## UNIVERSITÄT WÜRZBURG

## Lehrstuhl für

INFORMATIK I

## Exact Algorithms

Sommer Term 2020
Lecture 2. Branching Algorithms and Satisfiability Based on: [Exact Exponential Algorithms: §2]
Further discussions: [Parameterized Algorithms: §3; specifically §3.2]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

## Problems in $\mathcal{N P}$

- Brute force?


## Problems in $\mathcal{N P}$

- Brute force?
- $\forall$ Yes-instances : $\exists$ certificate


## Problems in $\mathcal{N P}$

- Brute force?
- $\forall$ Yes-instances : $\exists$ certificate


## Problems in $\mathcal{N P}$

- Brute force?
- $\forall$ Yes-instances : $\exists$ certificate
- polynomial size


## Problems in $\mathcal{N P}$

- Brute force?
- $\forall$ Yes-instances : $\exists$ certificate
- polynomial size
- polynomial-time verifiable


## Problems in $\mathcal{N P}$

- Brute force?
- $\forall$ Yes-instances : $\exists$ certificate
- polynomial size
- polynomial-time verifiable
- Runtime?


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^{*}\left(2^{n}\right)$ time


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^{*}\left(2^{n}\right)$ time

Permutation Problems

- Solutions: permutations of a given ground set


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^{*}\left(2^{n}\right)$ time


## Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^{*}\left(2^{n}\right)$ time


## Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^{*}(n!)=2^{O(n \log n)}$ time


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^{*}\left(2^{n}\right)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^{*}(n!)=2^{O(n \log n)}$ time

Partitioning Problems

- Solutions: partitionings of a given ground set


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^{*}\left(2^{n}\right)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^{*}(n!)=2^{O(n \log n)}$ time

Partitioning Problems

- Solutions: partitionings of a given ground set
- e.g., graph coloring: partition vertices of a graph into independent sets


## Problem Types

## Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^{*}\left(2^{n}\right)$ time


## Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^{*}(n!)=2^{O(n \log n)}$ time

Partitioning Problems

- Solutions: partitionings of a given ground set
- e.g., graph coloring: partition vertices of a graph into independent sets
- Brute-force in $O^{*}\left(n^{n}\right)=2^{O(n \log n)}$ time


## Branching Algorithms

- Standard technique


## Branching Algorithms

- Standard technique
- Typical properties
- polynomial space
- in practice, often faster than its worst-case runtime
- simple speedups (reduction rules, branch-and-bound)


## Branching Algorithms

- Standard technique
- Typical properties
- polynomial space
- in practice, often faster than its worst-case runtime
- simple speedups (reduction rules, branch-and-bound)
- Other names:

Backtracking, search-tree algorithms, ...

## General Form

- Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice
$\Rightarrow$ obtain a solution of the original problem based on the solutions of the subproblems

## General Form

- Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice
$\Rightarrow$ obtain a solution of the original problem based on the solutions of the subproblems

- Reduction Rules:

Reduce the problem size (also: exit/rejection conditions)

## General Form

- Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice
$\Rightarrow$ obtain a solution of the original problem based on the solutions of the subproblems

- Reduction Rules:

Reduce the problem size (also: exit/rejection conditions)

- Correctness:

Often immediate/obvious

## General Form

- Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice
$\Rightarrow$ obtain a solution of the original problem based on the solutions of the subproblems

- Reduction Rules:

Reduce the problem size (also: exit/rejection conditions)

- Correctness:

Often immediate/obvious

- Specification:

Often only calculates the optimal value.

## Branching Vectors

- Apply a branching rule $b$ to an instance $I$ of size $n$.


## Branching Vectors

- Apply a branching rule $b$ to an instance $I$ of size $n$.
- Suppose that $b$ decomposes $I$ into $r \geq 2$ sub-instances of sizes $n-t_{1}, n-t_{2}, \ldots, n-t_{r}$, where $t_{i}>0$ for each $i$.



## Branching Vectors

- Apply a branching rule $b$ to an instance $I$ of size $n$.
- Suppose that $b$ decomposes $I$ into $r \geq 2$ sub-instances of sizes $n-t_{1}, n-t_{2}, \ldots, n-t_{r}$, where $t_{i}>0$ for each $i$.
- We call $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ branching vector of $b$.



