Julius-Maximilians-
UNIVERSITAT Lonsunio ||||I - f
WURZBURG INFORMATIK | I |

Algorithmen & Komplexitat Institut fir Informatik

Exact Algorithms

Sommer Term 2020

Lecture 1. Introduction & Two Examples

Alexander Wolff Lehrstuhl fiuir Informatik |

Textbooks

Fedor V. Fomin
Dieter Kratsch

Exact

Exponential
Algorithms

Fedor Fomin & Dieter Kratsch:

Exact Exponential Algorithms
Springer 2010

Parameterized
Algorithms

CowrY

vt
BASRGH

Fi+iste
b484-3

o
&) Springer

Marek Cygan et al.:
Parameterized Algorithms
Springer 2015

Textbooks This Lecture: Chapter 1

Fedor V. Fomin
Dieter Kratsch

Exact

Exponential
Algorithms

Fedor Fomin & Dieter Kratsch:

Exact Exponential Algorithms
Springer 2010

Parameterized
Algorithms

CowrY

vt
BASRGD

Fi4-ire
b484-3

L% ol s
&) Springer

Marek Cygan et al.:
Parameterized Algorithms
Springer 2015

Motivation

Efficient vs. inefficient algorithms

Motivation

Efficient vs. inefficient algorithms

~» polynomial vs. super-polynomial algorithms

B |
2500 F [

L 1
2000 [
1500 F
1000 F /

: /

i i

500 |
: #,f“’;
- e 1 _.I___I___I

Why Consider Exponential-Time Algorithms?

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!
How to deal with NP-hard problems?

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!
How to deal with NP-hard problems?

e Sacrifice optimality for speed
— heuristics (simulated annealing, tabu search)
— approximation algorithms (Christofides’ algorithm)

Heuristic Approximation

NP-hard

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!
How to deal with NP-hard problems?

e Sacrifice optimality for speed
— heuristics (simulated annealing, tabu search)
— approximation algorithms (Christofides’ algorithm)

e Optimal Solutions
— exact exponential-time algorithms
— fine-grained analysis (parameterized) algorithms

Heuristic Approximation

NP-hard

Exponential FPT

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!
How to deal with NP-hard problems?

e Sacrifice optimality for speed
— heuristics (simulated annealing, tabu search)
— approximation algorithms (Christofides’ algorithm)

e Optimal Solutions This Course!

— exact exponential-time algorithms
— fine-grained analysis (parameterized) algorithms

Heuristic Approximation

NP-hard

Exponential FPT

Motivation: Exact Exponential Algorithms

e Can be “fast’ for medium-sized instances:

Motivation: Exact Exponential Algorithms

e Can be “fast’ for medium-sized instances:

~ e.g.:n* > 1.2" for n < 100

Motivation: Exact Exponential Algorithms

e Can be “fast’ for medium-sized instances:

~ e.g.:n* > 1.2" for n < 100

~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

Motivation: Exact Exponential Algorithms

e Can be “fast’ for medium-sized instances:

~ e.g.:n* > 1.2" for n < 100

~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

~+ "hidden” constants in polynomial time algorithms:
21000 > 2™ for n < 100

Motivation: Exact Exponential Algorithms

e Can be “fast’ for medium-sized instances:

~ e.g.:n* > 1.2" for n < 100

~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

~+ "hidden” constants in polynomial time algorithms:
21000 > 2™ for n < 100

e [heoretical interest!

Typical Results

e Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

Typical Results

e Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

e Typical results for a (hypothetical) NP-hard problem:

Typical Results

e Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

e Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5" - n) O*(1.5™)

Algorithm B O(1.4" - n?) O*(1.4")

Typical Results

e Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

e Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4™ -n?) C O(1.5™ -n) C O(2")

Typical Results

e Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

e Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4™ -n?) C O(1.5™ -n) C O(2")

e Neglect polynomial factors (exponential part dominates)!

Typical Results

e Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

e Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4™ -n?) C O(1.5™ -n) C O(2")

e Neglect polynomial factors (exponential part dominates)!

f€0O*(g) & 3 polynomial p: f € O(g-p)

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a” steps, and
we have a fixed amount of time to run it.

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng

of solvable instances.

