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Crossing number and topological graphs

In a crossing minimal drawing of G
� no edge is self-intersecting,

� edges with common endpoints do not
intersect,

� two edges intersect at most once,

Example.
cr(K3,3) = 1

� and wlog, at most two edges intersect at
the same point.

Such a drawing is called a topological drawing of G.

Definition.
For a graph G, the crossing number cr(G) is
the smallest number of crossings in a drawing
of G (in the plane).
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Computing the crossing number

� Computing cr(G) is NP-hard. [Garey, Johnson ’83]

� In pratice, cr(G) is often not computed directly but
rather drawings of G are optimised with
� force-based methods (next lecture),
� multidimensional scaling,
� heuristics, . . .

� cr(G) is a measure of how far G is from being planar

� Planarization, where we replace crossings with
dummy vertices, also uses only heuristics

� cr(G) often unknown, only conjectures exist
� for Kn it is only known for up to ∼ 12 vertices
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Other crossing numbers

� Schaefer [Schae20] offers a huge survey on
different crossings numbers (and more
precise definitions)

� One-sided crossing minimization . . .

� Fixed Linear Crossing Number
1 2 3 4 65

� In book embeddings

� Crossings of edge bundles

� On other surfaces, like on donuts

� Weighted crossings

� Crossing minimization is NP-hard for most
of the variants
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Rectilinear crossing number

Separation.
cr(K8) = 18, but c̄r(K8) = 19.

G1

� Each straight-line drawing of G1 has at
least one crossing of the following types:

or

� From G1 to Gk do

k

Definition.
For a graph G, the rectilinear (straight-line)
crossing number c̄r(G) is the smallest
number of crossings in a straight-line drawing
of G.

Even more . . .

Lemma 1. [Bienstock, Dean ’93]
For k ≥ 4, there exists a graph Gk with
cr(Gk) = 4 and c̄r(Gk) ≥ k.
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First lower bounds on cr(G)

Lemma 2.
For a graph G with n vertices and m edges,

cr(G) ≥ m− 3n + 6.

Proof.
� Consider a drawing of G with cr(G) crossings.

� Obtain a graph H by turning crossings into
dummy vertices.

� H has n + cr(G) vertices and m + 2cr(G)
edges.

� H is planar, so

m + 2cr(G) ≤ 3(n + cr(G))− 6.
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First lower bounds on cr(G)

Lemma 3.
For a graph G with n vertices and m edges,

cr(G) ≥ r
(
bm/rc

2

)
∈ Ω

(
m2

n

)
where r ≤ 3n− 6 is the maximum number
of edges in a planar subgraph of G.

Proof.
� Take bm/rc edge-disjoint subgraphs of G

with r edges.
� In the best case, they are all planar.

� For each pair Gi, Gj, any edge of Gj induces
at least one crossings with Gi.
(If not, swap edges to reduces cr(Gi).)

Consider this
bound for graphs
with Θ(n) and
Θ(n2) many
edges.
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The Crossing Lemma

� 1973 Erdös and Guy conjectured that cr(G) ∈ Ω(m3

n2 ).

� In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn
and Szemerédi showed that

cr(G) ≥ 1

64

m3

n2
.

� Result stayed hardly known until Székely in 1997
demonstrated its usefulness.

� We look at a proof ”from THE BOOK”by Chazelle, Sharir
and Welz.

� Factor 1
64 was later (with intermediate steps) improved to 1

29
by Ackerman in 2013.

� Bound is asymptotically sharp.
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Proof.
� Consider a minimal embedding of G.

� Let p be a number in (0, 1).

� Keep every vertex of G
independently with probability p.

� Let Gp be the remaining graph.
� Let np, mp, Xp be the random

variables counting the number of
vertices/edges/crossings of Gp.

� By Lem 2, E(Xp −mp + 3np) ≥ 0.

� E(np) = pn and E(mp) = p2m
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For a graph G with n vertices and m edges, m ≥ 4n,

cr(G) ≥ 1
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The Crossing Lemma

Proof.
� Consider a minimal embedding of G.

� Let p be a number in (0, 1).

� Keep every vertex of G
independently with probability p.

� Let Gp be the remaining graph.
� Let np, mp, Xp be the random

variables counting the number of
vertices/edges/crossings of Gp.

