UNIVERSITÄT WÜRZBURG

Lehrstuhl für

INFORMATIK I

Exact Algorithms

Sommer Term 2020
Lecture 1. Introduction \& Two Examples
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Textbooks

Marek Cygan - Fedor V. Fomin
 Łukasz Kowalik. Daniel Lokshtanov
 Dániel Marx - Marcin Pilipczuk
 Michał Pilipczuk • Saket Saurabh

Parameterized Algorithms

Marek Cygan et al.:
Parameterized Algorithms
Springer 2015

Textbooks
This Lecture: Chapter 1

Fedor V. Fomin
 Dieter Kratsch

Exact
Exponential Algorithms

Marek Cygan - Fedor V. Fomin

tukasz Kowalik • Daniel Lokshtanov
Dániel Marx - Marcin Pilipczuk
Michał Pilipczuk • Saket Saurabh

Parameterized Algorithms

Fedor Fomin \& Dieter Kratsch:
Exact Exponential Algorithms
Springer 2010

Marek Cygan et al.:
Parameterized Algorithms
Springer 2015

Motivation

Efficient vs. inefficient algorithms

Motivation

Efficient vs. inefficient algorithms
\rightsquigarrow polynomial vs. super-polynomial algorithms

Why Consider Exponential-Time Algorithms?

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard!

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard! How to deal with NP-hard problems?

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard! How to deal with NP-hard problems?

- Sacrifice optimality for speed
- heuristics (simulated annealing, tabu search)
- approximation algorithms (Christofides' algorithm)

Heuristic
Approximation
NP-hard

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard! How to deal with NP-hard problems?

- Sacrifice optimality for speed
- heuristics (simulated annealing, tabu search)
- approximation algorithms (Christofides' algorithm)
- Optimal Solutions
- exact exponential-time algorithms
- fine-grained analysis (parameterized) algorithms

Heuristic
Approximation
NP-hard
Exponential

Why Consider Exponential-Time Algorithms?

Many important (practical) problems are NP-hard! How to deal with NP-hard problems?

- Sacrifice optimality for speed
- heuristics (simulated annealing, tabu search)
- approximation algorithms (Christofides' algorithm)
- Optimal Solutions
- exact exponential-time algorithms
- fine-grained analysis (parameterized) algorithms

Heuristic
Approximation
NP-hard
Exponential
FPT

Motivation: Exact Exponential Algorithms

- Can be "fast" for medium-sized instances:

Motivation: Exact Exponential Algorithms

- Can be "fast" for medium-sized instances:
\rightsquigarrow e.g.: $n^{4}>1.2^{n}$ for $n \leq 100$

Motivation: Exact Exponential Algorithms

- Can be "fast" for medium-sized instances:
\rightsquigarrow e.g.: $n^{4}>1.2^{n}$ for $n \leq 100$
\rightsquigarrow e.g.: TSP solvable exactly for $n \leq 2000$ and specialized instances with $n \leq 85900$

Motivation: Exact Exponential Algorithms

- Can be "fast" for medium-sized instances:
\rightsquigarrow e.g.: $n^{4}>1.2^{n}$ for $n \leq 100$
\rightsquigarrow e.g.: TSP solvable exactly for $n \leq 2000$ and specialized instances with $n \leq 85900$
\rightsquigarrow "hidden" constants in polynomial time algorithms:
$2^{100} \cdot n>2^{n}$ for $n \leq 100$

Motivation: Exact Exponential Algorithms

- Can be "fast" for medium-sized instances:
\rightsquigarrow e.g.: $n^{4}>1.2^{n}$ for $n \leq 100$
\rightsquigarrow e.g.: TSP solvable exactly for $n \leq 2000$ and specialized instances with $n \leq 85900$
\rightsquigarrow "hidden" constants in polynomial time algorithms:
$2^{100} \cdot n>2^{n}$ for $n \leq 100$
- Theoretical interest!

