

Exact Algorithms

Sommer Term 2020

Lecture 2. Branching Algorithms and Satisfiability

Based on: [Exact Exponential Algorithms: §2]

Further discussions: [Parameterized Algorithms: $\S 3$; specifically $\S 3.2$]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

• Brute force?

- Brute force?
- ullet YES-instances : \exists certificate

- Brute force?
- $\forall \text{ Yes-instances}$: $\exists \text{ certificate}$

- Brute force?
- $\forall \text{ Yes-instances} : \exists \text{ certificate}$
 - polynomial size

- Brute force?
- $\forall \text{ YES-instances} : \exists \text{ certificate}$
 - polynomial size
 - polynomial-time verifiable

- Brute force?
- $\forall \text{ YES-instances} : \exists \text{ certificate}$
 - polynomial size
 - polynomial-time verifiable
- Runtime?

Subset Problems

• Solutions: subsets of a given ground set

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Permutation Problems

• Solutions: permutations of a given ground set

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^*(n!) = 2^{O(n \log n)}$ time

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^*(n!) = 2^{O(n \log n)}$ time

Partitioning Problems

Solutions: partitionings of a given ground set

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^*(n!) = 2^{O(n \log n)}$ time

Partitioning Problems

- Solutions: partitionings of a given ground set
- e.g., graph coloring: partition vertices of a graph into independent sets

Subset Problems

- Solutions: subsets of a given ground set
- e.g., independent set in a graph, satisfying assignment to a Boolean formula
- Brute-force in $O^*(2^n)$ time

Permutation Problems

- Solutions: permutations of a given ground set
- e.g., Hamilton path of a graph, or tour as in TSP
- Brute-force in $O^*(n!) = 2^{O(n \log n)}$ time

Partitioning Problems

- Solutions: partitionings of a given ground set
- e.g., graph coloring: partition vertices of a graph into independent sets
- Brute-force in $O^*(n^n) = 2^{O(n \log n)}$ time

Branching Algorithms

• Standard technique

Branching Algorithms

- Standard technique
- Typical properties
 - polynomial space
 - in practice, often faster than its worst-case runtime
 - simple speedups (reduction rules, branch-and-bound)

Branching Algorithms

- Standard technique
- Typical properties
 - polynomial space
 - in practice, often faster than its worst-case runtime
 - simple speedups (reduction rules, branch-and-bound)
- Other names:

Backtracking, search-tree algorithms, . . .

Branching Rules:

solutions of the subproblems

Choose a small part of the solution and solve a corresponding subproblem for each choice ⇒ obtain a solution of the original problem based on the

Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice ⇒ obtain a solution of the original problem based on the solutions of the subproblems

Reduction Rules:

Reduce the problem size (also: exit/rejection conditions)

Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice ⇒ obtain a solution of the original problem based on the solutions of the subproblems

Reduction Rules:

Reduce the problem size (also: exit/rejection conditions)

Correctness:

Often immediate/obvious

Branching Rules:

Choose a small part of the solution and solve a corresponding subproblem for each choice ⇒ obtain a solution of the original problem based on the solutions of the subproblems

Reduction Rules:

Reduce the problem size (also: exit/rejection conditions)

• Correctness:

Often immediate/obvious

• Specification:

Often only calculates the optimal value.

ullet Apply a branching rule b to an instance I of size n.

- ullet Apply a branching rule b to an instance I of size n.
- Suppose that b decomposes I into $r \ge 2$ sub-instances of sizes $n-t_1, n-t_2, \ldots, n-t_r$, where $t_i > 0$ for each i.

- ullet Apply a branching rule b to an instance I of size n.
- Suppose that b decomposes I into $r \ge 2$ sub-instances of sizes $n-t_1, n-t_2, \ldots, n-t_r$, where $t_i > 0$ for each i.
- We call (t_1, t_2, \ldots, t_r) branching vector of b.