## Branching Vectors

- Apply a branching rule $b$ to an instance $I$ of size $n$.
- Suppose that $b$ decomposes $I$ into $r \geq 2$ sub-instances of sizes $n-t_{1}, n-t_{2}, \ldots, n-t_{r}$, where $t_{i}>0$ for each $i$.
- We call $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ branching vector of $b$.
size: $n-t_{1}$
size: $n-t_{2}$
...
size: $n-t_{r}$

Recurrence: $T(n) \leq T\left(n-t_{1}\right)+T\left(n-t_{2}\right)+\ldots+T\left(n-t_{r}\right)$

## Theorem on Branching Vectors

Thm. Let $b$ be a branching rule with vector $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Then the runtime of an algorithm executing $b$ is $O^{*}\left(\alpha^{n}\right)$, where $\alpha$ is the unique positive root of

## Theorem on Branching Vectors

Thm. Let $b$ be a branching rule with vector $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Then the runtime of an algorithm executing $b$ is $O^{*}\left(\alpha^{n}\right)$, where $\alpha$ is the unique positive root of

$$
\alpha^{n}=\alpha^{n-t_{1}}+\alpha^{n-t_{2}}+\ldots+\alpha^{n-t_{r}}
$$

## Theorem on Branching Vectors

Thm. Let $b$ be a branching rule with vector $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Then the runtime of an algorithm executing $b$ is $O^{*}\left(\alpha^{n}\right)$, where $\alpha$ is the unique positive root of

$$
\begin{gathered}
\alpha^{n}=\alpha^{n-t_{1}}+\alpha^{n-t_{2}}+\ldots+\alpha^{n-t_{r}} \\
\alpha^{n}-\alpha^{n-t_{1}}-\alpha^{n-t_{2}}-\ldots-\alpha^{n-t_{r}}=0
\end{gathered}
$$

## Theorem on Branching Vectors

Thm. Let $b$ be a branching rule with vector $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Then the runtime of an algorithm executing $b$ is $O^{*}\left(\alpha^{n}\right)$, where $\alpha$ is the unique positive root of

$$
\begin{array}{r}
\alpha^{n}=\alpha^{n-t_{1}}+\alpha^{n-t_{2}}+\ldots+\alpha^{n-t_{r}} \\
\alpha^{n}-\alpha^{n-t_{1}}-\alpha^{n-t_{2}}-\ldots-\alpha^{n-t_{r}}=0 \\
1-\alpha^{-t_{1}}-\alpha^{-t_{2}}-\ldots-\alpha^{-t_{r}}=0
\end{array}
$$

## Theorem on Branching Vectors

Thm. Let $b$ be a branching rule with vector $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Then the runtime of an algorithm executing $b$ is $O^{*}\left(\alpha^{n}\right)$, where $\alpha$ is the unique positive root of

$$
\begin{aligned}
& \alpha^{n}=\alpha^{n-t_{1}}+\alpha^{n-t_{2}}+\ldots+\alpha^{n-t_{r}} \\
& \alpha^{n}-\alpha^{n-t_{1}}-\alpha^{n-t_{2}}-\ldots-\alpha^{n-t_{r}}=0 \\
& 1-\alpha^{-t_{1}}-\alpha^{-t_{2}}-\ldots-\alpha^{-t_{r}}=0 \\
& \alpha^{m}-\alpha^{m-t_{1}}-\alpha^{m-t_{2}}-\ldots-\alpha^{m-t_{r}}=0 \\
& \text { where } m:=\max _{1 \leq i \leq r} t_{i} .
\end{aligned}
$$

## Theorem on Branching Vectors

Thm. Let $b$ be a branching rule with vector $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Then the runtime of an algorithm executing $b$ is $O^{*}\left(\alpha^{n}\right)$, where $\alpha$ is the unique positive root of

$$
\begin{aligned}
\alpha^{n} & =a^{n-t_{1}}+\alpha^{n-t_{2}}+\ldots+\alpha^{n-t_{r}} \\
\alpha^{n}-\alpha^{n-t_{1}}-\alpha^{n-t_{2}}-\ldots-\alpha^{n-t_{r}} & =0 \\
1-\alpha^{-t_{1}}-\alpha^{-t_{2}}-\ldots-\alpha^{-t_{r}} & =0 \\
\alpha^{m}-\alpha^{m-t_{1}}-\alpha^{m-t_{2}}-\ldots-\alpha^{m-t_{r}} & =0 \\
\text { where } m & :=\max _{1 \leq i \leq r} t_{i}
\end{aligned}
$$

- Denote solution by $\tau\left(t_{1}, t_{2}, \ldots, t_{r}\right)$.


