
1

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 1. Introduction & Two Examples

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

2

Textbooks

Fedor Fomin & Dieter Kratsch:
Exact Exponential Algorithms
Springer 2010

Marek Cygan et al.:
Parameterized Algorithms
Springer 2015

2

Textbooks

Fedor Fomin & Dieter Kratsch:
Exact Exponential Algorithms
Springer 2010

Marek Cygan et al.:
Parameterized Algorithms
Springer 2015

This Lecture: Chapter 1

3

Motivation

Efficient vs. inefficient algorithms

3

Motivation

Efficient vs. inefficient algorithms

 polynomial vs. super-polynomial algorithms

4

Why Consider Exponential-Time Algorithms?

4

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!

4

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!

How to deal with NP-hard problems?

4

Why Consider Exponential-Time Algorithms?

• Sacrifice optimality for speed
– heuristics (simulated annealing, tabu search)
– approximation algorithms (Christofides’ algorithm)

Heuristic

NP-hard

Approximation

Many important (practical) problems are NP-hard!

How to deal with NP-hard problems?

4

Why Consider Exponential-Time Algorithms?

• Sacrifice optimality for speed
– heuristics (simulated annealing, tabu search)
– approximation algorithms (Christofides’ algorithm)

Heuristic

NP-hard

Exponential FPT

Approximation

Many important (practical) problems are NP-hard!

How to deal with NP-hard problems?

• Optimal Solutions
– exact exponential-time algorithms
– fine-grained analysis (parameterized) algorithms

4

Why Consider Exponential-Time Algorithms?

• Sacrifice optimality for speed
– heuristics (simulated annealing, tabu search)
– approximation algorithms (Christofides’ algorithm)

Heuristic

NP-hard

Exponential FPT

Approximation

This Course!

Many important (practical) problems are NP-hard!

How to deal with NP-hard problems?

• Optimal Solutions
– exact exponential-time algorithms
– fine-grained analysis (parameterized) algorithms

5

Motivation: Exact Exponential Algorithms

• Can be “fast” for medium-sized instances:

5

Motivation: Exact Exponential Algorithms

• Can be “fast” for medium-sized instances:

 e.g.: n4 > 1.2n for n ≤ 100

5

Motivation: Exact Exponential Algorithms

• Can be “fast” for medium-sized instances:

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

5

Motivation: Exact Exponential Algorithms

• Can be “fast” for medium-sized instances:

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

 “hidden” constants in polynomial time algorithms:
2100 · n > 2n for n ≤ 100

5

Motivation: Exact Exponential Algorithms

• Can be “fast” for medium-sized instances:

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

 “hidden” constants in polynomial time algorithms:
2100 · n > 2n for n ≤ 100

• Theoretical interest!

6

Typical Results

• Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

6

Typical Results

• Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

• Typical results for a (hypothetical) NP-hard problem:

6

Typical Results

• Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

• Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

6

Typical Results

• Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

• Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) (O(1.5n · n) (O(2n)

6

Typical Results

• Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

• Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) (O(1.5n · n) (O(2n)

• Neglect polynomial factors (exponential part dominates)!

6

Typical Results

• Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

• Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) (O(1.5n · n) (O(2n)

• Neglect polynomial factors (exponential part dominates)!

f ∈ O∗(g) ⇔ ∃ polynomial p: f ∈ O(g · p)

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

Hardware speedup:

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

Hardware speedup: an
′
0 = c · an0 ⇒

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

Hardware speedup: an
′
0 = c · an0 ⇒ n′0 = n0 + loga c

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

Hardware speedup:

Base reduction:

an
′
0 = c · an0 ⇒ n′0 = n0 + loga c

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

Hardware speedup:

Base reduction:

an
′
0 = c · an0 ⇒ n′0 = n0 + loga c

bn
′
0 = an0 ⇒

7

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

Hardware speedup:

Base reduction:

an
′
0 = c · an0 ⇒ n′0 = n0 + loga c

bn
′
0 = an0 ⇒ n′0 = n0 · logb a

8

Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output: A Hamiltonian cycle C = (v1, . . . , vn, vn+1 = v1) of G,
of minimum weight

∑n
i=1 c(vi, vi+1).

8

Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output: A Hamiltonian cycle C = (v1, . . . , vn, vn+1 = v1) of G,
of minimum weight

∑n
i=1 c(vi, vi+1).

Brute-Force?

8

Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output: A Hamiltonian cycle C = (v1, . . . , vn, vn+1 = v1) of G,
of minimum weight

∑n
i=1 c(vi, vi+1).

Brute-Force?

• Each tour is a permutation of
the vertices.

• Pick a permutation with the
smallest weight.

