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Many important (practical) problems are NP-hard!
How to deal with NP-hard problems?

e Sacrifice optimality for speed
— heuristics (simulated annealing, tabu search)
— approximation algorithms (Christofides’ algorithm)

e Optimal Solutions This Course!

— exact exponential-time algorithms
— fine-grained analysis (parameterized) algorithms

Heuristic Approximation

NP-hard

Exponential FPT
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e Can be “fast’ for medium-sized instances:

~ e.g.:n* > 1.2" for n < 100

~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

~+ "hidden” constants in polynomial time algorithms:
21000 > 2™ for n < 100

e [ heoretical interest!
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Typical Results

e Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

e Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O*-Notation
Brute-Force  O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4™ -n?) C O(1.5™ -n) C O(2")

e Neglect polynomial factors (exponential part dominates)!

f€0O*(g) & 3 polynomial p: f € O(g-p)
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Suppose an algorithm uses a”™ steps, and
we have a fixed amount of time to run it.

e Improving hardware by a constant
factor ¢ only adds a constant
(relative to ¢) to the maximum size ng
of solvable instances.

e In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of ng!

Why?
Hardware speedup: a™ = c-q" = ng = ng + log, ¢

. /
Base reduction: b™ = a™ =  nyg=ng- log,a
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Traveling Salesperson Problem (TSP)

Input:

and edge weights c: £ — Q>¢

Output: A Hamiltonian cycle C = (v, ..
of minimum weight " ,

Brute-Force?
e Each tour is a permutation of
the vertices.

e Pick a permutation with the
smallest weight.

Complete directed graph G = (V, E') with n vertices

., Upn,Unt1 = v1) of G,
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Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V, E) with n vertices

and edge weights c: £ — Q>¢
Output: A Hamiltonian cycle C = (v, ..

of minimum weight > | (v, viy1).

Brute-Force?

e Each tour is a permutation of
the vertices.

e Pick a permutation with the
smallest weight.

Runtime: ©(n! - n) = n - 282 loegn)
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Bellman—Held—Karp Algorithm

Technique: Dynamic Programming]!

Reuse optimal substructures!

Select any starting vertex s € V.

Foreach SCV —s .=V \ {s}andv € S:

OPT[S, v] := length of the shortest s—v path
that visits precisely the vertices of S U {s}.

Richard E. Bellman
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Bellman—Held—Karp Algorithm

The base case, S = {v}, is easy: OPT[S,v]| = ¢(s,v).

When |S| > 2, we compute OPT/[S, v] recursively:
OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |[u e S —wv}

After computing OPT[S, v] for each S CV — s,
the optimal solution is easily obtained as follows:

OPT = min{ OPT[V — s,v] 4+ ¢(v,s) |v eV —s}

10



Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v €V — s do
L OPT[{v},v] = ¢(s,0)
for j =2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
L | OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[ue S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
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Pseudocode for the Dynamic Program

Algorithm Bellmann—Held—Karp(G, ¢)
foreach v € V — s do
| OPT[{v}, v] = (s, v)
for j=2ton—1do
foreach S C V — s with |S| = j do

foreach v € S do
| OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |ue S—wv}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: The innermost loop has O(2" - n) iterations,
each taking O(n) time.
In total: O(2" - n?) = O*(2").
Space usage: ©O(2" -n) = ©*(2")
A shortest tour can be produced by backtracking the DP table
(as usual). Compare: O*(2") with 29(l°en) for Brute-Force!
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Maximum Independent Set (MIS)
Input:  Graph G = (V, E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force? Try all subsets of V' = runtime O(2" - n).

Algorithm NaiveMIS(graph G = (V, F))
if V=10 then
| return 0

v < arbitrary vertex in V(G)
return max{1 4+ NaiveMIS(G — N(v) — {v}), NaiveMIS(G — {v})}
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Observation

Lemma. Let U be a maximum independent set in G.
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Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex v € V:
(i) veU= NnNU =10
(i) ve¢ U = |[N(v)NU| > 1
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Observation

Lemma. Let U be a maximum independent set in G.
Then, for each vertex v € V:

(i) veU= NnNU =10
(i) ve¢ U = |[N(v)NU| > 1

Thus, N[v] := N(v) U {v} contains some y € U
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Smarter Branching Algorithm

Algorithm MIS(G)
if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — NJy]) | y € N[v]}
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L return 0
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Correctness: follows from the previous lemma.

15



Smarter Branching Algorithm

Algorithm MIS(G)
if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — NJy]) | y € N[v]}

Correctness: follows from the previous lemma.

We will now prove a runtime of O*(3"%/3) = O*(1.4423")
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Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.
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Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum
number of leaves of a search tree / \
for a graph with n vertices. G — N|vq] G — Nlvy]

The search tree has height < n. / \ / \1

= Algorithm runs in time

T'(n) € O*(nB(n)) = O*(B(n)).

Let's consider an example run.
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monotone, that is, B(n') < B(n) for any n’ < n.

This is not difficult: Let G’ be a graph with n’ vertices and a
search tree with the maximum number of leaves, B(n').

Add to G’ n — n’ independent vertices.

This yields an n-vertex graph witnessing that B(n) > B(n').
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We proceed by induction to show that B(n) < 37/3.

Base case: B(0) =1 < 3%/3

Hypothesis: for n > 1, set s = deg(v) + 1 in

Thus,
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