

Exact Algorithms

Sommer Term 2020

Lecture 2. Branching Algorithms and Satisfiability

Based on: [Exact Exponential Algorithms: $\S2$] Further discussions: [Parameterized Algorithms: $\S3$; specifically $\S3.2$]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

Problems in $\mathcal{N\!P}$

- Brute force?
- $\forall \text{ Yes-instances} : \exists \text{ certificate}$
 - polynomial size
 - polynomial-time verifiable
- Runtime?

Problem Types

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- $\bullet\,$ e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^*(n!) = 2^{O(n \log n)}$ time

Partitioning Problems

- Solutions: partitionings of a given ground set
- e.g., graph coloring: partition vertices of a graph into independent sets

• Brute-force in
$$O^*(n^n) = 2^{O(n \log n)}$$
 time

Branching Algorithms

- Standard technique
- Typical properties
 - polynomial space
 - in practice, often faster than its worst-case runtime
 - simple speedups (reduction rules, branch-and-bound)
- Other names:

Backtracking, search-tree algorithms, ...

General Form

• Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice \Rightarrow obtain a solution of the original problem based on the solutions of the subproblems

• Reduction Rules:

Reduce the problem size (also: exit/rejection conditions)

• Correctness:

Often immediate/obvious

• **Specification**:

Often only calculates the optimal value.

Branching Vectors

- Apply a branching rule b to an instance I of size n.
- Suppose that b decomposes I into $r \ge 2$ sub-instances of sizes $n t_1, n t_2, \ldots, n t_r$, where $t_i > 0$ for each i.
- We call (t_1, t_2, \ldots, t_r) branching vector of b.

Recurrence: $T(n) \leq T(n-t_1) + T(n-t_2) + ... + T(n-t_r)$

Theorem on Branching Vectors

Thm. Let b be a branching rule with vector (t_1, t_2, \ldots, t_r) . Then the runtime of an algorithm executing b is $O^*(\alpha^n)$, where α is the unique positive root of

$$\begin{split} \alpha^n &= \alpha^{n-t_1} + \alpha^{n-t_2} + \ldots + \alpha^{n-t_r} \\ \alpha^n - \alpha^{n-t_1} - \alpha^{n-t_2} - \ldots - \alpha^{n-t_r} &= 0 \\ 1 - \alpha^{-t_1} - \alpha^{-t_2} - \ldots - \alpha^{-t_r} &= 0 \\ \alpha^m - \alpha^{m-t_1} - \alpha^{m-t_2} - \ldots - \alpha^{m-t_r} &= 0 \end{split}$$
where $m := \max_{1 \le i \le r} t_i$.

- Denote solution by $\tau(t_1, t_2, \ldots, t_r)$.
- Often irrational.

Properties of
$$\tau(\cdot)$$

size: $n - t_1$ size: $n - t_2$... size: $n - t_r$
Thm. Let $r \ge 2$ and, for $i = 1, ..., r$, let $t_i > 0$. Then:
(i) $\tau(t_1, ..., t_r) > 1$,
(ii) $\tau(t_1, ..., t_r) = \tau(t_{\pi(1)}, ..., t_{\pi(r)})$
for every permutation π ,
(iii) $\tau(t_1, t_2 ..., t_r) < \tau(t'_1, t_2, ..., t_r)$ if $t_1 > t'_1$.
Lemma. For $i, j, k > 0$, the following balancing properties
apply:
(i) $\tau(k, k) \le \tau(i, j)$ if $i + j = 2k$,
(ii) $\tau(i, j) > \tau(i + \varepsilon, j - \varepsilon)$
if $0 < i < j$ and $0 < \varepsilon < \frac{j-i}{2}$.
E.g.: $\tau(1, 1) = 2$
 $\tau(1, 2) = \frac{1 + \sqrt{5}}{2} < 1.62$
 $\tau(2, 4) < 1.272$
 $\tau(1, 5) < 1.3248$

"Addition" of Branching Vectors

Branching-Vector: $(i + k, i + \ell, j)$

SATISFIABILITY (SAT)

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

Brute-Force: Try all 2^n variable assignments. Runtime: $O(2^n \cdot n \cdot m)$, where n = #variables, m = #clauses.

Strong Exponential Time Hypothesis (SETH)implies that: $\not\exists$ algorithm for SAT in $o(2^n)$ time, i.e., in $O^*((2 - \varepsilon)^n), \varepsilon > 0$.For more on (S)ETH, see [Parameterized Algorithms 14.1].k-SAT:Each clause has $\leq k$ literals.