Typical Results

- Idea (simplified): find exact algorithms that are faster than brute-force (trivial) approaches.

Typical Results

- Idea (simplified): find exact algorithms that are faster than brute-force (trivial) approaches.
- Typical results for a (hypothetical) NP-hard problem:

Typical Results

- Idea (simplified): find exact algorithms that are faster than brute-force (trivial) approaches.
- Typical results for a (hypothetical) NP-hard problem:

Approach	Runtime in O-Notation	O^{*}-Notation
Brute-Force	$O\left(2^{n}\right)$	$O^{*}\left(2^{n}\right)$
Algorithm A	$O\left(1.5^{n} \cdot n\right)$	$O^{*}\left(1.5^{n}\right)$
Algorithm B	$O\left(1.4^{n} \cdot n^{2}\right)$	$O^{*}\left(1.4^{n}\right)$

Typical Results

- Idea (simplified): find exact algorithms that are faster than brute-force (trivial) approaches.
- Typical results for a (hypothetical) NP-hard problem:
Approach
Runtime in O-Notation
O^{*}-Notation

Brute-Force $O\left(2^{n}\right)$
$O^{*}\left(2^{n}\right)$
Algorithm A $O\left(1.5^{n} \cdot n\right)$
$O^{*}\left(1.5^{n}\right)$
Algorithm B $O\left(1.4^{n} \cdot n^{2}\right)$
$O^{*}\left(1.4^{n}\right)$
$O\left(1.4^{n} \cdot n^{2}\right) \subsetneq O\left(1.5^{n} \cdot n\right) \subsetneq O\left(2^{n}\right)$

Typical Results

- Idea (simplified): find exact algorithms that are faster than brute-force (trivial) approaches.
- Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O^{*}-Notation
Brute-Force $O\left(2^{n}\right)$
$O^{*}\left(2^{n}\right)$
Algorithm A $O\left(1.5^{n} \cdot n\right)$
$O^{*}\left(1.5^{n}\right)$
Algorithm B $O\left(1.4^{n} \cdot n^{2}\right)$
$O^{*}\left(1.4^{n}\right)$
$O\left(1.4^{n} \cdot n^{2}\right) \subsetneq O\left(1.5^{n} \cdot n\right) \subsetneq O\left(2^{n}\right)$

- Neglect polynomial factors (exponential part dominates)!

Typical Results

- Idea (simplified): find exact algorithms that are faster than brute-force (trivial) approaches.
- Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O^{*}-Notation
Brute-Force $\quad O\left(2^{n}\right)$
$O^{*}\left(2^{n}\right)$
Algorithm A $O\left(1.5^{n} \cdot n\right)$
$O^{*}\left(1.5^{n}\right)$
Algorithm B $\quad O\left(1.4^{n} \cdot n^{2}\right)$
$O^{*}\left(1.4^{n}\right)$
$O\left(1.4^{n} \cdot n^{2}\right) \subsetneq O\left(1.5^{n} \cdot n\right) \subsetneq O\left(2^{n}\right)$

- Neglect polynomial factors (exponential part dominates)!
$f \in O^{*}(g) \Leftrightarrow \exists$ polynomial $p: f \in O(g \cdot p)$

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Why?

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Why?

Hardware speedup:

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Why?

Hardware speedup: $a^{n_{0}^{\prime}}=c \cdot a^{n_{0}} \Rightarrow$

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Why?

Hardware speedup: $a^{n_{0}^{\prime}}=c \cdot a^{n_{0}} \Rightarrow n_{0}^{\prime}=n_{0}+\log _{a} c$

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Why?

Hardware speedup: $a^{n_{0}^{\prime}}=c \cdot a^{n_{0}} \Rightarrow n_{0}^{\prime}=n_{0}+\log _{a} c$
Base reduction:

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Why?

