
1

Based on: [Exact Exponential Algorithms: §2]

Further discussions: [Parameterized Algorithms: §3; specifically §3.2]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 2. Branching Algorithms and Satisfiability

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

2

Problems in NP
• Brute force?

• ∀ Yes-instances : ∃ certificate

– polynomial size
– polynomial-time verifiable

• Runtime?

3

Problem Types

• Solutions: subsets of a given ground set

• e.g., independent set in a graph, satisfying assignment to a Boolean
formula

• Brute-force in O∗(2n) time

Subset Problems

Permutation Problems

• Solutions: permutations of a given ground set

• e.g., Hamilton path of a graph, or tour as in TSP

• Brute-force in O∗(n!) = 2O(n logn) time

Partitioning Problems

• Solutions: partitionings of a given ground set

• e.g., graph coloring: partition vertices of a graph into independent sets

• Brute-force in O∗(nn) = 2O(n logn) time

4

Branching Algorithms

• Standard technique

• Typical properties
– polynomial space
– in practice, often faster than its worst-case runtime
– simple speedups (reduction rules, branch-and-bound)

• Other names:
Backtracking, search-tree algorithms, . . .

5

General Form

• Branching Rules:
Choose a small part of the solution and solve a
corresponding subproblem for each choice
⇒ obtain a solution of the original problem based on the
solutions of the subproblems

• Reduction Rules:
Reduce the problem size (also: exit/rejection conditions)

• Correctness:
Often immediate/obvious

• Specification:
Often only calculates the optimal value.

6

Branching Vectors

• Apply a branching rule b to an instance I of size n.

• Suppose that b decomposes I into r ≥ 2 sub-instances
of sizes n− t1, n− t2, . . . , n− tr, where ti > 0 for each i.

. . .

Recurrence: T (n) ≤ T (n− t1) + T (n− t2) + . . .+ T (n− tr)

size: n− t1 size: n− t2 size: n− tr

• We call (t1, t2, . . . , tr) branching vector of b .

size: n

7

Theorem on Branching Vectors

Thm. Let b be a branching rule with vector (t1, t2, . . . , tr).
Then the runtime of an algorithm executing b is O∗(αn),
where α is the unique positive root of

• Often irrational.

• Denote solution by τ(t1, t2, . . . , tr).

αn = αn−t1 + αn−t2 + . . .+ αn−tr

αn − αn−t1 − αn−t2 − . . .− αn−tr = 0

1− α−t1 − α−t2 − . . .− α−tr = 0

αm − αm−t1 − αm−t2 − . . .− αm−tr = 0

where m := max1≤i≤r ti.

8

Properties of τ(·)
Thm. Let r ≥ 2 and, for i = 1, . . . , r, let ti > 0. Then:

(i) τ(t1, . . . , tr) > 1,
(ii) τ(t1, . . . , tr) = τ(tπ(1), . . . , tπ(r))

for every permutation π,
(iii) τ(t1, t2 . . . , tr) < τ(t′1, t2, . . . , tr) if t1 > t′1.

Lemma. For i, j, k > 0, the following balancing properties
apply:

(i) τ(k, k) ≤ τ(i, j) if i+ j = 2k,
(ii) τ(i, j) > τ(i+ ε, j − ε)

if 0 < i < j and 0 < ε < j−i
2 .

E.g.: τ(1, 1) = 2

τ(1, 2) = 1+
√
5

2 < 1.62
τ(3, 3) = 3

√
2 < 1.26

τ(2, 4) < 1.272
τ(1, 5) < 1.3248

. . .

size: n

size: n− t1 size: n− t2 size: n− tr

9

“Addition” of Branching Vectors

Branching-Vector: (i+ k, i + `, j)

size: n

size: n− i size: n− j

i j

k `

size: n− i− k size: n− i− `

i+ k i+ `

10

Satisfiability (SAT)

Input: propositional logic formula F in conjunctive NF

Question: ∃ satisfying assignment for F?

E.g., (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x4 ∨ x5)︸ ︷︷ ︸
variable literal

clause

k-SAT:

Brute-Force:

Strong Exponential Time Hypothesis (SETH) implies that:

6 ∃ algorithm for SAT in o(2n) time, i.e., in O∗((2− ε)n), ε > 0.

For more on (S)ETH, see [Parameterized Algorithms 14.1].

Runtime:

Try all 2n variable assignments.

O(2n·n·m), where n = #variables, m = #clauses.

Each clause has ≤ k literals.

