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Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 1. Introduction & Two Examples

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)
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Why Consider Exponential-Time Algorithms?

• Sacrifice optimality for speed
– heuristics (simulated annealing, tabu search)
– approximation algorithms (Christofides’ algorithm)

Heuristic

NP-hard

Exponential FPT

Approximation

This Course!

Many important (practical) problems are NP-hard!

How to deal with NP-hard problems?

• Optimal Solutions
– exact exponential-time algorithms
– fine-grained analysis (parameterized) algorithms
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Motivation: Exact Exponential Algorithms

• Can be “fast” for medium-sized instances:

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

 “hidden” constants in polynomial time algorithms:
2100 · n > 2n for n ≤ 100

• Theoretical interest!
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Typical Results

• Idea (simplified): find exact algorithms that are faster than
brute-force (trivial) approaches.

• Typical results for a (hypothetical) NP-hard problem:

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) ( O(1.5n · n) ( O(2n)

• Neglect polynomial factors (exponential part dominates)!

f ∈ O∗(g) ⇔ ∃ polynomial p: f ∈ O(g · p)
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Faster Hardware vs. Better Algorithms

Suppose an algorithm uses an steps, and
we have a fixed amount of time to run it.

• Improving hardware by a constant
factor c only adds a constant
(relative to c) to the maximum size n0

of solvable instances.

• In contrast, reducing the base of the
runtime to b < a results in a
multiplicative increase of n0!

Why?

Hardware speedup:

Base reduction:

an
′
0 = c · an0 ⇒ n′0 = n0 + loga c

bn
′
0 = an0 ⇒ n′0 = n0 · logb a
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Traveling Salesperson Problem (TSP)

Input: Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output: A Hamiltonian cycle C = (v1, . . . , vn, vn+1 = v1) of G,
of minimum weight

∑n
i=1 c(vi, vi+1).

Brute-Force?

• Each tour is a permutation of
the vertices.

• Pick a permutation with the
smallest weight.

Runtime: Θ(n! · n) = n · 2Θ(n log n)



9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman



9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Technique: Dynamic Programming!



9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Technique: Dynamic Programming!



9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

s

Technique: Dynamic Programming!



9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

For each S ⊆ V − s := V \ {s} and v ∈ S:

S
v

s

Technique: Dynamic Programming!



9

Bellman–Held–Karp Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

For each S ⊆ V − s := V \ {s} and v ∈ S:

OPT[S, v] := length of the shortest s–v path
that visits precisely the vertices of S ∪ {s}.

S
v

s

Technique: Dynamic Programming!
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Bellman–Held–Karp Algorithm

The base case, S = {v}, is easy:

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] =

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s,
the optimal solution is easily obtained as follows:

OPT =

V − s

v
s

min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

OPT[S, v] = c(s, v).

�
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Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
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Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do
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Pseudocode for the Dynamic Program

Algorithm Bellmann–Held–Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
The innermost loop has O(2n · n) iterations,
each taking O(n) time.
In total: O(2n · n2) = O∗(2n).

Space usage:

A shortest tour can be produced by backtracking the DP table
(as usual). Compare: O∗(2n) with 2O(n log n) for Brute-Force!

Runtime:

Θ(2n · n) = Θ∗(2n)
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Maximum Independent Set (MIS)

Input: Graph G = (V,E) with n vertices.

Output: Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force? Try all subsets of V ⇒ runtime O(2n · n).

Algorithm NaiveMIS(graph G = (V,E))
if V = ∅ then

return 0

v ← arbitrary vertex in V (G)
return max{1 + NaiveMIS(G−N(v)−{v}), NaiveMIS(G−{v})}
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v

y

Then, for each vertex v ∈ V :

(i) v ∈ U ⇒ N(v) ∩ U = ∅
(ii) v /∈ U ⇒ |N(v) ∩ U | ≥ 1

Thus, N [v] := N(v) ∪ {v} contains some y ∈ U ,
and no other vertex of N [y] is in U .



15

Smarter Branching Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0
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Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

Correctness:

We will now prove a runtime of O∗(3n/3) = O∗(1.4423n)

follows from the previous lemma.
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Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

The search tree has height ≤

Let’s consider an example run.

⇒ Algorithm runs in time
T (n) ∈

n.

O∗(nB(n)) = O∗(B(n)).
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Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):
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where v is a minimum-degree vertex of G.
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For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B( n− (deg(v) + 1) ) ,

where v is a minimum-degree vertex of G.

For the second inequality, we still need to argue that B is
monotone, that is, B(n′) ≤ B(n) for any n′ ≤ n.

This is not difficult: Let G′ be a graph with n′ vertices and a
search tree with the maximum number of leaves, B(n′).

Add to G′ n− n′ independent vertices.

This yields an n-vertex graph witnessing that B(n) ≥ B(n′).
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Runtime Analysis (cont’d)

We proceed by induction to show that B(n) ≤ 3n/3.

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

B(n) ∈ O∗( 3
√

3n) ⊂ O∗(1.44225n)

Recall: B(n) ≤ (deg(v) + 1) ·B( n− (deg(v) + 1) )

�

Thus,

X
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