Hardware speedup: $a^{n_{0}^{\prime}}=c \cdot a^{n_{0}} \Rightarrow n_{0}^{\prime}=n_{0}+\log _{a} c$
Base reduction: $\quad b^{n_{0}^{\prime}}=a^{n_{0}} \Rightarrow$

Faster Hardware vs. Better Algorithms

Suppose an algorithm uses a^{n} steps, and we have a fixed amount of time to run it.

- Improving hardware by a constant factor c only adds a constant (relative to c) to the maximum size n_{0} of solvable instances.

- In contrast, reducing the base of the runtime to $b<a$ results in a multiplicative increase of n_{0} !

Why?

Hardware speedup: $a^{n_{0}^{\prime}}=c \cdot a^{n_{0}} \Rightarrow n_{0}^{\prime}=n_{0}+\log _{a} c$
Base reduction: $\quad b^{n_{0}^{\prime}}=a^{n_{0}} \Rightarrow \quad n_{0}^{\prime}=n_{0} \cdot \log _{b} a$

Traveling Salesperson Problem (TSP)

Input: Complete directed graph $G=(V, E)$ with n vertices and edge weights $c: E \rightarrow \mathbb{Q} \geq 0$
Output: A Hamiltonian cycle $C=\left(v_{1}, \ldots, v_{n}, v_{n+1}=v_{1}\right)$ of G, of minimum weight $\sum_{i=1}^{n} c\left(v_{i}, v_{i+1}\right)$.

Traveling Salesperson Problem (TSP)

Input: Complete directed graph $G=(V, E)$ with n vertices and edge weights $c: E \rightarrow \mathbb{Q} \geq 0$
Output: A Hamiltonian cycle $C=\left(v_{1}, \ldots, v_{n}, v_{n+1}=v_{1}\right)$ of G, of minimum weight $\sum_{i=1}^{n} c\left(v_{i}, v_{i+1}\right)$.

Brute-Force?

Traveling Salesperson Problem (TSP)

Input: Complete directed graph $G=(V, E)$ with n vertices and edge weights $c: E \rightarrow \mathbb{Q}_{\geq 0}$
Output: A Hamiltonian cycle $C=\left(v_{1}, \ldots, v_{n}, v_{n+1}=v_{1}\right)$ of G, of minimum weight $\sum_{i=1}^{n} c\left(v_{i}, v_{i+1}\right)$.

Brute-Force?

- Each tour is a permutation of the vertices.
- Pick a permutation with the smallest weight.

Traveling Salesperson Problem (TSP)

Input: Complete directed graph $G=(V, E)$ with n vertices and edge weights $c: E \rightarrow \mathbb{Q}_{\geq 0}$
Output: A Hamiltonian cycle $C=\left(v_{1}, \ldots, v_{n}, v_{n+1}=v_{1}\right)$ of G, of minimum weight $\sum_{i=1}^{n} c\left(v_{i}, v_{i+1}\right)$.

Brute-Force?

- Each tour is a permutation of the vertices.
- Pick a permutation with the smallest weight.

Runtime: $\Theta(n!\cdot n)=n \cdot 2^{\Theta(n \log n)}$

Bellman-Held-Karp Algorithm

Richard M. Karp

Richard E. Bellman

Bellman-Held-Karp Algorithm

Technique: Dynamic Programming!

Richard E. Bellman

Bellman-Held-Karp Algorithm

Technique: Dynamic Programming!
Reuse optimal substructures!

Richard E. Bellman

Bellman-Held-Karp Algorithm

Technique: Dynamic Programming!
Reuse optimal substructures!
Select any starting vertex $s \in V$.

Bellman-Held-Karp Algorithm

Technique: Dynamic Programming!
Reuse optimal substructures!
Select any starting vertex $s \in V$.
For each $S \subseteq V-s:=V \backslash\{s\}$ and $v \in S$:

Richard M. Karp

Richard E. Bellman

Bellman-Held-Karp Algorithm

Technique: Dynamic Programming!
Reuse optimal substructures!
Select any starting vertex $s \in V$.
For each $S \subseteq V-s:=V \backslash\{s\}$ and $v \in S$:
OPT $[S, v]:=$ length of the shortest $s-v$ path that visits precisely the vertices of $S \cup\{s\}$.

