Julius-Maximilians-
UNIVERSITAT Lonsunio ||||I - f
WURZBURG INFORMATIK | I |

Algorithmen & Komplexitat Institut fir Informatik

Exact Algorithms

Sommer Term 2020

Lecture 2. Branching Algorithms and Satisfiability

Based on: [Exact Exponential Algorithms: §2]
Further discussions: [Parameterized Algorithms: §3; specifically §3.2]

Alexander Wolff Lehrstuhl fiuir Informatik |

Problems in NP

e Brute force?

e V YES-instances : o certificate

— polynomial size
— polynomial-time verifiable

e Runtime?

Problem Types

Subset Problems
e Solutions: subsets of a given ground set

e e.g., independent set in a graph, satisfying assighment to a Boolean
formula

e Brute-force in O*(2") time

Permutation Problems
e Solutions: permutations of a given ground set

e e.g., Hamilton path of a graph, or tour as in TSP
e Brute-force in O*(n!) = 20(nlogn) time
Partitioning Problems

e Solutions: partitionings of a given ground set

e e.g., graph coloring: partition vertices of a graph into independent sets

e Brute-force in O*(n") = 2071 n) time

Branching Algorithms

e Standard technique

e T[ypical properties
— polynomial space
— in practice, often faster than its worst-case runtime
— simple speedups (reduction rules, branch-and-bound)

e Other names:
Backtracking, search-tree algorithms, . ..

General Form

e Branching Rules:
Choose a small part of the solution and solve a
corresponding subproblem for each choice
= obtain a solution of the original problem based on the
solutions of the subproblems

e Reduction Rules:
Reduce the problem size (also: exit/rejection conditions)

e Correctness:
Often immediate/obvious

e Specification:
Often only calculates the optimal value.

Branching Vectors

e Apply a branching rule b to an instance I of size n.

e Suppose that b decomposes [into r > 2 sub-instances

of sizesn—t1, n—ty, ..., n—t,, wheret; > 0 for each <.
e We call (t1,tp,...,t.) branching vector of b .
size: n
size: n — 1 size:n — 1o e size:n — i,

Recurrence: T'(n) < T(n—t1)+T(n—t2)+...+T(n—t,)

Theorem on Branching Vectors

Thm. Let b be a branching rule with vector (t1,%2,...,t.).
Then the runtime of an algorithm executing b is O*(a™),

where « is the unique positive root of

m m—ty &m—tg L L CV??”L—t,,a — 0

o —

where m := maxi<;<, t;.

e Denote solution by 7(t1,t2,...,1t.).

e Often irrational.

size: n

Properties of 7(-)

size:n —t; size:n —t» .« o size: n — t,

Thm. Llet r > 2 and, fore =1,...,7, let t; > 0. Then:

(I) T(tl,...,tr) > 1,
(i) 7(t1,...,t,) = T(t?r(l), . ,tﬁ(r))
for every permutation T,
(III) T(tl,tg ,tr) < T(t’l,tz,.. : ,tT) if t1 > tll.

Lemma. For i, 7, k> 0, the following balancing properties
apply:
(i) 7(k, k) <7(i,j) if i + j = 2k,

(i) 7(4,j) > (i +¢e,j—¢)
if0<i<jand 0<e < 55

E.g.: 7(1,1) =2 7(3,3) = v2 < 1.26
7(1,2) = 35 <162 7(2,4) < 1.272
7(1,5) < 1.3248

“Addition” of Branching Vectors

size: n

size: . — J

size:n —1 — k size:m —1— ¥

Branching-Vector: (¢ + k, i + ¢, j)

SATISFIABILITY (SAT)

Input: propositional logic formula F' in conjunctive NF

Question: d satisfying assignment for F'?

Eg., (z1VZ2Va3) A(T1 VgV xs)

\ J/
-~

. . clause
variable literal

Brute-Force: Try all 2™ variable assignments.

Runtime: O(2"™-n-m), where n = #£variables, m = #clauses.

Strong Exponential Time Hypothesis (SETH) implies that:
A algorithm for SAT in 0o(2") time, i.e., in O*((2 —¢)"),e > 0.