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?
Hardware speedup:

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?
Hardware speedup: a™ = ¢ - a™ =

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?
Hardware speedup: a™ = c-q" = ng = ng + log, ¢

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?
Hardware speedup: a™ = c-q" = ng = ng + log, ¢

Base reduction:

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?
Hardware speedup: a™ = c-q" = ng = ng + log, ¢

. /
Base reduction: b = g0 =

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?
Hardware speedup: a™ = c-q" = ng = ng + log, ¢

. /
Base reduction: b™ = a™ = nyg=ng- log,a

Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V, E) with n vertices

and edge weights c: £ — Q>¢

Output: A Hamiltonian cycle C = (vy,...,v,,vp11 = v1) of G,

of minimum weight > | (v, viy1).

HTéﬁ 0
f[ﬂ’ﬁ;:k

burg

L
Baitic v
Sea

POL.

e
CZECH
REFUBLIC

[

AUSTRIA *

0 &0 100 krmi
f—r—
i B0 100 i

R o

Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V, E) with n vertices
and edge weights c: £ — Q>¢

Output: A Hamiltonian cycle C = (v, ..

of minimum weight > | (v, viy1).

Brute-Force?

. U, Unt1 = v1) of G,

SWITZ. 9

Frankfurt
am Main

L
Baitic v
Sea

POL.

e
CZECH
REFUBLIC

[

AUSTRIA

0 &0 100 krmi
[t
i B0 100 i

R o

Traveling Salesperson Problem (TSP)

Input:

and edge weights c: £ — Q>¢

Output: A Hamiltonian cycle C = (v, ..
of minimum weight " ,

Brute-Force?
e Each tour is a permutation of
the vertices.

e Pick a permutation with the
smallest weight.

Complete directed graph G = (V, E') with n vertices

., Upn,Unt1 = v1) of G,
c(vi, Viy1).

SWITZ. 9

Frankfurt
am Main

L
Baitic v
Sea

POL.

e
CZECH
REFUBLIC

[

AUSTRIA

0 &0 100 krmi
[t
i B0 100 i

R o

Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V, E) with n vertices

and edge weights c: £ — Q>¢
Output: A Hamiltonian cycle C = (v, ..

of minimum weight > | (v, viy1).

Brute-Force?

e Each tour is a permutation of
the vertices.

e Pick a permutation with the
smallest weight.

Runtime: ©(n! - n) = n - 282 loegn)

., Upn,Unt1 = v1) of G,

Morih
Sea

Frankfurt
am Main

i

L
Baltic
S8

AUSTRIA
0 O 900 km
e s gt]

5

e
CZECH
REFUBLIC

iy

v

POL.

[

100 i

Bellman—Held—Karp Algorithm

Richard E. Bellman

Bellman—Held—Karp Algorithm

Technique: Dynamic Programming]!

Richard E. Bellman

Bellman—Held—Karp Algorithm

Technique: Dynamic Programming]!

Reuse optimal substructures!

Richard E. Bellman

Bellman—Held—Karp Algorithm

Technique: Dynamic Programming]!

Reuse optimal substructures!

Select any starting vertex s € V.

Richard E. Bellman

Bellman—Held—Karp Algorithm
Technique: Dynamic Programming]!
Reuse optimal substructures!

Select any starting vertex s € V.

Foreach SCV —s .=V \ {s}andv € S:

Richard E. Bellman

Bellman—Held—Karp Algorithm

Technique: Dynamic Programming]!

Reuse optimal substructures!

Select any starting vertex s € V.

Foreach SCV —s .=V \ {s}andv € S:

OPT[S, v] := length of the shortest s—v path
that visits precisely the vertices of S U {s}.

Richard E. Bellman

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v] =

10

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

10

Bellman—Held—Karp Algorithm
The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When | S| > 2, we compute OPT[S, v] recursively:

10

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When | S| > 2, we compute OPT[S, v] recursively:
OPTI[S, v] =

10

Bellman—Held—Karp Algorithm
The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).
When |S| > 2, we compute OPT/[S, v] recursively:

OPT[S, v] = min{ lueS—v}

10

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When |S| > 2, we compute OPT/[S, v] recursively:
OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |[u e S —wv}

10

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When |S| > 2, we compute OPT/[S, v] recursively:
OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |[u e S —wv}

After computing OPT[S, v] for each S CV — s,
the optimal solution is easily obtained as follows:

10

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When |S| > 2, we compute OPT/[S, v] recursively:
OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |[u e S —wv}