## Theorem on Branching Vectors

Thm. Let $b$ be a branching rule with vector $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Then the runtime of an algorithm executing $b$ is $O^{*}\left(\alpha^{n}\right)$, where $\alpha$ is the unique positive root of

$$
\begin{aligned}
\alpha^{n} & =a^{n-t_{1}}+\alpha^{n-t_{2}}+\ldots+\alpha^{n-t_{r}} \\
\alpha^{n}-\alpha^{n-t_{1}}-\alpha^{n-t_{2}}-\ldots-\alpha^{n-t_{r}} & =0 \\
1-\alpha^{-t_{1}}-\alpha^{-t_{2}}-\ldots-\alpha^{-t_{r}} & =0 \\
\alpha^{m}-\alpha^{m-t_{1}}-a^{m-t_{2}}-\ldots-\alpha^{m-t_{r}} & =0 \\
\text { where } m & :=\max _{1 \leq i \leq r} t_{i}
\end{aligned}
$$

- Denote solution by $\tau\left(t_{1}, t_{2}, \ldots, t_{r}\right)$.
- Often irrational.

Properties of $\tau(\cdot)$
Thm.
Let $r \geq 2$ and, for $i=1, \ldots, r$, let $t_{i}>0$. Then:
(i) $\tau\left(t_{1}, \ldots, t_{r}\right)>1$,

Properties of $\tau(\cdot)$
Thm. Let $r \geq 2$ and, for $i=1, \ldots, r$, let $t_{i}>0$. Then:
(i) $\tau\left(t_{1}, \ldots, t_{r}\right)>1$,
(ii) $\tau\left(t_{1}, \ldots, t_{r}\right)=\tau\left(t_{\pi(1)}, \ldots, t_{\pi(r)}\right)$ for everv permutation $\pi$.

Properties of $\tau(\cdot)$
Thm. Let $r \geq 2$ and, for $i=1, \ldots, r$, let $t_{i}>0$. Then:
(i) $\tau\left(t_{1}, \ldots, t_{r}\right)>1$,
(ii) $\tau\left(t_{1}, \ldots, t_{r}\right)=\tau\left(t_{\pi(1)}, \ldots, t_{\pi(r)}\right)$
for every permutation $\pi$,
(iii) $\tau\left(t_{1}, t_{2} \ldots, t_{r}\right)<\tau\left(t_{1}^{\prime}, t_{2}, \ldots, t_{r}\right)$ if $t_{1}>t_{1}^{\prime}$.

Properties of $\tau(\cdot)$
Thm. Let $r \geq 2$ and, for $i=1, \ldots, r$, let $t_{i}>0$. Then:
(i) $\tau\left(t_{1}, \ldots, t_{r}\right)>1$,
(ii) $\tau\left(t_{1}, \ldots, t_{r}\right)=\tau\left(t_{\pi(1)}, \ldots, t_{\pi(r)}\right)$ for every permutation $\pi$,
(iii) $\tau\left(t_{1}, t_{2} \ldots, t_{r}\right)<\tau\left(t_{1}^{\prime}, t_{2}, \ldots, t_{r}\right)$ if $t_{1}>t_{1}^{\prime}$.

Lemma. For $i, j, k>0$, the following balancing properties apply:
(i) $\tau(k, k) \leq \tau(i, j)$ if $i+j=2 k$,
(ii) $\tau(i, j)>\tau(i+\varepsilon, j-\varepsilon)$ if $0<i<j$ and $0<\varepsilon<\frac{j-i}{2}$.

## Properties of $\tau(\cdot)$

Thm. Let $r \geq 2$ and, for $i=1, \ldots, r$, let $t_{i}>0$. Then:
(i) $\tau\left(t_{1}, \ldots, t_{r}\right)>1$,
(ii) $\tau\left(t_{1}, \ldots, t_{r}\right)=\tau\left(t_{\pi(1)}, \ldots, t_{\pi(r)}\right)$
for every permutation $\pi$,
(iii) $\tau\left(t_{1}, t_{2} \ldots, t_{r}\right)<\tau\left(t_{1}^{\prime}, t_{2}, \ldots, t_{r}\right)$ if $t_{1}>t_{1}^{\prime}$.

