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Visualization of graphs

Triangle contacts and rectangular duals
Contact representations of planar graphs
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Intersection representation of graphs

Definitions.
In an intersection representation of a graph
each vertex is represented as a set such that two
sets intersect if and only if the corresponding
vertices are adjacent.
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Intersection representation of graphs

Definitions.
In an intersection representation of a graph
each vertex is represented as a set such that two
sets intersect if and only if the corresponding
vertices are adjacent.

For a collection S of sets S1, . . . , Sn,
the intersection graph G(S) of S has
vertex set S and edge set
{SiSj : i, j ∈ {1, . . . , n}, i 6= j, and Si ∩ Sj 6= ∅}.
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Contact representation of graphs

Definitions.
A collection of interiorly disjoint objects
S = {S1, . . . , Sn} is a called a contact
representation of its interesction graph G(S).
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Contact representation of graphs

Definitions.
A collection of interiorly disjoint objects
S = {S1, . . . , Sn} is a called a contact
representation of its interesction graph G(S).

� Objects could be circles, line segments,
triangles, boxes, . . .

� Domain could be 2D, 3D, . . .
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Contact representation of planar graphs

� Is the intersection graph of a contact
representation always planar?
� No, not even for planar object types.
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Contact representation of planar graphs

� Is the intersection graph of a contact
representation always planar?
� No, not even for planar object types.

� Which object types can be used to represent all planar graphs?
� Contact of disks [Koebe ’36]
� Corner contact of triangles and T-shapes [de Fraysseix et al. ’94 ]
� Side contacts of 3D Boxes [Thomassen ’86]
� . . .
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Contact representation of planar graphs

� Is the intersection graph of a contact
representation always planar?
� No, not even for planar object types.

� Which object types can be used to represent all planar graphs?
� Contact of disks [Koebe ’36]
� Corner contact of triangles and T-shapes [de Fraysseix et al. ’94 ]
� Side contacts of 3D Boxes [Thomassen ’86]
� . . .

� Some object types are used to represent special classes of planar graphs:
� Line segment contact on grids for bipartite planar graphs

[Hartman et al. ’91, de Fraysseix et al. ’94]
� Rectangle dissections for so-called properly triangulated planar graphs

[Kant, He ’97]
� L-shapes, k-bend path, . . .



5 - 1

General approach

How to compute a contact representation of a given graph G?
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General approach

� Consider only inner triangulations
(or maximally bipartite graphs, etc)
� Triangulate by adding vertices,

not by adding edges

� Describe contact representation combinatorically.
� Which objects contact each other in which way?

� Compute combinatorical description.

� Show that combinatorical description can be used
to construct drawing.

How to compute a contact representation of a given graph G?
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� Triangulate by adding vertices,

not by adding edges

� Describe contact representation combinatorically.
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� Compute combinatorical description.
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In this lecture

� Representations with right-triangles and corner contact
� Use Schnyder realizer to describe contacts between triangles
� Use canonical order to calculate drawing
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In this lecture

� Representations with right-triangles and corner contact
� Use Schnyder realizer to describe contacts between triangles
� Use canonical order to calculate drawing

� Representation with dissection of a rectangle, called rectangular dual
� Find similar description like Schnyder realizer for rectangles
� Construct drawing via st-digraphs, duals, and topological sorting.
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Triangle corner contact representation

Idea.
Use canonical order and Schnyder forest to find
coordinates for triangles.
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Triangle corner contact representation

Idea.
Use canonical order and Schnyder forest to find
coordinates for triangles.

Observation.

� Can set base of triangle at height equal to
position in canonical order.

� Triangle tip is precisely at base of triangle
corresponding to cover neighbor.

� Outgoing edges in Schnyder forest indicate
corner contacts.
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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Triangle-contact representation example
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T-shape contact representation
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T-shape contact representation
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T-shape contact representation
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Rectangular dual

Definition.
A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.
� no four rectangles share a point, and
� the union of all rectangles is a rectangle.



10 - 2

Rectangular dual

Definition.
A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.
� no four rectangles share a point, and
� the union of all rectangles is a rectangle.

When does G admit a
rectangular dual?
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Rectangular dual

Definition.
A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.
� no four rectangles share a point, and
� the union of all rectangles is a rectangle.

When does G admit a
rectangular dual?

Does not have a rectangular dual.
To enclose an area we need at
least four rectangles.