- ullet Apply a branching rule b to an instance I of size n.
- Suppose that b decomposes I into $r \ge 2$ sub-instances of sizes $n-t_1, n-t_2, \ldots, n-t_r$, where $t_i > 0$ for each i.
- We call (t_1, t_2, \ldots, t_r) branching vector of b.

Recurrence: $T(n) \leq T(n-t_1) + T(n-t_2) + \ldots + T(n-t_r)$

$$\alpha^n = \alpha^{n-t_1} + \alpha^{n-t_2} + \ldots + \alpha^{n-t_r}$$

$$\alpha^{n} = \alpha^{n-t_{1}} + \alpha^{n-t_{2}} + \dots + \alpha^{n-t_{r}}$$

$$\alpha^{n} - \alpha^{n-t_{1}} - \alpha^{n-t_{2}} - \dots - \alpha^{n-t_{r}} = 0$$

$$\alpha^{n} = \alpha^{n-t_{1}} + \alpha^{n-t_{2}} + \dots + \alpha^{n-t_{r}}$$

$$\alpha^{n} - \alpha^{n-t_{1}} - \alpha^{n-t_{2}} - \dots - \alpha^{n-t_{r}} = 0$$

$$1 - \alpha^{-t_{1}} - \alpha^{-t_{2}} - \dots - \alpha^{-t_{r}} = 0$$

$$\alpha^{n} = \alpha^{n-t_{1}} + \alpha^{n-t_{2}} + \ldots + \alpha^{n-t_{r}}$$

$$\alpha^{n} - \alpha^{n-t_{1}} - \alpha^{n-t_{2}} - \ldots - \alpha^{n-t_{r}} = 0$$

$$1 - \alpha^{-t_{1}} - \alpha^{-t_{2}} - \ldots - \alpha^{-t_{r}} = 0$$

$$\alpha^{m} - \alpha^{m-t_{1}} - \alpha^{m-t_{2}} - \ldots - \alpha^{m-t_{r}} = 0$$
where $m := \max_{1 \leq i \leq r} t_{i}$.

Thm. Let b be a branching rule with vector (t_1, t_2, \ldots, t_r) . Then the runtime of an algorithm executing b is $O^*(\alpha^n)$, where α is the unique positive root of

$$\alpha^{n} = \alpha^{n-t_{1}} + \alpha^{n-t_{2}} + \ldots + \alpha^{n-t_{r}}$$

$$\alpha^{n} - \alpha^{n-t_{1}} - \alpha^{n-t_{2}} - \ldots - \alpha^{n-t_{r}} = 0$$

$$1 - \alpha^{-t_{1}} - \alpha^{-t_{2}} - \ldots - \alpha^{-t_{r}} = 0$$

$$\alpha^{m} - \alpha^{m-t_{1}} - \alpha^{m-t_{2}} - \ldots - \alpha^{m-t_{r}} = 0$$
where $m := \max_{1 \leq i \leq r} t_{i}$.

• Denote solution by $\tau(t_1, t_2, \dots, t_r)$.

$$lpha^{n} = lpha^{n-t_{1}} + lpha^{n-t_{2}} + \ldots + lpha^{n-t_{r}}$$
 $lpha^{n} - lpha^{n-t_{1}} - lpha^{n-t_{2}} - \ldots - lpha^{n-t_{r}} = 0$
 $1 - lpha^{-t_{1}} - lpha^{-t_{2}} - \ldots - lpha^{-t_{r}} = 0$
 $lpha^{m} - lpha^{m-t_{1}} - lpha^{m-t_{2}} - \ldots - lpha^{m-t_{r}} = 0$
where $m := \max_{1 \leq i \leq r} t_{i}$.

- Denote solution by $\tau(t_1, t_2, \dots, t_r)$.
- Often irrational.

Properties of $\tau(\cdot)$

size: n

size: $n - t_1$ size: $n - t_2$

size: $n-t_r$

Let $r \geq 2$ and, for $i = 1, \ldots, r$, let $t_i > 0$. Then: Thm.