Lemma. For $i, j, k>0$, the following balancing properties apply:
(i) $\tau(k, k) \leq \tau(i, j)$ if $i+j=2 k$,
(ii) $\tau(i, j)>\tau(i+\varepsilon, j-\varepsilon)$ if $0<i<j$ and $0<\varepsilon<\frac{j-i}{2}$.
E.g.:

$$
\begin{aligned}
& \tau(1,1)=2 \\
& \tau(1,2)=\frac{1+\sqrt{5}}{2}<1.62
\end{aligned}
$$

## Properties of $\tau(\cdot)$

Thm. Let $r \geq 2$ and, for $i=1, \ldots, r$, let $t_{i}>0$. Then:
(i) $\tau\left(t_{1}, \ldots, t_{r}\right)>1$,
(ii) $\tau\left(t_{1}, \ldots, t_{r}\right)=\tau\left(t_{\pi(1)}, \ldots, t_{\pi(r)}\right)$
for every permutation $\pi$,
(iii) $\tau\left(t_{1}, t_{2} \ldots, t_{r}\right)<\tau\left(t_{1}^{\prime}, t_{2}, \ldots, t_{r}\right)$ if $t_{1}>t_{1}^{\prime}$.

Lemma. For $i, j, k>0$, the following balancing properties apply:
(i) $\tau(k, k) \leq \tau(i, j)$ if $i+j=2 k$,
(ii) $\tau(i, j)>\tau(i+\varepsilon, j-\varepsilon)$ if $0<i<j$ and $0<\varepsilon<\frac{j-i}{2}$.
E.g.:

$$
\begin{array}{ll}
\tau(1,1)=2 & \tau(3,3)=\sqrt[3]{2}<1.26 \\
\tau(1,2)=\frac{1+\sqrt{5}}{2}<1.62 & \tau(2,4)<1.272 \\
& \tau(1,5)<1.3248
\end{array}
$$

## "Addition" of Branching Vectors



## "Addition" of Branching Vectors



## "Addition" of Branching Vectors



Branching-Vector: $(i+k, i+\ell, j)$

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {clause }}$

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?


## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?


## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {variable }}$

Brute-Force:

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {variable }}$

Brute-Force: Try all $2^{n}$ variable assignments.

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {variable }}$

Brute-Force: Try all $2^{n}$ variable assignments.
Runtime:

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {variable }}$

Brute-Force: Try all $2^{n}$ variable assignments.
Runtime: $\quad O\left(2^{n} \cdot n \cdot m\right)$, where $n=\#$ variables, $m=$ \#clauses.

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {variable }}$

Brute-Force: Try all $2^{n}$ variable assignments.
Runtime: $\quad O\left(2^{n} \cdot n \cdot m\right)$, where $n=\#$ variables, $m=$ \#clauses.
Strong Exponential Time Hypothesis (SETH) implies that:
$\nexists$ algorithm for SAT in $o\left(2^{n}\right)$ time, i.e., in $O^{*}\left((2-\varepsilon)^{n}\right), \varepsilon>0$.

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {variable }}$

Brute-Force: Try all $2^{n}$ variable assignments.
Runtime: $\quad O\left(2^{n} \cdot n \cdot m\right)$, where $n=\#$ variables, $m=$ \#clauses.
Strong Exponential Time Hypothesis (SETH) implies that:
$\nexists$ algorithm for SAT in $o\left(2^{n}\right)$ time, i.e., in $O^{*}\left((2-\varepsilon)^{n}\right), \varepsilon>0$.
For more on (S)ETH, see [Parameterized Algorithms 14.1].

## Satisfiability (SAT)

Input: propositional logic formula $F$ in conjunctive NF
Question: $\quad \exists$ satisfying assignment for $F$ ?
E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \underbrace{\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)}_{\text {variable }}$

Brute-Force: Try all $2^{n}$ variable assignments.
Runtime: $\quad O\left(2^{n} \cdot n \cdot m\right)$, where $n=\#$ variables, $m=$ \#clauses.
Strong Exponential Time Hypothesis (SETH) implies that:
$\nexists$ algorithm for SAT in $o\left(2^{n}\right)$ time, i.e., in $O^{*}\left((2-\varepsilon)^{n}\right), \varepsilon>0$. For more on (S)ETH, see [Parameterized Algorithms 14.1].
$k$-SAT: $\quad$ Each clause has $\leq k$ literals.