Richard M. Karp

Richard E. Bellman

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\operatorname{OPT}[S, v]=$

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\operatorname{OPT}[S, v]=c(s, v)$.

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:
$\operatorname{OPT}[S, v]=$

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:
OPT $[S, v]=\min \{$
$\mid u \in S-v\}$

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:
$\operatorname{OPT}[S, v]=\min \{\operatorname{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:

$$
\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}
$$

After computing OPT $[S, v]$ for each $S \subseteq V-s$, the optimal solution is easily obtained as follows:

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:

$$
\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}
$$

After computing OPT $[S, v]$ for each $S \subseteq V-s$, the optimal solution is easily obtained as follows:

$$
\mathrm{OPT}=
$$

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:

$$
\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}
$$

After computing OPT $[S, v]$ for each $S \subseteq V-s$, the optimal solution is easily obtained as follows:

$$
\mathrm{OPT}=\min \{\quad \mid v \in V-s\}
$$

Bellman-Held-Karp Algorithm

The base case, $S=\{v\}$, is easy: $\mathrm{OPT}[S, v]=c(s, v)$.
When $|S| \geq 2$, we compute OPT $[S, v]$ recursively:

$$
\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}
$$

After computing OPT $[S, v]$ for each $S \subseteq V-s$, the optimal solution is easily obtained as follows:

$$
\mathrm{OPT}=\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}
$$

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp (G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do
$\llcorner\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do
$\llcorner\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O(\quad)$ iterations, each taking $O()$ time.

$$
\text { In total: } O(\quad)=O^{*}(\quad)
$$

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do
$\llcorner\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O\left(2^{n} \cdot n\right)$ iterations, each taking $O()$ time.

$$
\text { In total: } O(\quad)=O^{*}(\quad)
$$

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do
$\llcorner\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O\left(2^{n} \cdot n\right)$ iterations, each taking $O(n)$ time.

$$
\text { In total: } O(\quad)=O^{*}(\quad)
$$

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do
$\llcorner\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O\left(2^{n} \cdot n\right)$ iterations, each taking $O(n)$ time.
In total: $O\left(2^{n} \cdot n^{2}\right)=O^{*}(\quad)$.

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do
$\llcorner\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O\left(2^{n} \cdot n\right)$ iterations, each taking $O(n)$ time.

$$
\text { In total: } O\left(2^{n} \cdot n^{2}\right)=O^{*}\left(2^{n}\right)
$$

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do
$\llcorner\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O\left(2^{n} \cdot n\right)$ iterations, each taking $O(n)$ time.

$$
\text { In total: } O\left(2^{n} \cdot n^{2}\right)=O^{*}\left(2^{n}\right)
$$

Space usage: $\Theta\left(2^{n} \cdot n\right)=\Theta^{*}\left(2^{n}\right)$

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do

OPT $[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O\left(2^{n} \cdot n\right)$ iterations, each taking $O(n)$ time.

$$
\text { In total: } O\left(2^{n} \cdot n^{2}\right)=O^{*}\left(2^{n}\right)
$$

Space usage: $\Theta\left(2^{n} \cdot n\right)=\Theta^{*}\left(2^{n}\right)$
A shortest tour can be produced by backtracking the DP table (as usual).

Pseudocode for the Dynamic Program

Algorithm Bellmann-Held-Karp(G, c)
foreach $v \in V-s$ do

$$
\mathrm{OPT}[\{v\}, v]=c(s, v)
$$

for $j=2$ to $n-1$ do
foreach $S \subseteq V-s$ with $|S|=j$ do foreach $v \in S$ do

OPT $[S, v]=\min \{\mathrm{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}$
return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: The innermost loop has $O\left(2^{n} \cdot n\right)$ iterations, each taking $O(n)$ time.

$$
\text { In total: } O\left(2^{n} \cdot n^{2}\right)=O^{*}\left(2^{n}\right)
$$

Space usage: $\Theta\left(2^{n} \cdot n\right)=\Theta^{*}\left(2^{n}\right)$
A shortest tour can be produced by backtracking the DP table (as usual). Compare: $O^{*}\left(2^{n}\right)$ with $2^{O(n \log n)}$ for Brute-Force!

