimum dominating set of a given graph can be
found in O(1.7088n) time.

Thm.

Main Result

Proof.
Compute a maximal independent set I .

1. If |I | ≤ αn:

2. If |I | > αn:

A minimum dominating set of a given graph can be
found in O(1.7088n) time.

Thm.

Main Result

Proof.
Compute a maximal independent set I .

1. If |I | ≤ αn:

2. If |I | > αn:

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(1.7088n) time.

Thm.

Main Result

Proof.
Compute a maximal independent set I .

⇒ In O∗(2h(α)n) time, locate a minimum dominating set
of cardinality ≤ αn (by brute force & helper lemma)

1. If |I | ≤ αn:

2. If |I | > αn:

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(1.7088n) time.

Thm.

Main Result

Proof.
Compute a maximal independent set I .

⇒ In O∗(2h(α)n) time, locate a minimum dominating set
of cardinality ≤ αn (by brute force & helper lemma)

1. If |I | ≤ αn:

2. If |I | > αn:

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(1.7088n) time.

Thm.

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

TO DO: Determine the value α? for α, to balance 1. and 2.

Main Result

Proof.
Compute a maximal independent set I .

⇒ In O∗(2h(α)n) time, locate a minimum dominating set
of cardinality ≤ αn (by brute force & helper lemma)

1. If |I | ≤ αn:

2. If |I | > αn:

⇒ γ(G) ≤ αn

A minimum dominating set of a given graph can be
found in O(1.7088n) time.

Thm.

Apply Lemma ? to obtain a minimum dominating set in
O∗(2(1−α)·n) time.

TO DO: Determine the value α? for α, to balance 1. and 2.

Finding α? and the Base

For α? = 0.22711, we have a total runtime of
O∗(20.7729n) = O(1.7088n).

Finding α? and the Base

For α? = 0.22711, we have a total runtime of
O∗(20.7729n) = O(1.7088n).

α?

Finding α? and the Base

For α? = 0.22711, we have a total runtime of
O∗(20.7729n) = O(1.7088n).

α?

Finding α? and the Base

For α? = 0.22711, we have a total runtime of
O∗(20.7729n) = O(1.7088n).

α?

Finding α? and the Base

For α? = 0.22711, we have a total runtime of
O∗(20.7729n) = O(1.7088n).

α?

Finding α? and the Base

For α? = 0.22711, we have a total runtime of
O∗(20.7729n) = O(1.7088n).

α?

Proof of the Helper Lemma

Recall the
statement:

For α ∈ (0, 1
2], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Proof of the Helper Lemma

α ∈ (0, 1
2] implies

αn∑
i=1

(
n

i

)
≤ αn ·

(
n

αn

)
∈ O∗

((
n

αn

))
,

Recall the
statement:

For α ∈ (0, 1
2], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Proof of the Helper Lemma

α ∈ (0, 1
2] implies

αn∑
i=1

(
n

i

)
≤ αn ·

(
n

αn

)
∈ O∗

((
n

αn

))
,

(
n
0

)
≤
(
n
1

)
≤ · · · ≤

(
n
dn/2e

)
.

Recall the
statement:

For α ∈ (0, 1
2], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Note:

Proof of the Helper Lemma

α ∈ (0, 1
2] implies

αn∑
i=1

(
n

i

)
≤ αn ·

(
n

αn

)
∈ O∗

((
n

αn

))
,

(
n
0

)
≤
(
n
1

)
≤ · · · ≤

(
n
dn/2e

)
.

Recall the
statement:

For α ∈ (0, 1
2], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Note:

Stirlings formula:

Proof of the Helper Lemma

α ∈ (0, 1
2] implies

αn∑
i=1

(
n

i

)
≤ αn ·

(
n

αn

)
∈ O∗

((
n

αn

))
,

(
n
0

)
≤
(
n
1

)
≤ · · · ≤

(
n
dn/2e

)
.