(i)
$$\tau(t_1, ..., t_r) > 1$$
,

Properties of $\tau(\cdot)$

size: n

size: $n-t_1$ size: $n-t_2$ ••• size: $n-t_r$

Let $r \geq 2$ and, for $i = 1, \ldots, r$, let $t_i > 0$. Then: Thm.

- (i) $\tau(t_1, \ldots, t_r) > 1$,
- (ii) $\tau(t_1,\ldots,t_r) = \tau(t_{\pi(1)},\ldots,t_{\pi(r)})$ for every permutation π .

size: n

size: $n-t_1$ size: $n-t_2$ ••• size: $n-t_r$

Let $r \geq 2$ and, for $i = 1, \ldots, r$, let $t_i > 0$. Then: Thm.

- (i) $\tau(t_1, ..., t_r) > 1$,
- (ii) $\tau(t_1, \ldots, t_r) = \tau(t_{\pi(1)}, \ldots, t_{\pi(r)})$ for every permutation π ,
- (iii) $\tau(t_1, t_2, \dots, t_r) < \tau(t'_1, t_2, \dots, t_r)$ if $t_1 > t'_1$.

size: n

size: $n-t_1$ size: $n-t_2$ ••• size: $n-t_r$

Let $r \geq 2$ and, for $i = 1, \ldots, r$, let $t_i > 0$. Then: Thm.

- (i) $\tau(t_1, \ldots, t_r) > 1$,
- (ii) $\tau(t_1, \ldots, t_r) = \tau(t_{\pi(1)}, \ldots, t_{\pi(r)})$ for every permutation π ,
- (iii) $\tau(t_1, t_2, \dots, t_r) < \tau(t'_1, t_2, \dots, t_r)$ if $t_1 > t'_1$.

For i, j, k > 0, the following balancing properties apply:

- (i) $\tau(k,k) \leq \tau(i,j)$ if i+j=2k,
- (ii) $\tau(i,j) > \tau(i+\varepsilon,j-\varepsilon)$ if 0 < i < j and $0 < \varepsilon < \frac{j-i}{2}$.

size: n

size: $n-t_1$ size: $n-t_2$ ••• size: $n-t_r$

Let $r \geq 2$ and, for $i = 1, \ldots, r$, let $t_i > 0$. Then: Thm.

- (i) $\tau(t_1, ..., t_r) > 1$,
- (ii) $\tau(t_1, \ldots, t_r) = \tau(t_{\pi(1)}, \ldots, t_{\pi(r)})$ for every permutation π ,

(iii)
$$\tau(t_1, t_2, \ldots, t_r) < \tau(t'_1, t_2, \ldots, t_r)$$
 if $t_1 > t'_1$.

For i, j, k > 0, the following balancing properties apply:

(i)
$$\tau(k,k) \leq \tau(i,j)$$
 if $i+j=2k$,

(ii)
$$\tau(i,j) > \tau(i+\varepsilon,j-\varepsilon)$$

if $0 < i < j$ and $0 < \varepsilon < \frac{j-i}{2}$.

E.g.:
$$au(1,1) = 2$$
 $au(1,2) = rac{1+\sqrt{5}}{2} < 1.62$

size: n

size: $n-t_1$ size: $n-t_2$ ••• size: $n-t_r$

Let $r \geq 2$ and, for $i = 1, \ldots, r$, let $t_i > 0$. Then: Thm.

(i)
$$\tau(t_1, ..., t_r) > 1$$
,

(ii)
$$\tau(t_1, \ldots, t_r) = \tau(t_{\pi(1)}, \ldots, t_{\pi(r)})$$
 for every permutation π ,

(iii)
$$\tau(t_1, t_2, \ldots, t_r) < \tau(t'_1, t_2, \ldots, t_r)$$
 if $t_1 > t'_1$.

For i, j, k > 0, the following balancing properties apply:

(i)
$$\tau(k,k) \leq \tau(i,j)$$
 if $i+j=2k$,

(ii)
$$\tau(i,j) > \tau(i+\varepsilon,j-\varepsilon)$$

if $0 < i < j$ and $0 < \varepsilon < \frac{j-i}{2}$.