A Better Algorithm for $k$-SAT

- Goal:

Solve $k$-SAT in time $O^{*}\left(\alpha_{k}{ }^{n}\right)$, where $\alpha_{k}<2$ for every $k$.

A Better Algorithm for $k$-SAT

- Goal:

Solve $k$-SAT in time $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}<2$ for every $k$.

- Idea: Branch on variables.


## A Better Algorithm for $k$-SAT

- Goal:

Solve $k$-SAT in time $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}<2$ for every $k$.

- Idea: Branch on variables.
- For a partial assignment $t$, let $F[t]$ be the reduced formula that we get after
- removing false literals from clauses and
- removing clauses with true literals.


## A Better Algorithm for $k$-SAT

- Goal:

Solve $k$-SAT in time $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}<2$ for every $k$.

- Idea: Branch on variables.
- For a partial assignment $t$, let $F[t]$ be the reduced formula that we get after
- removing false literals from clauses and
- removing clauses with true literals.

Example:

$$
-F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)
$$

## A Better Algorithm for $k$-SAT

- Goal:

Solve $k$-SAT in time $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}<2$ for every $k$.

- Idea: Branch on variables.
- For a partial assignment $t$, let $F[t]$ be the reduced formula that we get after
- removing false literals from clauses and
- removing clauses with true literals.

Example:

$$
\begin{aligned}
& -\quad F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \\
& -\quad t: x_{1}=\text { false }
\end{aligned}
$$

## A Better Algorithm for $k$-SAT

- Goal:

Solve $k$-SAT in time $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}<2$ for every $k$.

- Idea: Branch on variables.
- For a partial assignment $t$, let $F[t]$ be the reduced formula that we get after
- removing false literals from clauses and
- removing clauses with true literals.

Example:

$$
\begin{aligned}
& -F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \\
& -\quad t: x_{1}=\text { false } \\
& -\quad F[t]=
\end{aligned}
$$

## A Better Algorithm for $k$-SAT

- Goal:

Solve $k$-SAT in time $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}<2$ for every $k$.

- Idea: Branch on variables.
- For a partial assignment $t$, let $F[t]$ be the reduced formula that we get after
- removing false literals from clauses and
- removing clauses with true literals.

Example:

$$
\begin{aligned}
& -F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \\
& -\quad t: x_{1}=\text { false } \\
& -\quad F[t]=\left(\bar{x}_{2} \vee x_{3}\right)
\end{aligned}
$$

## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=$


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=$


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=x_{1} \wedge \bar{x}_{1} \quad$ not satisfiable


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=x_{1} \wedge \bar{x}_{1} \quad$ not satisfiable
- $F\left[x_{1}=x_{3}=\mathrm{f}, x_{2}=\mathrm{t}\right]=$


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=x_{1} \wedge \bar{x}_{1} \quad$ not satisfiable
- $F\left[x_{1}=x_{3}=\mathrm{f}, x_{2}=\mathrm{t}\right]=()$


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F[t]$ contains an empty clause $\Rightarrow F[t]$ not satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=x_{1} \wedge \bar{x}_{1} \quad$ not satisfiable
- $F\left[x_{1}=x_{3}=\mathrm{f}, x_{2}=\mathrm{t}\right]=()$


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F[t]$ contains an empty clause $\Rightarrow F[t]$ not satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=x_{1} \wedge \bar{x}_{1} \quad$ not satisfiable
- $F\left[x_{1}=x_{3}=\mathrm{f}, x_{2}=\mathrm{t}\right]=()$
- $F\left[x_{3}=x_{4}=\mathrm{t}\right]=$


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F[t]$ contains an empty clause $\Rightarrow F[t]$ not satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=x_{1} \wedge \bar{x}_{1} \quad$ not satisfiable
- $F\left[x_{1}=x_{3}=\mathrm{f}, x_{2}=\mathrm{t}\right]=()$
- $F\left[x_{3}=x_{4}=\mathrm{t}\right]=$ empty formula


## Properties of Reduced Formulas

- $F[t]$ satisfiable $\Rightarrow F$ satisfiable
- $F[t]$ contains an empty clause $\Rightarrow F[t]$ not satisfiable
- $F[t]$ empty $\Rightarrow F[t]$ satisfiable
- $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$
- $F\left[x_{1}=\mathrm{f}\right]=\left(\bar{x}_{2} \vee x_{3}\right) \quad$ satisfiable
- $F\left[x_{2}=\mathrm{t}, x_{3}=x_{4}=x_{5}=\mathrm{f}\right]=x_{1} \wedge \bar{x}_{1} \quad$ not satisfiable
- $F\left[x_{1}=x_{3}=\mathrm{f}, x_{2}=\mathrm{t}\right]=()$
- $F\left[x_{3}=x_{4}=\mathrm{t}\right]=$ empty formula