A Better Algorithm for k-SAT

• Goal:

Solve k-SAT in time $O^*(\alpha_k^n)$, where $\alpha_k < 2$ for every k.

- Idea: Branch on variables.
- For a partial assignment t,
 let F[t] be the reduced formula that we get after
 removing false literals from clauses and
 - removing clauses with true literals.

Example:

$$- F = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_4 \vee x_5)$$

-
$$t$$
: $x_1 = false$

$$- F[t] = (\bar{x}_2 \vee x_3)$$

Properties of Reduced Formulas

- F[t] satisfiable \Rightarrow F satisfiable
- F[t] contains an empty clause $\Rightarrow F[t]$ not satisfiable
- $F[t] \text{ empty} \Rightarrow F[t] \text{ satisfiable}$
- $F = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \land \bar{x}_1$ not satisfiable
- $F[x_1 = x_3 = f, x_2 = t] = ()$
- $F[x_3 = x_4 = t] = empty formula$

A First Algorithm for k-SAT

```
Algorithm k-SAT-v1(F)
   if F is empty then
    ∟ return true
   if F contains an empty clause then
    return false
  pick clause c = (\ell_1 \lor \ell_2 \lor \ldots \lor \ell_q) from F, where q \le k
  t_1: \ell_1 = true
  t_2: \ell_1 = false, \ell_2 = true
  t_3: \ell_1 = false, \ell_2 = false, \ell_3 = true
  t_q: \ell_1 = false, \ell_2 = false, \dots, \ell_{q-1} = false, \ell_q = true
   return \bigvee_{i=1}^{q} k-SAT-v1(F[t_i])
```

• t_i : first true literal in c is ℓ_i

Runtime

- $F[t_i]$ has n i variables \Rightarrow branching vector $(1, 2, \dots, k)$
- Runtime: O*(β_kⁿ), where β_k = τ(1, 2, ..., k).
 Note: τ(1, 2, ..., k) ⇒ β_k^k = Σ^{k-1}_{i=0} β_kⁱ. (*)
 So, (*)·β_k-(*) ⇒ β_k^{k+1} 2β_k^k + 1 = 0.
 β₁ = 1, β₂ < 1.6181, β₃ < 1.8393, β₄ < 1.9276, β₅ < 1.9660

Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$
- **Def.** A partial assignment t is an *autark* if every clause with a literal assigned by talso contains a literal assigned true by t.

Expl.
$$F = (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_4 \lor x_5) \land (\overline{x}_3 \lor x_5)$$

t:
$$x_1 = x_4 = \text{true}$$
 is an autark

- t': $x_1 =$ true, $x_4 =$ false is *not* an autark
- Obs. If t is an autark, then: F satisfiable ⇔ F[t] satisfiable.
 If t is not an autark, then F[t] contains a clause of length ≤ k 1.

An Improved k-SAT Algorithm

```
Algorithm k-SAT-v2(F)
  if F is empty then
   ∟ return true
  if F contains an empty clause then
   return false
  pick a smallest clause c = (\ell_1 \lor \ell_2 \lor \ldots \lor \ell_q) from F, where q \le k
  t_1: \ell_1 = \mathsf{true}
  t_2: \ell_1 = false, \ell_2 = true
  t_q: \ell_1 = false, \ell_2 = false, \ldots, \ell_{q-1} = false, \ell_q = true
  if t_i is an autark for some i = 1, \ldots, q then
       return k-SAT-v2(F[t_i]) \leftarrow "Reduce"
  else
       return \bigvee_{i=1}^{q} k-SAT-v2(F[t_i]) \leftarrow "Branch"
```

Runtime Analysis

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k - 1$.

Now:

$$\Rightarrow \text{ branching vector } (1, 2, \dots, k-1) \quad \begin{array}{l} \text{Before:} \\ (1, 2, \dots, k-1, k) \\ \beta_k^{k-1} - 2\beta_k^{k-1} + 1 = 0 \\ \Rightarrow \alpha_k = \beta_{k-1} \end{array}$$

• $\beta_1 = 1, \beta_2 < 1.6181, \beta_3 < 1.8393, \beta_4 < 1.9276, \beta_5 < 1.9660$ $\Rightarrow \alpha_2 = 1, \alpha_3 < 1.6181, \alpha_4 < 1.8393, \alpha_5 < 1.9276, \alpha_6 < 1.9660$