8

Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output: A Hamiltonian cycle C = (v1, . . . , vn, vn+1 = v1) of G,
of minimum weight

∑n
i=1 c(vi, vi+1).

Brute-Force?

• Each tour is a permutation of
the vertices.

• Pick a permutation with the
smallest weight.

Runtime: Θ(n! · n) = n · 2Θ(n log n)

9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Technique: Dynamic Programming!

9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Technique: Dynamic Programming!

9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

s

Technique: Dynamic Programming!

9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

For each S ⊆ V − s := V \ {s} and v ∈ S:

S
v

s

Technique: Dynamic Programming!

9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

For each S ⊆ V − s := V \ {s} and v ∈ S:

OPT[S, v] := length of the shortest s–v path
that visits precisely the vertices of S ∪ {s}.

S
v

s

Technique: Dynamic Programming!

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy: OPT[S, v] =

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy: OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s,
the optimal solution is easily obtained as follows:

min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s,
the optimal solution is easily obtained as follows:

OPT =

V − s

v
s

min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s,
the optimal solution is easily obtained as follows:

OPT =

V − s

v
s

min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

OPT[S, v] = c(s, v).

10

Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s,
the optimal solution is easily obtained as follows:

OPT =

V − s

v
s

min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

OPT[S, v] = c(s, v).

�

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Runtime:

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Space usage:

Runtime:

Θ(2n · n) = Θ∗(2n)

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Space usage:

A shortest tour can be produced by backtracking the DP table
(as usual).

Runtime:

Θ(2n · n) = Θ∗(2n)

11

Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Space usage:

A shortest tour can be produced by backtracking the DP table
(as usual). Compare: O∗(2n) with 2O(n log n) for Brute-Force!

Runtime:

Θ(2n · n) = Θ∗(2n)

12

Maximum Independent Set (MIS)

Input: Graph G = (V,E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

12

Maximum Independent Set (MIS)

Input: Graph G = (V,E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

12

Maximum Independent Set (MIS)

Input: Graph G = (V,E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force?

12

Maximum Independent Set (MIS)

Input: Graph G = (V,E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force? Try all subsets of V ⇒ runtime O(2n · n).

12

Maximum Independent Set (MIS)

Input: Graph G = (V,E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force? Try all subsets of V ⇒ runtime O(2n · n).

Algorithm NaiveMIS(graph G = (V,E))
if V = ∅ then

return 0

v ← arbitrary vertex in V (G)
return max{1 + NaiveMIS(G−N(v)−{v}), NaiveMIS(G−{v})}

13

v

13

v

13

3?

v
¬v

w

13

1 + 13? ?

v
¬v v

uw

13

1 + 13? ?

v
¬v v

uw

13

1 + 13

1

? ?

?

v
¬v v

u

¬u

w

13

1 + 13

1 1 + 0

? ?

? ?

v
¬v v

u

¬u u

w

13

1 + 13

1 1 + 0

0

? ?

?

v
¬v v

u

¬u u

w

13

1 + 13

1 1 + 0

01

? ?

v
¬v v

u

¬u u

w

13

1 + 13

1 1 + 0

01

? ?

v
¬v v

u

¬u u

w

13

1 + 13

1 1 + 0

01

1

? ?

v
¬v v

u

¬u u

w

13

1 + 13

1 1 + 0

01

1

?

v
¬v v

u

¬u u

w

13

1 + 13

1 1 + 0

01

1

?

v
¬v v

u

¬u u

w

13

1 + 13

3 1 1 + 0

01

1

?

?

v
¬v v

u

¬u u

w

¬w

13

1 + 13

3 1 1 + 0

01

1

?

?

v
¬v v

u

¬u u

w

¬w

13

1 + 13

3 1 1 + 0

013

1

?

?

v
¬v v

u

¬u u

w

¬w

13

1 + 13

3 1 1 + 0

013

1

?

v
¬v v

u

¬u u

w

¬w

13

1 + 13

3 1 + 2 1 1 + 0

013

1

?

?

v
¬v v

u

¬u u

w

¬w w

13

1 + 13

3 1 + 2 1 1 + 0

0123

1

?