A First Algorithm for $k$-SAT
Algorithm $k$-SAT-vi( $\bar{F})$
if $F$ is empty then
$L$ return true
if $F$ contains an empty clause then
$L$ return false
pick clause $c=\left(\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{q}\right)$ from $F$, where $q \leq k$ $t_{1}: \ell_{1}=$ true
$t_{2}: \ell_{1}=$ false, $\ell_{2}=$ true
$t_{3}: \ell_{1}=$ false, $\ell_{2}=$ false, $\ell_{3}=$ true
$t_{q}: \ell_{1}=$ false,$\ell_{2}=$ false $, \ldots, \ell_{q-1}=$ false,$\ell_{q}=$ true return $\bigvee_{i=1}^{q} k$-SAT-v1 $\left(F\left[t_{i}\right]\right)$

A First Algorithm for $k$-SAT
Algorithm $k$-SAT-vi( $\bar{F})$
if $F$ is empty then
$L$ return true
if $F$ contains an empty clause then
$L$ return false
pick clause $c=\left(\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{q}\right)$ from $F$, where $q \leq k$
$t_{1}: \ell_{1}=$ true
$t_{2}: \ell_{1}=$ false, $\ell_{2}=$ true
$t_{3}: \ell_{1}=$ false, $\ell_{2}=$ false, $\ell_{3}=$ true
$t_{q}: \ell_{1}=$ false,$\ell_{2}=$ false $, \ldots, \ell_{q-1}=$ false,$\ell_{q}=$ true return $\bigvee_{i=1}^{q} k$-SAT-v1 $\left(F\left[t_{i}\right]\right)$

- $t_{i}$ : first true literal in $c$ is $\ell_{i}$


## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables


## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables
$\Rightarrow$ branching vector $(1,2, \ldots, k)$


## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables
$\Rightarrow$ branching vector $(1,2, \ldots, k)$
- Runtime: $O^{*}\left(\beta_{k}{ }^{n}\right)$, where $\beta_{k}=\tau(1,2, \ldots, k)$.


## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables
$\Rightarrow$ branching vector $(1,2, \ldots, k)$
- Runtime: $O^{*}\left(\beta_{k}{ }^{n}\right)$, where $\beta_{k}=\tau(1,2, \ldots, k)$.

Note: $\tau(1,2, \ldots, k) \Rightarrow \beta_{k}{ }^{k}=\sum_{i=0}^{k-1} \beta_{k}{ }^{i} . \quad\left({ }^{*}\right)$

## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables
$\Rightarrow$ branching vector $(1,2, \ldots, k)$
- Runtime: $O^{*}\left(\beta_{k}{ }^{n}\right)$, where $\beta_{k}=\tau(1,2, \ldots, k)$.

Note: $\tau(1,2, \ldots, k) \Rightarrow \beta_{k}{ }^{k}=\sum_{i=0}^{k-1} \beta_{k}{ }^{i} . \quad\left({ }^{*}\right)$
So, $\left({ }^{*}\right) \cdot \beta_{k}-\left({ }^{*}\right) \Rightarrow$

## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables
$\Rightarrow$ branching vector $(1,2, \ldots, k)$
- Runtime: $O^{*}\left(\beta_{k}{ }^{n}\right)$, where $\beta_{k}=\tau(1,2, \ldots, k)$.

Note: $\tau(1,2, \ldots, k) \Rightarrow \beta_{k}{ }^{k}=\sum_{i=0}^{k-1} \beta_{k}{ }^{i} . \quad\left({ }^{*}\right)$
So, $\left({ }^{*}\right) \cdot \beta_{k}-\left(^{*}\right) \Rightarrow \beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0$.

## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables
$\Rightarrow$ branching vector $(1,2, \ldots, k)$
- Runtime: $O^{*}\left(\beta_{k}{ }^{n}\right)$, where $\beta_{k}=\tau(1,2, \ldots, k)$.

Note: $\tau(1,2, \ldots, k) \Rightarrow \beta_{k}^{k}=\sum_{i=0}^{k-1} \beta_{k}{ }^{i}$.
So, $\left(^{*}\right) \cdot \beta_{k}-\left(^{*}\right) \Rightarrow \beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0$.