Maximum Independent Set (MIS)

Input: Graph $G=(V, E)$ with n vertices.
Output: Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Maximum Independent Set (MIS)

Input: Graph $G=(V, E)$ with n vertices.
Output: Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Maximum Independent Set (MIS)

Input: Graph $G=(V, E)$ with n vertices.
Output: Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute Force?

Maximum Independent Set (MIS)

Input: Graph $G=(V, E)$ with n vertices.
Output: Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute Force? Try all subsets of $V \Rightarrow$ runtime $O\left(2^{n} \cdot n\right)$.

Maximum Independent Set (MIS)

Input: Graph $G=(V, E)$ with n vertices.
Output: Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute Force? Try all subsets of $V \Rightarrow$ runtime $O\left(2^{n} \cdot n\right)$.
Algorithm NaiveMIS(graph $G=(V, E)$)
if $V=\emptyset$ then
return 0
$v \leftarrow$ arbitrary vertex in $V(G)$ return $\max \{1+\operatorname{NaiveMIS}(G-N(v)-\{v\}), \operatorname{NaiveMIS}(G-\{v\})\}$

X:

Observation

Lemma. Let U be a maximum independent set in G.

Observation

Lemma. Let U be a maximum independent set in G. Then, for each vertex $v \in V$:
(i) $v \in U \Rightarrow$
(ii) $v \notin U \Rightarrow$

Observation

Lemma. Let U be a maximum independent set in G. Then, for each vertex $v \in V$:
(i) $v \in U \Rightarrow N(v)$
(ii) $v \notin U \Rightarrow$

Observation

Lemma. Let U be a maximum independent set in G. Then, for each vertex $v \in V$:
(i) $v \in U \Rightarrow N(v) \cap U=\emptyset$
(ii) $v \notin U \Rightarrow$

Observation

Lemma. Let U be a maximum independent set in G. Then, for each vertex $v \in V$:
(i) $v \in U \Rightarrow N(v) \cap U=\emptyset$
(ii) $v \notin U \Rightarrow|N(v) \cap U| \geq 1$

Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex $v \in V$:
(i) $v \in U \Rightarrow N(v) \cap U=\emptyset$
(ii) $v \notin U \Rightarrow|N(v) \cap U| \geq 1$

Thus, $N[v]:=N(v) \cup\{v\}$ contains some $y \in U$, and no other vertex of $N[y]$ is in U.

Smarter Branching Algorithm

Algorithm $\operatorname{MIS}(G)$
if $V=\emptyset$ then return 0
$v \leftarrow$ vertex of minimum degree in $V(G)$ return $1+\max \{\operatorname{MIS}(G-N[y]) \mid y \in N[v]\}$

Smarter Branching Algorithm

Algorithm MIS(G)
if $V=\emptyset$ then
return 0
$v \leftarrow$ vertex of minimum degree in $V(G)$ return $1+\max \{\operatorname{MIS}(G-N[y]) \mid y \in N[v]\}$

Correctness: follows from the previous lemma.