11

A Better Algorithm for k-SAT

• Goal:
Solve k-SAT in time O∗(αk

n), where αk < 2 for every k.

• Idea: Branch on variables.

• For a partial assignment t,
let F [t] be the reduced formula that we get after
– removing false literals from clauses and
– removing clauses with true literals.

– F = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x4 ∨ x5)

– t: x1 = false

– F [t] =

Example:

(x̄2 ∨ x3)

12

Properties of Reduced Formulas

• F [t] satisfiable ⇒ F satisfiable

• F [t] contains an empty clause ⇒ F [t] not satisfiable

• F [t] empty ⇒ F [t] satisfiable

• F [x1 = f] = (x̄2 ∨ x3) satisfiable

• F = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x4 ∨ x5)

• F [x2 = t, x3 = x4 = x5 = f] = x1 ∧ x̄1 not satisfiable

• F [x1 = x3 = f, x2 = t] = ()

• F [x3 = x4 = t] = empty formula

13

A First Algorithm for k-SAT

Algorithm k-SAT-v1(F)
if F is empty then

return true
if F contains an empty clause then

return false
pick clause c = (`1 ∨ `2 ∨ . . . ∨ `q) from F , where q ≤ k
t1: `1 = true
t2: `1 = false, `2 = true
t3: `1 = false, `2 = false, `3 = true
...

tq: `1 = false, `2 = false, . . . , `q−1 = false, `q = true

return
∨q
i=1 k-SAT-v1(F [ti])

• ti: first true literal in c is `i

14

Runtime

• F [ti] has n− i variables

⇒ branching vector (1, 2, . . . , k)

• Runtime: O∗(βk
n), where βk = τ(1, 2, . . . , k).

• β1 = 1, β2 < 1.6181, β3 < 1.8393, β4 < 1.9276, β5 < 1.9660

Note: τ(1, 2, . . . , k) ⇒ βk
k =

∑k−1
i=0 βk

i. (*)

So, (*)·βk−(*) ⇒ βk
k+1 − 2βk

k + 1 = 0.

15

Speeding Up the Algorithm

• “Branch-on-shortest” rule

• Hope: ∃ a clause of length ≤ k − 1

Def. A partial assignment t is an autark
if every clause with a literal assigned by t
also contains a literal assigned true by t.

F = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x4 ∨ x5) ∧ (x̄3 ∨ x5)

t: x1 = x4 = true

Obs. • If t is an autark, then: F satisfiable⇔ F [t] satisfiable.

t′: x1 = true, x4 = false

• If t is not an autark,
then F [t] contains a clause of length ≤ k − 1.

is an autark

is not an autark

Expl.

16

An Improved k-SAT Algorithm

Algorithm k-SAT-v2(F)
if F is empty then

return true
if F contains an empty clause then

return false
pick a smallest clause c = (`1 ∨ `2 ∨ . . . ∨ `q) from F , where q ≤ k
t1: `1 =true
t2: `1 = false, `2 = true
...

tq: `1 = false, `2 = false, . . . , `q−1 = false, `q = true
if ti is an autark for some i = 1, . . . , q then

return k-SAT-v2(F [ti])
else

return
∨q
i=1 k-SAT-v2(F [ti])

← “Reduce”

← “Branch”

17

Runtime Analysis

• Claim: The runtime is O∗(αnk), where αk = βk−1.

• Consider a node v in the search tree (not the root).

⇒ α2 = 1, α3 < 1.6181, α4 < 1.8393, α5 < 1.9276, α6 < 1.9660
• β1 = 1, β2 < 1.6181, β3 < 1.8393, β4 < 1.9276, β5 < 1.9660

⇒ branching vector

If v is a k-branching, then v’s parent is a “Reduce”-node
because in a “Branch”-node, for each branch,
the formula F [ti] contains a clause of length ≤ k − 1.

�

βk+1
k − 2βkk + 1 = 0

(1, 2, . . . , k − 1, k)

⇒ αkk − 2αk−1k + 1 = 0

Now: Before:

︸ ︷︷ ︸
⇒ αk = βk−1

(1, 2, . . . , k − 1)

	Problems in $\cal N\!P$
	Problem Types
	Branching Algorithms
	General Form
	Branching Vectors
	Theorem on Branching Vectors
	``Addition'' of Branching Vectors
	\textsc{Satisfiability} (SAT)
	A Better Algorithm for k-SAT
	Properties of Reduced Formulas
	A First Algorithm for k-SAT
	Runtime
	Speeding Up the Algorithm
	An Improved k-SAT Algorithm
	Runtime Analysis