?

v
¬v v

u

¬u u

w

¬w w

13

1 + 13

3 1 + 2 1 1 + 0

0123

1

?

v
¬v v

u

¬u u

w

¬w w

13

1 + 13

3 1 + 2 1 1 + 0

0123

3 1

?

v
¬v v

u

¬u u

w

¬w w

13

1 + 13

3 1 + 2 1 1 + 0

0123

3 1

v
¬v v

u

¬u u

w

¬w w

13

1 + 13

3 1 + 2 1 1 + 0

0123

3 1

3v
¬v v

u

¬u u

w

¬w w

14

Observation

Let U be a maximum independent set in G.Lemma.

v

y

14

Observation

Let U be a maximum independent set in G.Lemma.

v

y

Then, for each vertex v ∈ V :

(i) v ∈ U ⇒ N(v) ∩ U = ∅
(ii) v /∈ U ⇒ |N(v) ∩ U | ≥ 1

14

Observation

Let U be a maximum independent set in G.Lemma.

v

y

Then, for each vertex v ∈ V :

(i) v ∈ U ⇒ N(v) ∩ U = ∅
(ii) v /∈ U ⇒ |N(v) ∩ U | ≥ 1

14

Observation

Let U be a maximum independent set in G.Lemma.

v

y

Then, for each vertex v ∈ V :

(i) v ∈ U ⇒ N(v) ∩ U = ∅
(ii) v /∈ U ⇒ |N(v) ∩ U | ≥ 1

14

Observation

Let U be a maximum independent set in G.Lemma.

v

y

Then, for each vertex v ∈ V :

(i) v ∈ U ⇒ N(v) ∩ U = ∅
(ii) v /∈ U ⇒ |N(v) ∩ U | ≥ 1

14

Observation

Let U be a maximum independent set in G.Lemma.

v

y

Then, for each vertex v ∈ V :

(i) v ∈ U ⇒ N(v) ∩ U = ∅
(ii) v /∈ U ⇒ |N(v) ∩ U | ≥ 1

Thus, N [v] := N(v) ∪ {v} contains some y ∈ U ,
and no other vertex of N [y] is in U .

15

Smarter Branching Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

15

Smarter Branching Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

Correctness: follows from the previous lemma.

15

Smarter Branching Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

Correctness:

We will now prove a runtime of O∗(3n/3) = O∗(1.4423n)

follows from the previous lemma.

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

The search tree has height ≤

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

The search tree has height ≤ n.

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

The search tree has height ≤
⇒ Algorithm runs in time
T (n) ∈

n.

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

The search tree has height ≤
⇒ Algorithm runs in time
T (n) ∈

n.

O∗(nB(n)) =

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

The search tree has height ≤
⇒ Algorithm runs in time
T (n) ∈

n.

O∗(nB(n)) = O∗(B(n)).

16

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

The search tree has height ≤

Let’s consider an example run.

⇒ Algorithm runs in time
T (n) ∈

n.

O∗(nB(n)) = O∗(B(n)).

17

17

A

B

C

17

1 + 2?

A

B

C
A

17

1 + 2?

A

B

C
A

A

B

C

17

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

?

17

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

17

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

1 + 1

B

17

1 + 2?

A

B

C
A

A

B

C

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2?

2

A

B

C
A

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2

2

A

B

C
A

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2 1 + 2?

2

A

B

C
A

B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2 1 + 2?

2

A

B

C
A

B

A
B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2 1 + 2?

2

A

B

C
A

B

A
B

1 + 1

A

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2 1 + 2?

2

A

B

C
A

B

A
B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2 1 + 2?

2 2

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 2 1 + 2

2 2

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

1 + 0

1 + 0
A

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 1?1 + 2 1 + 2

2 2 1

A

B

C
A

B

C

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 11 + 2 1 + 2

2 2 1

A

B

C
A

B

C

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17

1 + 1

3

1 + 2 1 + 2

2 2 1

A

B

C
A

B

C

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n′) ≤ B(n) for any n′ ≤ n.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n′) ≤ B(n) for any n′ ≤ n.

This is not difficult: Let G′ be a graph with n′ vertices and a
search tree with the maximum number of leaves, B(n′).

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n′) ≤ B(n) for any n′ ≤ n.

This is not difficult: Let G′ be a graph with n′ vertices and a
search tree with the maximum number of leaves, B(n′).

Add to G′ n− n′ independent vertices.

18

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n′) ≤ B(n) for any n′ ≤ n.

This is not difficult: Let G′ be a graph with n′ vertices and a
search tree with the maximum number of leaves, B(n′).

Add to G′ n− n′ independent vertices.

This yields an n-vertex graph witnessing that B(n) ≥ B(n′).

19

Runtime Analysis (cont’d)

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

?

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

?

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

?

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

?

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Thus,

X

19

Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

B(n) ∈ O∗(3
√

3n) ⊂ O∗(1.44225n)

Recall: B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

�

Thus,

X

	Why Consider Exponential-Time Algorithms?
	Motivation: Exact Exponential Algorithms
	Faster Hardware vs. Better Algorithms
	Bellman--Held--Karp Algorithm
	Bellman--Held--Karp Algorithm
	Pseudocode for the Dynamic Program
	Maximum Independent Set (MIS)
	Observation
	Smarter Branching Algorithm
	Runtime
	Runtime Analysis
	Runtime Analysis (cont'd)