E.g.:
$$au(1,1)=2$$
 $au(3,3)=\sqrt[3]{2}<1.26$ $au(1,2)=rac{1+\sqrt{5}}{2}<1.62$ $au(2,4)<1.272$ $au(1,5)<1.3248$

"Addition" of Branching Vectors

 $\begin{array}{c|c} \text{size: } n \\ \\ i \\ \\ \text{size: } n-i \\ \\ \end{array}$

"Addition" of Branching Vectors

i j size: n-i size: n-j

size: n - i - k

size: $n-i-\ell$

"Addition" of Branching Vectors

Branching-Vector: $(i + k, i + \ell, j)$

Input: propositional logic formula F in conjunctive NF

Input: propositional logic formula F in conjunctive NF

E.g.,
$$(x_1 \lor \bar{x}_2 \lor x_3) \land \underbrace{(\bar{x}_1 \lor x_4 \lor x_5)}_{\text{clause}}$$

Input: propositional logic formula F in conjunctive NF

E.g.,
$$(x_1 \lor \bar{x}_2 \lor x_3) \land \underbrace{(\bar{x}_1 \lor x_4 \lor x_5)}_{\text{clause}}$$
 clause

Input: propositional logic formula F in conjunctive NF

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

Brute-Force:

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

Brute-Force: Try all 2^n variable assignments.

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

Brute-Force: Try all 2^n variable assignments.

Runtime:

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

Brute-Force: Try all 2^n variable assignments.

Runtime: $O(2^n \cdot n \cdot m)$, where n = # variables, m = # clauses.

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

E.g.,
$$(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_4 \lor x_5)$$
 clause variable literal

Brute-Force: Try all 2^n variable assignments.

Runtime: $O(2^n \cdot n \cdot m)$, where n = # variables, m = # clauses.

Strong Exponential Time Hypothesis (SETH) implies that:

 \exists algorithm for SAT in $o(2^n)$ time, i.e., in $O^*((2-\varepsilon)^n), \varepsilon > 0$.

SATISFIABILITY (SAT)

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

E.g.,
$$(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_4 \lor x_5)$$
 clause variable literal

Brute-Force: Try all 2^n variable assignments.

Runtime: $O(2^n \cdot n \cdot m)$, where n = # variables, m = # clauses.

Strong Exponential Time Hypothesis (SETH) implies that:

 $\not\exists$ algorithm for SAT in $o(2^n)$ time, i.e., in $O^*((2-\varepsilon)^n), \varepsilon > 0$.

For more on (S)ETH, see [Parameterized Algorithms 14.1].

Input: propositional logic formula F in conjunctive NF

Question: \exists satisfying assignment for F?

E.g.,
$$(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_4 \lor x_5)$$
 clause variable literal

Brute-Force: Try all 2^n variable assignments.

Runtime: $O(2^n \cdot n \cdot m)$, where n = # variables, m = # clauses.

Strong Exponential Time Hypothesis (SETH) implies that:

 \exists algorithm for SAT in $o(2^n)$ time, i.e., in $O^*((2-\varepsilon)^n), \varepsilon > 0$.

For more on (S)ETH, see [Parameterized Algorithms 14.1].

k-SAT: Each clause has $\leq k$ literals.

• Goal:

Solve k-SAT in time $O^*(\alpha_k^n)$, where $\alpha_k < 2$ for every k.

• Goal: Solve k-SAT in time $O^*(\alpha_k{}^n)$, where $\alpha_k < 2$ for every k.

• Idea: Branch on variables.

- Goal: Solve k-SAT in time $O^*(\alpha_k^n)$, where $\alpha_k < 2$ for every k.
- Idea: Branch on variables.
- ullet For a partial assignment t, let F[t] be the reduced formula that we get after
 - removing false literals from clauses and
 - removing clauses with true literals.