� By Lem 2, E(Xp −mp + 3np) ≥ 0.

� E(np) = pn and E(mp) = p2m

� E(Xp) = p4cr(G)

Crossing Lemma.
For a graph G with n vertices and m edges, m ≥ 4n,

cr(G) ≥ 1
64
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The Crossing Lemma

Proof.
� Consider a minimal embedding of G.

� Let p be a number in (0, 1).

� Keep every vertex of G
independently with probability p.

� Let Gp be the remaining graph.
� Let np, mp, Xp be the random

variables counting the number of
vertices/edges/crossings of Gp.

� By Lem 2, E(Xp −mp + 3np) ≥ 0.

� E(np) = pn and E(mp) = p2m

� E(Xp) = p4cr(G)

� 0 ≤ E(Xp)−E(mp) + 3E(np)

= p4cr(G)− p2m + 3pm

Crossing Lemma.
For a graph G with n vertices and m edges, m ≥ 4n,

cr(G) ≥ 1
64

m3
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The Crossing Lemma

Proof.
� Consider a minimal embedding of G.

� Let p be a number in (0, 1).

� Keep every vertex of G
independently with probability p.

� Let Gp be the remaining graph.
� Let np, mp, Xp be the random

variables counting the number of
vertices/edges/crossings of Gp.

� By Lem 2, E(Xp −mp + 3np) ≥ 0.

� E(np) = pn and E(mp) = p2m

� E(Xp) = p4cr(G)

� 0 ≤ E(Xp)−E(mp) + 3E(np)

= p4cr(G)− p2m + 3pm

� cr(G) ≥ p2m−3pn
p4 = m

p2 −
3n
p3

Crossing Lemma.
For a graph G with n vertices and m edges, m ≥ 4n,

cr(G) ≥ 1
64

m3
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Proof.
� Consider a minimal embedding of G.

� Let p be a number in (0, 1).

� Keep every vertex of G
independently with probability p.

� Let Gp be the remaining graph.
� Let np, mp, Xp be the random

variables counting the number of
vertices/edges/crossings of Gp.

� By Lem 2, E(Xp −mp + 3np) ≥ 0.

� E(np) = pn and E(mp) = p2m

� E(Xp) = p4cr(G)

� 0 ≤ E(Xp)−E(mp) + 3E(np)

= p4cr(G)− p2m + 3pm

� cr(G) ≥ p2m−3pn
p4 = m

p2 −
3n
p3

� Set p = 4n
m .

Crossing Lemma.
For a graph G with n vertices and m edges, m ≥ 4n,

cr(G) ≥ 1
64

m3
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Proof.
� Consider a minimal embedding of G.

� Let p be a number in (0, 1).

� Keep every vertex of G
independently with probability p.

� Let Gp be the remaining graph.
� Let np, mp, Xp be the random

variables counting the number of
vertices/edges/crossings of Gp.

� By Lem 2, E(Xp −mp + 3np) ≥ 0.

� E(np) = pn and E(mp) = p2m

� E(Xp) = p4cr(G)

� 0 ≤ E(Xp)−E(mp) + 3E(np)

= p4cr(G)− p2m + 3pm

� cr(G) ≥ p2m−3pn
p4 = m

p2 −
3n
p3

� Set p = 4n
m .

Crossing Lemma.
For a graph G with n vertices and m edges, m ≥ 4n,

cr(G) ≥ 1
64

m3

n2 .

� cr(G) ≥ 1
64

[
4m

(n/m)2
− 3n

(n/m)3

]
= 1

64
m3

n2
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2
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� For example: I(4, 4) =
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Theorem 1.
[Szemerédi, Trotter ’83, Székely ’97]
I(n, k) ≤ 2.7n2/3k2/3 + 6n + 2k.
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Application 2: Unit distances
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U(n) < 6.7n4/3

Proof.

P



9 - 6

Application 2: Unit distances

For points P ⊂ R2 define
� U(P) = number of pairs in P at unit distance and
� U(n) = max|P|=n U(P).

Theorem 2.
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U(n) < 6.7n4/3

Proof.

G
� U(P)−O(n) ≤ m

P



9 - 10

Application 2: Unit distances

For points P ⊂ R2 define
� U(P) = number of pairs in P at unit distance and
� U(n) = max|P|=n U(P).

Theorem 2.
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