- $\beta_{1}=1, \beta_{2}<1.6181, \beta_{3}<1.8393, \beta_{4}<1.9276, \beta_{5}<1.9660$


## Runtime

- $F\left[t_{i}\right]$ has $n-i$ variables
$\Rightarrow$ branching vector $(1,2, \ldots, k)$
- Runtime: $O^{*}\left(\beta_{k}{ }^{n}\right)$, where $\beta_{k}=\tau(1,2, \ldots, k)$.

Note: $\tau(1,2, \ldots, k) \Rightarrow \beta_{k}^{k}=\sum_{i=0}^{k-1} \beta_{k}{ }^{i}$.
So, $\left(^{*}\right) \cdot \beta_{k}-\left(^{*}\right) \Rightarrow \beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0$.

- $\beta_{1}=1, \beta_{2}<1.6181, \beta_{3}<1.8393, \beta_{4}<1.9276, \beta_{5}<1.9660$


## Speeding Up the Algorithm

- "Branch-on-shortest" rule


## Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: $\exists$ a clause of length $\leq k-1$


## Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: $\exists$ a clause of length $\leq k-1$

Def. A partial assignment $t$ is an autark if every clause with a literal assigned by $t$ also contains a literal assigned true by $t$.

## Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: $\exists$ a clause of length $\leq k-1$

Def. A partial assignment $t$ is an autark
if every clause with a literal assigned by $t$ also contains a literal assigned true by $t$.

Expl. $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(\overline{x_{3}} \vee x_{5}\right)$
$t: x_{1}=x_{4}=$ true
$t^{\prime}: x_{1}=$ true, $x_{4}=$ false

## Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: $\exists$ a clause of length $\leq k-1$

Def. A partial assignment $t$ is an autark
if every clause with a literal assigned by $t$ also contains a literal assigned true by $t$.

Expl. $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(\overline{x_{3}} \vee x_{5}\right)$
$t: x_{1}=x_{4}=$ true
is an autark
$t^{\prime}: x_{1}=$ true, $x_{4}=$ false

## Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: $\exists$ a clause of length $\leq k-1$

Def. A partial assignment $t$ is an autark if every clause with a literal assigned by $t$ also contains a literal assigned true by $t$.

Expl. $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(\overline{x_{3}} \vee x_{5}\right)$
$t: x_{1}=x_{4}=$ true
is an autark
$t^{\prime}: x_{1}=$ true, $x_{4}=$ false is not an autark

## Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: $\exists$ a clause of length $\leq k-1$

Def. A partial assignment $t$ is an autark
if every clause with a literal assigned by $t$ also contains a literal assigned true by $t$.

Expl. $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(\overline{x_{3}} \vee x_{5}\right)$
$t: x_{1}=x_{4}=$ true
is an autark
$t^{\prime}: x_{1}=$ true, $x_{4}=$ false is not an autark
Obs. - If $t$ is an autark, then: $F$ satisfiable $\Leftrightarrow F[t]$ satisfiable.

## Speeding Up the Algorithm

- "Branch-on-shortest" rule
- Hope: $\exists$ a clause of length $\leq k-1$

Def. A partial assignment $t$ is an autark
if every clause with a literal assigned by $t$ also contains a literal assigned true by $t$.

Expl. $F=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(\overline{x_{3}} \vee x_{5}\right)$

$$
t: x_{1}=x_{4}=\text { true }
$$

is an autark
$t^{\prime}: x_{1}=$ true, $x_{4}=$ false is not an autark
Obs. - If $t$ is an autark, then: $F$ satisfiable $\Leftrightarrow F[t]$ satisfiable.

- If $t$ is not an autark, then $F[t]$ contains a clause of length $\leq k-1$.