- Goal:
 - Solve k-SAT in time $O^*(\alpha_k^n)$, where $\alpha_k < 2$ for every k.
- Idea: Branch on variables.
- For a partial assignment t, let F[t] be the reduced formula that we get after
 - removing false literals from clauses and
 - removing clauses with true literals.

$$- F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$$

- Goal:
 - Solve k-SAT in time $O^*(\alpha_k^n)$, where $\alpha_k < 2$ for every k.
- Idea: Branch on variables.
- For a partial assignment t, let F[t] be the reduced formula that we get after
 - removing false literals from clauses and
 - removing clauses with true literals.

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- t: x_1 = false

- Goal:
 - Solve k-SAT in time $O^*(\alpha_k^n)$, where $\alpha_k < 2$ for every k.
- Idea: Branch on variables.
- For a partial assignment t, let F[t] be the reduced formula that we get after
 - removing false literals from clauses and
 - removing clauses with true literals.

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- t: x_1 = false
- F[t] =

- Goal:
 - Solve k-SAT in time $O^*(\alpha_k^n)$, where $\alpha_k < 2$ for every k.
- Idea: Branch on variables.
- For a partial assignment t, let F[t] be the reduced formula that we get after
 - removing false literals from clauses and
 - removing clauses with true literals.

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- t: x_1 = false
- $F[t] = (\bar{x}_2 \vee x_3)$

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] =$

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] =$

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \wedge \bar{x}_1$ not satisfiable

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \wedge \bar{x}_1$ not satisfiable
- $F[x_1 = x_3 = f, x_2 = t] =$

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \wedge \bar{x}_1$ not satisfiable
- $F[x_1 = x_3 = f, x_2 = t] = ()$

- F[t] satisfiable $\Rightarrow F$ satisfiable
- F[t] contains an empty clause $\Rightarrow F[t]$ not satisfiable

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \wedge \bar{x}_1$ not satisfiable
- $F[x_1 = x_3 = f, x_2 = t] = ()$

- F[t] satisfiable $\Rightarrow F$ satisfiable
- F[t] contains an empty clause $\Rightarrow F[t]$ not satisfiable

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \wedge \bar{x}_1$ not satisfiable
- $F[x_1 = x_3 = f, x_2 = t] = ()$
- $F[x_3 = x_4 = t] =$

- F[t] satisfiable $\Rightarrow F$ satisfiable
- F[t] contains an empty clause $\Rightarrow F[t]$ not satisfiable

- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \wedge \bar{x}_1$ not satisfiable
- $F[x_1 = x_3 = f, x_2 = t] = ()$
- $F[x_3 = x_4 = t] = \text{empty formula}$

- F[t] satisfiable $\Rightarrow F$ satisfiable
- F[t] contains an empty clause $\Rightarrow F[t]$ not satisfiable
- F[t] empty $\Rightarrow F[t]$ satisfiable
- $F = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_4 \vee x_5)$
- $F[x_1 = f] = (\bar{x}_2 \vee x_3)$ satisfiable
- $F[x_2 = t, x_3 = x_4 = x_5 = f] = x_1 \wedge \bar{x}_1$ not satisfiable
- $F[x_1 = x_3 = f, x_2 = t] = ()$
- $F[x_3 = x_4 = t] = \text{empty formula}$

A First Algorithm for *k*-SAT

```
Algorithm k-SAT-v1(F)
   if F is empty then
    ∟ return true
   if F contains an empty clause then
    return false
   pick clause c = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_q) from F, where q \leq k
   t_1: \ell_1 = true
   t_2: \ell_1 = false, \ell_2 = true
   t_3: \ell_1 = false, \ell_2 = false, \ell_3 = true
   t_q: \ell_1 = \mathsf{false}, \ell_2 = \mathsf{false}, \dots, \ell_{q-1} = \mathsf{false}, \ell_q = \mathsf{true}
   return \bigvee_{i=1}^{q} k-SAT-v1(F[t_i])
```