Smarter Branching Algorithm

Algorithm MIS(G)
if $V=\emptyset$ then
return 0
$v \leftarrow$ vertex of minimum degree in $V(G)$ return $1+\max \{\operatorname{MIS}(G-N[y]) \mid y \in N[v]\}$

Correctness: follows from the previous lemma.
We will now prove a runtime of $O^{*}\left(3^{n / 3}\right)=O^{*}\left(1.4423^{n}\right)$

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

The search tree has height \leq

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

The search tree has height $\leq n$.

$$
G-N\left[v_{1}\right] \quad G-N\left[v_{2}\right]
$$

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

The search tree has height $\leq n$. \Rightarrow Algorithm runs in time $T(n) \in$

\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

The search tree has height $\leq n$. \Rightarrow Algorithm runs in time $T(n) \in O^{*}(n B(n))=$

$$
G-N\left[v_{1}\right] \quad G-N\left[v_{2}\right]
$$

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

$$
G-N\left[v_{1}\right] \quad G-N\left[v_{2}\right]
$$

The search tree has height $\leq n$.
 \Rightarrow Algorithm runs in time $T(n) \in O^{*}(n B(n))=O^{*}(B(n))$.

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

$$
G-N\left[v_{1}\right] \quad G-N\left[v_{2}\right]
$$

The search tree has height $\leq n$. \Rightarrow Algorithm runs in time $T(n) \in O^{*}(n B(n))=O^{*}(B(n))$.

Let's consider an example run.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
B(n) \leq \sum_{y \in N[v]} B(
$$

)
where v is a minimum-degree vertex of G.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
B(n) \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1))
$$

where v is a minimum-degree vertex of G.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq
\end{aligned}
$$

where v is a minimum-degree vertex of G.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1)
\end{aligned}
$$

where v is a minimum-degree vertex of G.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\left.\begin{array}{rl}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1) \cdot B(
\end{array}\right)
$$

where v is a minimum-degree vertex of G.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))
\end{aligned}
$$

where v is a minimum-degree vertex of G.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1)),
\end{aligned}
$$

where v is a minimum-degree vertex of G.
For the second inequality, we still need to argue that B is monotone, that is, $B\left(n^{\prime}\right) \leq B(n)$ for any $n^{\prime} \leq n$.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1)),
\end{aligned}
$$

where v is a minimum-degree vertex of G.
For the second inequality, we still need to argue that B is monotone, that is, $B\left(n^{\prime}\right) \leq B(n)$ for any $n^{\prime} \leq n$.
This is not difficult: Let G^{\prime} be a graph with n^{\prime} vertices and a search tree with the maximum number of leaves, $B\left(n^{\prime}\right)$.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1)),
\end{aligned}
$$

where v is a minimum-degree vertex of G.
For the second inequality, we still need to argue that B is monotone, that is, $B\left(n^{\prime}\right) \leq B(n)$ for any $n^{\prime} \leq n$.
This is not difficult: Let G^{\prime} be a graph with n^{\prime} vertices and a search tree with the maximum number of leaves, $B\left(n^{\prime}\right)$.

Add to $G^{\prime} n-n^{\prime}$ independent vertices.

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1)),
\end{aligned}
$$

where v is a minimum-degree vertex of G.
For the second inequality, we still need to argue that B is monotone, that is, $B\left(n^{\prime}\right) \leq B(n)$ for any $n^{\prime} \leq n$.

This is not difficult: Let G^{\prime} be a graph with n^{\prime} vertices and a search tree with the maximum number of leaves, $B\left(n^{\prime}\right)$.

Add to $G^{\prime} n-n^{\prime}$ independent vertices.
This yields an n-vertex graph witnessing that $B(n) \geq B\left(n^{\prime}\right)$.

Runtime Analysis (cont'd)
Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show that $B(n) \leq 3^{n / 3}$.

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$ We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$ We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$ We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$ We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \leq$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$ We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \stackrel{?}{\leq} 3^{n / 3}$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \stackrel{?}{\leq} 3^{n / 3}$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \stackrel{?}{\leq} 3^{n / 3}$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \stackrel{?}{\leq} 3^{n / 3}$

Runtime Analysis (cont'd)

Recall: $B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show that $B(n) \leq 3^{n / 3}$. Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in
Thus,
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \leq 3^{n / 3}$
$B(n) \in O^{*}(\sqrt[3]{3} n) \subset O^{*}\left(1.44225^{n}\right)$
(2.9