An Improved $k$-SAT Algorithm
Algorithm $k$-SAT-v2 $(F)$
if $F$ is empty then
$L$ return true
if $F$ contains an empty clause then
$L$ return false
pick a smallest clause $c=\left(\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{q}\right)$ from $F$, where $q \leq k$ $t_{1}: \ell_{1}=$ true
$t_{2}: \ell_{1}=$ false,$\ell_{2}=$ true
$t_{q}: \ell_{1}=$ false, $\ell_{2}=$ false $, \ldots, \ell_{q-1}=$ false,$\ell_{q}=$ true if $t_{i}$ is an autark for some $i=1, \ldots, q$ then return $k$-SAT-v2 $\left(F\left[t_{i}\right]\right)$
else
return $\bigvee_{i=1}^{q} k$-SAT-v2 $\left(F\left[t_{i}\right]\right)$

An Improved $k$-SAT Algorithm
Algorithm $k$-SAT-v2 $(F)$
if $F$ is empty then
$L$ return true
if $F$ contains an empty clause then
$L$ return false
pick a smallest clause $c=\left(\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{q}\right)$ from $F$, where $q \leq k$ $t_{1}: \ell_{1}=$ true
$t_{2}: \ell_{1}=$ false,$\ell_{2}=$ true
$t_{q}: \ell_{1}=$ false, $\ell_{2}=$ false $, \ldots, \ell_{q-1}=$ false,$\ell_{q}=$ true if $t_{i}$ is an autark for some $i=1, \ldots, q$ then return $k$-SAT-v2 $\left(F\left[t_{i}\right]\right) \leftarrow$ "Reduce"
else
return $\bigvee_{i=1}^{q} k$-SAT-v2 $\left(F\left[t_{i}\right]\right) \leftarrow$ "Branch"

## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.


## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root).


## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce"-node


## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch" -node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.


## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch" -node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:
$\Rightarrow$ branching vector

## Before:

$(1,2, \ldots, k-1, k)$

## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch" -node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:
$\Rightarrow$ branching vector $(1,2, \ldots, k-1)$
Before:
$(1,2, \ldots, k-1, k)$

## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch"-node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:
$\Rightarrow$ branching vector $(1,2, \ldots, k-1)$

## Before:

$(1,2, \ldots, k-1, k)$
$\beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0$

## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch"-node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:
$\Rightarrow$ branching vector $(1,2, \ldots, k-1)$
Before:
$\Rightarrow \alpha_{k}^{k}-2 \alpha_{k}^{k-1}+1=0 \quad \beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0$

## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch"-node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:
$\Rightarrow$ branching vector $(1,2, \ldots, k-1)$
Before:
$\Rightarrow \underbrace{\alpha_{k}^{k}-2 \alpha_{k}^{k-1}+1=0 \quad \beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0}_{k}$

## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch"-node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:

## Before:

$\Rightarrow$ branching vector $(1,2, \ldots, k-1) \quad(1,2, \ldots, k-1, k)$
$\Rightarrow \underbrace{\alpha_{k}^{k}-2 \alpha_{k}^{k-1}+1=0 \quad \beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0}_{k}$

$$
\Rightarrow \alpha_{k}=\beta_{k-1}
$$

## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch"-node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:

## Before:

$\Rightarrow$ branching vector $(1,2, \ldots, k-1) \quad(1,2, \ldots, k-1, k)$
$\Rightarrow \underbrace{\alpha_{k}^{k}-2 \alpha_{k}^{k-1}+1=0 \quad \beta_{k}^{k+1}-2 \beta_{k}^{k}+1=0}$

$$
\Rightarrow \alpha_{k}=\beta_{k-1}
$$

- $\beta_{1}=1, \beta_{2}<1.6181, \beta_{3}<1.8393, \beta_{4}<1.9276, \beta_{5}<1.9660$


## Runtime Analysis

- Claim: The runtime is $O^{*}\left(\alpha_{k}^{n}\right)$, where $\alpha_{k}=\beta_{k-1}$.
- Consider a node $v$ in the search tree (not the root). If $v$ is a $k$-branching, then $v$ 's parent is a "Reduce" -node because in a "Branch"-node, for each branch, the formula $F\left[t_{i}\right]$ contains a clause of length $\leq k-1$.

Now:
Before:
$\Rightarrow$ branching vector $(1,2, \ldots, k-1)$
$(1,2, \ldots, k-1, k)$
$\Rightarrow \alpha_{k}^{k}-2 \alpha_{k}^{k-1}+1=0$

$$
\Rightarrow \alpha_{k}=\beta_{k-1}
$$

- $\beta_{1}=1, \beta_{2}<1.6181, \beta_{3}<1.8393, \beta_{4}<1.9276, \beta_{5}<1.9660$
$\Rightarrow \alpha_{2}=1, \alpha_{3}<1.6181, \alpha_{4}<1.8393, \alpha_{5}<1.9276, \alpha_{6}<1.9660$