A First Algorithm for *k*-SAT

```
Algorithm k-SAT-v1(F)
   if F is empty then
    ∟ return true
   if F contains an empty clause then
    return false
   pick clause c = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_q) from F, where q \leq k
   t_1: \ell_1 = true
   t_2: \ell_1 = \mathsf{false}, \ell_2 = \mathsf{true}
   t_3: \ell_1 = false, \ell_2 = false, \ell_3 = true
   t_q: \ell_1 = \mathsf{false}, \ell_2 = \mathsf{false}, \dots, \ell_{q-1} = \mathsf{false}, \ell_q = \mathsf{true}
   return \bigvee_{i=1}^{q} k-SAT-v1(F[t_i])
```

• t_i : first true literal in c is ℓ_i

• $F[t_i]$ has n-i variables

- $F[t_i]$ has n-i variables
 - \Rightarrow branching vector $(1, 2, \dots, k)$

- $F[t_i]$ has n-i variables
 - \Rightarrow branching vector $(1, 2, \dots, k)$
- Runtime: $O^*(\beta_k^n)$, where $\beta_k = \tau(1, 2, ..., k)$.

- $F[t_i]$ has n-i variables
 - \Rightarrow branching vector $(1, 2, \dots, k)$
- Runtime: $O^*(\beta_k^n)$, where $\beta_k = \tau(1, 2, ..., k)$.

Note:
$$\tau(1, 2, ..., k) \Rightarrow \beta_k^{\ k} = \sum_{i=0}^{k-1} \beta_k^{\ i}.$$
 (*)

- $F[t_i]$ has n-i variables
 - \Rightarrow branching vector $(1, 2, \dots, k)$
- Runtime: $O^*(\beta_k^n)$, where $\beta_k = \tau(1, 2, ..., k)$.

Note:
$$\tau(1, 2, ..., k) \Rightarrow \beta_k^{\ k} = \sum_{i=0}^{k-1} \beta_k^{\ i}.$$
 (*)

So,
$$(*)\cdot\beta_k-(*) \Rightarrow$$

- $F[t_i]$ has n-i variables
 - \Rightarrow branching vector $(1, 2, \dots, k)$
- Runtime: $O^*(\beta_k^n)$, where $\beta_k = \tau(1, 2, ..., k)$.

Note:
$$\tau(1, 2, ..., k) \Rightarrow \beta_k^{\ k} = \sum_{i=0}^{k-1} \beta_k^{\ i}.$$
 (*)

So,
$$(*)\cdot\beta_k-(*) \Rightarrow \beta_k^{k+1}-2\beta_k^k+1=0$$
.

- $F[t_i]$ has n-i variables
 - \Rightarrow branching vector $(1, 2, \dots, k)$
- Runtime: $O^*(\beta_k^n)$, where $\beta_k = \tau(1, 2, ..., k)$.

Note:
$$\tau(1, 2, ..., k) \Rightarrow \beta_k^{\ k} = \sum_{i=0}^{k-1} \beta_k^{\ i}.$$
 (*)

So,
$$(*)\cdot\beta_k-(*) \Rightarrow \beta_k^{k+1}-2\beta_k^k+1=0$$
.

• $\beta_1 = 1, \beta_2 < 1.6181, \beta_3 < 1.8393, \beta_4 < 1.9276, \beta_5 < 1.9660$

- $F[t_i]$ has n-i variables
 - \Rightarrow branching vector $(1, 2, \dots, k)$
- Runtime: $O^*(\beta_k^n)$, where $\beta_k = \tau(1, 2, ..., k)$.

Note:
$$\tau(1, 2, ..., k) \Rightarrow \beta_k^{\ k} = \sum_{i=0}^{k-1} \beta_k^{\ i}.$$
 (*)

So,
$$(*)\cdot\beta_k-(*) \Rightarrow \beta_k^{k+1}-2\beta_k^k+1=0$$
.