After computing OPT[S, v] for each S CV — s,
the optimal solution is easily obtained as follows:

OPT =

10

10

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When |S| > 2, we compute OPT/[S, v] recursively:
OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |[u e S —wv}

After computing OPT[S, v] for each S CV — s,
the optimal solution is easily obtained as follows:

OPT = min{ lveV —s}

Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When |S| > 2, we compute OPT/[S, v] recursively:
OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |[u e S —wv}

After computing OPT[S, v] for each S CV — s,
the optimal solution is easily obtained as follows:

OPT = min{ OPT[V — s,v] 4+ ¢(v,s) |v eV —s}

10

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v €V — s do
L OPT[{v},v] = ¢(s,0)
for j =2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
L | OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[ue S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v €V — s do
| OPT[{v},v] = c(s,v)
for j =2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
L | OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[ue S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: The innermost loop has O() iterations,

each taking O() time.
In total: O() =0*().

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV —s}

The innermost loop has O(2" - n) iterations,
each taking O() time.

In total: O()=0*().

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV —s}

The innermost loop has O(2" - n) iterations,
each taking O(n) time.

In total: O()=0*().

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV —s}

The innermost loop has O(2" - n) iterations,
each taking O(n) time.

In total: O(2" - n?) = O*().

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV —s}

The innermost loop has O(2" - n) iterations,
each taking O(n) time.

In total: O(2" - n?) = O*(2").

Runtime:

11

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV —s}

The innermost loop has O(2" - n) iterations,
each taking O(n) time.

In total: O(2" - n?) = O*(2").

Space usage: ©O(2" -n) = ©*(2")

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: The innermost loop has O(2" - n) iterations,
each taking O(n) time.
In total: O(2" - n?) = O*(2").
Space usage: ©O(2" -n) = ©*(2")
A shortest tour can be produced by backtracking the DP table
(as usual).

11

Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: The innermost loop has O(2" - n) iterations,
each taking O(n) time.
In total: O(2" - n?) = O*(2").
Space usage: ©O(2" -n) = ©*(2")
A shortest tour can be produced by backtracking the DP table
(as usual). Compare: O*(2") with 29(l°en) for Brute-Force!

Maximum Independent Set (MIS)
Input: Graph G = (V, E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

12

Maximum Independent Set (MIS)
Input: Graph G = (V, E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

12

Maximum Independent Set (MIS)

Input: Graph G = (V, E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force?

12

Maximum Independent Set (MIS)

Input: Graph G = (V, E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force? Try all subsets of V' = runtime O(2" - n).

12

12

Maximum Independent Set (MIS)
Input: Graph G = (V, E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force? Try all subsets of V' = runtime O(2" - n).

Algorithm NaiveMIS(graph G = (V, F))
if V=10 then
| return 0

v < arbitrary vertex in V(G)
return max{1 4+ NaiveMIS(G — N(v) — {v}), NaiveMIS(G — {v})}

13

()

()

v
1 +17

13

1+7

=~
o—-o

1+7

1+7

1+7

1+0

()

1+1

1+0

Observation

Lemma. Let U be a maximum independent set in G.

14

Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex v € V:

(i) velU =
(i) v U =

14

Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex v € V:
(i) veU = N(v)
(i) vg U =

14

Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex v € V:
(i) veU= NwNU =1
(i) vg U =

14

Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex v € V:
(i) veU= NnNU =10
(i) ve¢ U = |[N(v)NU| > 1

14

Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex v € V:

(i) veU= NnNU =10
(i) ve¢ U = |[N(v)NU| > 1

Thus, N[v] := N(v) U {v} contains some y € U

14

Smarter Branching Algorithm

Algorithm MIS(G)
if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — NJy]) | y € N[v]}

15

Smarter Branching Algorithm

Algorithm MIS(G)
if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — NJy]) | y € N[v]}

Correctness: follows from the previous lemma.

15

Smarter Branching Algorithm

Algorithm MIS(G)
if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — NJy]) | y € N[v]}

Correctness: follows from the previous lemma.