For more on (S)ETH, see [Parameterized Algorithms 14.1].

k-SAT: Each clause has < k literals.

10

A Better Algorithm for k-SAT

o Goal:
Solve k-SAT in time O*(«y™), where ay, < 2 for every k.

e |dea: Branch on variables.

e [or a partial assignment ¢,
let F'[t] be the reduced formula that we get after
— removing false literals from clauses and
— removing clauses with true literals.

Example:
- F=(x1VZyVa3)AN(ZT1V x4V T5)
— t: x1 = false
- Flt] = (z2 V x3)

11

Properties of Reduced Formulas

s

F'[t] contains an empty clause = F'[t] not satisfiable

t| satisfiable = F' satisfiable

F[t] empty = F[t] satisfiable

F

NS LS IS

= (1 VZ2Va3) AN (T1 VsV x5)

r1 =f] = (x> Vax3) satisfiable

To=txzs=x4=a5 =f| =21 N T

:.5131:333:1:,:132:’[]:()

xr3 = x4 = t] = empty formula

not satisfiable

12

A First Algorithm for £-SAT

Algorithm Ek-SAT-v1(F)

if ' is empty then
L return true

if ' contains an empty clause then
L return false

pick clause c = (¢1 Vo V...V £,) from F, where ¢ < k
t1: /1 = true

tr: ¥1 = false, f» = true

t3: £1 = false, ¢/, = false, {3 = true

tq: U1 = false, {o = false, ..., ¢, = false, £, = true
return \/7_, k-SAT-v1(F[t;])

o t,: first true literal in cis ¥¢;

13

Runtime

e F'[t;] has n — ¢ variables

= branching vector (1,2,...,k)
e Runtime: O*(Bx"™), where B = 7(1,2,...,k).
Note: 7(1,2,...,k) = BipF = Zf:_ol Bt (%)
So, (*)-Br—(*) = BTt —2B.F4+1=0.
e 51 =1, 0, <1.6181, 53 < 1.8393, 5, < 1.9276, 55 < 1.9660

14

Speeding Up the Algorithm

e 'Branch-on-shortest” rule

e Hope: 4 a clause of length < k —1

Def.

A partial assignment ¢ is an autark
if every clause with a literal assigned by ¢
also contains a literal assigned true by t.

Expl. F=(x1VZ2Va3)A(T1VxaVas)A(L3V xs)

Obs.

t: x1 = x4 = true

t': x1 = true, x4 = false

e If tis an autark, then: F satisfiable < F'[t] satisfiable.

e If ¢ is not an autark,
then F'[t] contains a clause of length < k — 1.

15

An Improved k-SAT Algorithm

Algorithm Ek-SAT-v2(F)
if ' is empty then
L return true

if ' contains an empty clause then
L return false

pick a smallest clause ¢ = (¢1 V € V...V {,) from F, where ¢ < k
t1: 1 =true
tr: V1 = false, ¥» = true

tq: {1 = false, ¢ = false, ..., ¢,_1 = false, ¢, = true
if ¢; is an autark forsome ¢ =1,...,q then

return k-SAT-v2(F'[t;])
else

return \/7_, k-SAT-v2(F[t;])

17

Runtime Analysis

e Claim: The runtime is O*(a}'), where o, = Br—1.

e Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a -node
because in a -node, for each branch,
the formula F'[t;] contains a clause of length < k£ — 1.

Now:
= branching vector (1,2,...,k —1)

:>o/,§—204Z_1+1:O
= o = Br_1

e B = 1,6, < 1.6181,3; < 1.8393, B, < 1.9276, 35 < 1.9660
— s =1, 03 < 1.6181, g < 1.8393, a5 < 1.9276, ag < 1.9660

	Problems in $\cal N\!P$
	Problem Types
	Branching Algorithms
	General Form
	Branching Vectors
	Theorem on Branching Vectors
	``Addition'' of Branching Vectors
	\textsc{Satisfiability} (SAT)
	A Better Algorithm for k-SAT
	Properties of Reduced Formulas
	A First Algorithm for k-SAT
	Runtime
	Speeding Up the Algorithm
	An Improved k-SAT Algorithm
	Runtime Analysis