Recall the
statement:

For α ∈ (0, 1
2], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Note:

Stirlings formula:
√

2πn
(
n
e

)n ≤ n! ≤ 2
√

2πn
(
n
e

)n

Proof of the Helper Lemma

α ∈ (0, 1
2] implies

αn∑
i=1

(
n

i

)
≤ αn ·

(
n

αn

)
∈ O∗

((
n

αn

))
,

(
n

k

)
= # of k-element subsets of an n-element set

(
n
0

)
≤
(
n
1

)
≤ · · · ≤

(
n
dn/2e

)
.

Recall the
statement:

For α ∈ (0, 1
2], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Note:

Stirlings formula:
√

2πn
(
n
e

)n ≤ n! ≤ 2
√

2πn
(
n
e

)n

Proof of the Helper Lemma

α ∈ (0, 1
2] implies

αn∑
i=1

(
n

i

)
≤ αn ·

(
n

αn

)
∈ O∗

((
n

αn

))
,

(
n

k

)
= # of k-element subsets of an n-element set

=
n!

k!(n − k)!

(
n
0

)
≤
(
n
1

)
≤ · · · ≤

(
n
dn/2e

)
.

Recall the
statement:

For α ∈ (0, 1
2], we have

∑αn
i=1

(
n
i

)
∈ O∗

(
2h(α)n

)
,

where h(α) = −α log2 α− (1− α) log2(1− α).

Note:

Stirlings formula:
√

2πn
(
n
e

)n ≤ n! ≤ 2
√

2πn
(
n
e

)n

Proof of the Helper Lemma (cont’d)

(
n

αn

)
∈ O∗

(
(n/e)n

(αn/e)αn · ((1− α)n/e)(1−α)n

)
= O∗

(
α−αn · (1− α)−(1−α)n

)
= O∗

(
2−(α log2 α)·n−(1−α) log2(1−α)·n

)
= O∗

(
2h(α)·n

)

Proof of the Helper Lemma (cont’d)

(
n

αn

)
∈ O∗

(
(n/e)n

(αn/e)αn · ((1− α)n/e)(1−α)n

)
= O∗

(
α−αn · (1− α)−(1−α)n

)
= O∗

(
2−(α log2 α)·n−(1−α) log2(1−α)·n

)
= O∗

(
2h(α)·n

)

Proof of the Helper Lemma (cont’d)

(
n

αn

)
∈ O∗

(
(n/e)n

(αn/e)αn · ((1− α)n/e)(1−α)n

)
= O∗

(
α−αn · (1− α)−(1−α)n

)
= O∗

(
2−(α log2 α)·n−(1−α) log2(1−α)·n

)
= O∗

(
2h(α)·n

)

Proof of the Helper Lemma (cont’d)

(
n

αn

)
∈ O∗

(
(n/e)n

(αn/e)αn · ((1− α)n/e)(1−α)n

)
= O∗

(
α−αn · (1− α)−(1−α)n

)
= O∗

(
2−(α log2 α)·n−(1−α) log2(1−α)·n

)
= O∗

(
2h(α)·n

)

Proof of the Helper Lemma (cont’d)

(
n

αn

)
∈ O∗

(
(n/e)n

(αn/e)αn · ((1− α)n/e)(1−α)n

)
= O∗

(
α−αn · (1− α)−(1−α)n

)
= O∗

(
2−(α log2 α)·n−(1−α) log2(1−α)·n

)
= O∗

(
2h(α)·n

)
Note: h(α) = −α log2(α)− (1− α) log2(1− α)

Proof of the Helper Lemma (cont’d)

(
n

αn

)
∈ O∗

(
(n/e)n

(αn/e)αn · ((1− α)n/e)(1−α)n

)
= O∗

(
α−αn · (1− α)−(1−α)n

)
= O∗

(
2−(α log2 α)·n−(1−α) log2(1−α)·n

)
= O∗

(
2h(α)·n

)
Note: h(α) = −α log2(α)− (1− α) log2(1− α)

�

	Dominating Sets
	Algorithmic Approach for Min. Dom. Set
	Proof of Lemma \star
	Proof (Lemma \star)
	Proof (Lemma \star)
	Proof (Lemma \star)
	Main Result
	Helper Lemma
	Main Result
	Finding α^\star and the Base
	Proof of the Helper Lemma
	Proof of the Helper Lemma (cont'd)