We will now prove a runtime of O*(3"%/3) = O*(1.4423")

15

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G
~

G_N[Ul] G—N[UQ]

—
S‘\
= wE“
= -«
= a4

16

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

—
S‘\
= wE“
= -«
= a4

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

The search tree has height < / \ / \1

Voo
)) (/B

0

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

The search tree has height < n. / \ / \

Voo
)) (/B

0

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

The search tree has height < n. / \ / \1

= Algorithm runs in time
T(n) € l J
o0)

= E—
= a4

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

The search tree has height < n. / \ / \1

= Algorithm runs in time
T(n) € O*(nB(n)) = l J
o0)

= E—
= a4

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

The search tree has height < n. / \ / \1

= Algorithm runs in time

T'(n) € O*(nB(n)) = O*(B(n)).

l¢
0

= E—
= a4

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

The search tree has height < n. / \ / \1

= Algorithm runs in time

T'(n) € O*(nB(n)) = O*(B(n)).

Let's consider an example run.

l¢
0

= E—
= a4

17

1+7

1+7

1+7

1+1

1+7

1+7

1+7

1+2

1+2

1+7

1+2

1+2

1+2

1+0

1+2

1+7

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < Y B(

yE N[v]

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n—(deg(y) +1))

yE N[v]

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

Bn) < Y B(n—(deg(y) + 1))
yE N[v]
<

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n—(deg(y) +1))

yE N[v]
< (deg(v) +1)-

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n—(deg(y) +1))

yE N[v]
< (deg(v) +1)- B(

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n—(deg(y) + 1))

yE N[v]
< (deg(v)+1) - B(n—(deg(v) +1)),

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n— (deg(y)+1))

yE N[v]
< (deg(v) +1) - B(n— (deg(v)+1)),
where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n') < B(n) for any n’ < n.

18

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n— (deg(y)+1))

yE N[v]
< (deg(v) +1) - B(n— (deg(v)+1)),
where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n') < B(n) for any n’ < n.

This is not difficult: Let G’ be a graph with n’ vertices and a
search tree with the maximum number of leaves, B(n').

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n— (deg(y)+1))

yE N[v]
< (deg(v) +1) - B(n— (deg(v)+1)),
where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n') < B(n) for any n’ < n.

This is not difficult: Let G’ be a graph with n’ vertices and a
search tree with the maximum number of leaves, B(n').

Add to G’ n — n’ independent vertices.

18

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) <) B(n— (deg(y)+1))

yE N[v]
< (deg(v) +1) - B(n— (deg(v)+1)),
where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n') < B(n) for any n’ < n.

This is not difficult: Let G’ be a graph with n’ vertices and a
search tree with the maximum number of leaves, B(n').

Add to G’ n — n’ independent vertices.

This yields an n-vertex graph witnessing that B(n) > B(n').

18

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 3"™/3,

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1)- B(n— (deg(v) +1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.

Base case: B(0) =1 < 3%/3
Hypothesis: for n > 1, set s = deg(v) + 1 in

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n)<s-B(n—s)<

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <s-B(n—s)<s-3n=9)/3 =

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <s-B(n—s)<s-3n75)/3 = e .3n/3 <

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <s-B(n—s) <s-3(n=s)/3 = e . 3n/3 < 3n/3

19

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <s-B(n—s) <s-3(n=s)/3 = e . 3n/3 < 3n/3

1.0 —
i / ™~
aar

nab [/

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show that B(n) < 37/3.
Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <s-B(n—s) <s-3(n=s)/3 = e . 3n/3 < 3n/3

1.0 —
oAb /

nab [/

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))

We proceed by induction to show that B(n) < 37/3.

Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <s-B(n—s) <s-3(n=s)/3 = e .3n/3 < 3n/3

1.0 —
nat /

nal /

19

Runtime Analysis (cont'd)

Recall: B(n) < (deg(v) +1) - B(n — (deg(v)+1))

We proceed by induction to show that B(n) < 37/3.

Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,

B(n) <s-B(n—s) <s-3(n=s)/3 = e .3n/3 < 3n/3

B(n) € O*(v/3") C O*(1.44225") | /f T~

osr

nab [/

	Why Consider Exponential-Time Algorithms?
	Motivation: Exact Exponential Algorithms
	Faster Hardware vs. Better Algorithms
	Bellman--Held--Karp Algorithm
	Bellman--Held--Karp Algorithm
	Pseudocode for the Dynamic Program
	Maximum Independent Set (MIS)
	Observation
	Smarter Branching Algorithm
	Runtime
	Runtime Analysis
	Runtime Analysis (cont'd)