• $\beta_1 = 1, \beta_2 < 1.6181, \beta_3 < 1.8393, \beta_4 < 1.9276, \beta_5 < 1.9660$

• "Branch-on-shortest" rule

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$
- Def. A partial assignment t is an autark if every clause with a literal assigned by t also contains a literal assigned true by t.

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$
- Def. A partial assignment t is an autark if every clause with a literal assigned by t also contains a literal assigned true by t.
- **Expl.** $F = (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_4 \lor x_5) \land (\bar{x}_3 \lor x_5)$ $t: x_1 = x_4 = \text{true}$ $t': x_1 = \text{true}, x_4 = \text{false}$

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$
- Def. A partial assignment t is an autark if every clause with a literal assigned by t also contains a literal assigned true by t.

Expl.
$$F=(x_1\vee \bar{x}_2\vee x_3)\wedge (\bar{x}_1\vee x_4\vee x_5)\wedge (\bar{x}_3\vee x_5)$$

 $t\colon x_1=x_4={\sf true}$ is an autark
 $t'\colon x_1={\sf true},\ x_4={\sf false}$

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$
- Def. A partial assignment t is an autark if every clause with a literal assigned by t also contains a literal assigned true by t.

Expl.
$$F = (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_4 \lor x_5) \land (\bar{x}_3 \lor x_5)$$

 $t: x_1 = x_4 = \text{true}$ is an autark
 $t': x_1 = \text{true}, x_4 = \text{false}$ is not an autark

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$
- Def. A partial assignment t is an autark if every clause with a literal assigned by t also contains a literal assigned true by t.

Expl.
$$F = (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_4 \lor x_5) \land (\bar{x}_3 \lor x_5)$$

 $t: x_1 = x_4 = \text{true}$ is an autark
 $t': x_1 = \text{true}, x_4 = \text{false}$ is not an autark

Obs. • If t is an autark, then: F satisfiable $\Leftrightarrow F[t]$ satisfiable.

- "Branch-on-shortest" rule
- Hope: \exists a clause of length $\leq k-1$
- Def. A partial assignment t is an autark if every clause with a literal assigned by t also contains a literal assigned true by t.

Expl.
$$F = (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_4 \lor x_5) \land (\bar{x}_3 \lor x_5)$$

 $t: x_1 = x_4 = \text{true}$ is an autark
 $t': x_1 = \text{true}, x_4 = \text{false}$ is not an autark

- **Obs.** If t is an autark, then: F satisfiable $\Leftrightarrow F[t]$ satisfiable.
 - If t is not an autark, then F[t] contains a clause of length $\leq k-1$.

An Improved k-SAT Algorithm

```
Algorithm k-SAT-v2(F)
   if F is empty then
    ∟ return true
   if F contains an empty clause then
       return false
   pick a smallest clause c = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_q) from F, where q \leq k
  t_1: \ell_1 =true
  t_2: \ell_1 = false, \ell_2 = true
  t_q: \ell_1 = \mathsf{false}, \ell_2 = \mathsf{false}, \dots, \ell_{q-1} = \mathsf{false}, \ell_q = \mathsf{true}
   if t_i is an autark for some i = 1, \ldots, q then
        return k-SAT-v2(F[t_i])
   else
       return \bigvee_{i=1}^{q} k-SAT-v2(F[t_i])
```

An Improved k-SAT Algorithm

```
Algorithm k-SAT-v2(F)
   if F is empty then
    ∟ return true
   if F contains an empty clause then
    return false
   pick a smallest clause c = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_q) from F, where q \leq k
  t_1: \ell_1 =true
  t_2: \ell_1 = false, \ell_2 = true
  t_q: \ell_1 = \mathsf{false}, \ell_2 = \mathsf{false}, \dots, \ell_{q-1} = \mathsf{false}, \ell_q = \mathsf{true}
   if t_i is an autark for some i = 1, \ldots, q then
       return k-SAT-v2(F[t_i]) \leftarrow "Reduce"
   else
       return \bigvee_{i=1}^{q} k-SAT-v2(F[t_i]) \leftarrow \text{"Branch"}
```

• Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- Consider a node v in the search tree (not the root). If v is a k-branching, then v's parent is a "Reduce"-node

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- Consider a node v in the search tree (not the root). If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now:

⇒ branching vector

Before:

 $(1, 2, \ldots, k-1, k)$

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now: Before: $\Rightarrow \text{ branching vector } (1, 2, \dots, \frac{k-1}{k}) \quad (1, 2, \dots, k-1, k)$

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now:

 \Rightarrow branching vector $(1, 2, \dots, k-1)$ $(1, 2, \dots, k-1, k)$

$$(1, 2, \dots, k - 1, k)$$

 $\beta_k^{k+1} - 2\beta_k^k + 1 = 0$

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now:

 \Rightarrow branching vector $(1, 2, \dots, k-1)$ $(1, 2, \dots, k-1, k)$

$$\Rightarrow \alpha_k^k - 2\alpha_k^{k-1} + 1 = 0$$

$$(1, 2, \dots, k - 1, k)$$

 $\beta_k^{k+1} - 2\beta_k^k + 1 = 0$

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now:

 \Rightarrow branching vector $(1, 2, \dots, k-1)$ $(1, 2, \dots, k-1, k)$

$$\Rightarrow \alpha_k^k - 2\alpha_k^{k-1} + 1 = 0$$

$$(1, 2, \dots, k - 1, k)$$

 $\beta_k^{k+1} - 2\beta_k^k + 1 = 0$

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now:

 \Rightarrow branching vector $(1, 2, \dots, k-1)$ $(1, 2, \dots, k-1, k)$

$$\Rightarrow \alpha_k^k - 2\alpha_k^{k-1} + 1 = 0$$

$$(1, 2, \dots, k - 1, k)$$

 $\beta_k^{k+1} - 2\beta_k^k + 1 = 0$

$$\Rightarrow \alpha_k = \beta_{k-1}$$

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now:

 \Rightarrow branching vector $(1, 2, \dots, k-1)$ $(1, 2, \dots, k-1, k)$

$$\Rightarrow \alpha_k^k - 2\alpha_k^{k-1} + 1 = 0$$

Before:

$$(1, 2, \dots, k - 1, k)$$

 $\beta_k^{k+1} - 2\beta_k^k + 1 = 0$

$$\Rightarrow \alpha_k = \beta_{k-1}$$

• $\beta_1 = 1, \beta_2 < 1.6181, \beta_3 < 1.8393, \beta_4 < 1.9276, \beta_5 < 1.9660$

- Claim: The runtime is $O^*(\alpha_k^n)$, where $\alpha_k = \beta_{k-1}$.
- ullet Consider a node v in the search tree (not the root).

If v is a k-branching, then v's parent is a "Reduce"-node because in a "Branch"-node, for each branch, the formula $F[t_i]$ contains a clause of length $\leq k-1$.

Now:

 \Rightarrow branching vector $(1, 2, \dots, k-1)$ $(1, 2, \dots, k-1, k)$

$$\Rightarrow \alpha_k^{\underline{k}} - 2\alpha_k^{\underline{k-1}} + 1 = 0$$

Before:

 $(1, 2, \dots, k - 1, k)$ $\beta_k^{k+1} - 2\beta_k^k + 1 = 0$

$$\Rightarrow \alpha_k = \beta_{k-1}$$

• $\beta_1 = 1, \beta_2 < 1.6181, \beta_3 < 1.8393, \beta_4 < 1.9276, \beta_5 < 1.9660$ $\Rightarrow \alpha_2 = 1, \alpha_3 < 1.6181, \alpha_4 < 1.8393, \alpha_5 < 1.9276, \alpha_5 < 1.9660$

$$\Rightarrow \alpha_2 = 1, \alpha_3 < 1.6181, \alpha_4 < 1.8393, \alpha_5 < 1.9276, \alpha_6 < 1.9660$$