Definition.
A triangle C of G whose removal results in
at least two connected components is
called a separating triangle.
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Rectangular dual

Definition.
A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.
� no four rectangles share a point, and
� the union of all rectangles is a rectangle.

When does G admit a
rectangular dual?

Does not have a rectangular dual.
To enclose an area we need at
least four rectangles.

Definition.
A triangle C of G whose removal results in
at least two connected components is
called a separating triangle.

� G has no separating triangle
� G has at least 4 vertices on

outer face; wlog assume this
� each inner face of G must be a

triangle
:(
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Proper triangular planar graph

Definition.
An internally triangulated, plane graph G
without separating triangles and exactly four
vertices on the outer face is called properly
triangulated planar (PTP).
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Proper triangular planar graph

Definition.
An internally triangulated, plane graph G
without separating triangles and exactly four
vertices on the outer face is called properly
triangulated planar (PTP).

Theorem. [Koźmiński, Kinnen ’85]
A graph G has a rectangular dual R with four
rectangles on the boundary of R if and only if G
is a PTP graph.
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Regular edge labeling

A rectangular dual gives rise to a 2-coloring and
an orientation of the inner edges of G:

vEvW

vN

vE

vS

vW

vN

vS
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A regular edge labeling (REL)
is a 2-coloring and an orientation
of inner edges of G such that
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Regular edge labeling

A rectangular dual gives rise to a 2-coloring and
an orientation of the inner edges of G:

vEvW

vN

vE

vS

vW

vN

vS

Definition.
A regular edge labeling (REL)
is a 2-coloring and an orientation
of inner edges of G such that for every

inner vertex
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Regular edge labeling

A rectangular dual gives rise to a 2-coloring and
an orientation of the inner edges of G:

vEvW

vN

vE

vS

vW

vN

vS

Definition.
A regular edge labeling (REL)
is a 2-coloring and an orientation
of inner edges of G such that

vEvW

vN

vS

for every
inner vertex

for four
outer vertices
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Refined canonical order

Theorem/Definition.
Let G be a PTP graph. There exists a labeling
v1 = vS, v2 = vW , v3, . . . , vn = vN of the vertices of G such
that for every 4 ≤ k ≤ n:
� The subgraph Gk−1 induced by v1, . . . , vk−1 is

biconnected and boundary Ck−1 of Gk−1 contains the
edge (vS, vW).

� vk is in exterior face of Gk−1, and its neighbors in Gk−1
form (at least 2-element) subinterval of the path
Ck−1 \ (vS, vW).

� If k ≤ k− 2, vk has at least 2 neighbors in G \ Gk−1.

vk

Gk−1 Ck−1

G \ Gk−1

vW vS
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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Refined canonical order example
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From refined canonical order to REL

Given a refined canonical ordering of G we construct a REL
as follows:
� For i < j, orient (vi, vj) from vi to vj;
� vk has incoming edges from vt1 , . . . , vtl , we say that vt1 is

left point of vk and vtl is right point of vk.
� Base edge of vk is (vta , vk), where ta < k is minimal.
� If vk1 , . . . , vkl

are higher numbered neighbors of vk, we
call (vk, vk1) left edge and (vk, vkl

) right edge.

vt1
vtl

vk1 vkl

vk

vta
ta ≤ t1, . . . , tl
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From refined canonical order to REL

Given a refined canonical ordering of G we construct a REL
as follows:
� For i < j, orient (vi, vj) from vi to vj;
� vk has incoming edges from vt1 , . . . , vtl , we say that vt1 is

left point of vk and vtl is right point of vk.
� Base edge of vk is (vta , vk), where ta < k is minimal.
� If vk1 , . . . , vkl

are higher numbered neighbors of vk, we
call (vk, vk1) left edge and (vk, vkl

) right edge.

vt1
vtl

vk1 vkl

vk

vta
ta ≤ t1, . . . , tl

Lemma 1.
Left edge or right edge cannot be a base edge.



15 - 3

From refined canonical order to REL

Given a refined canonical ordering of G we construct a REL
as follows:
� For i < j, orient (vi, vj) from vi to vj;
� vk has incoming edges from vt1 , . . . , vtl , we say that vt1 is

left point of vk and vtl is right point of vk.
� Base edge of vk is (vta , vk), where ta < k is minimal.
� If vk1 , . . . , vkl

are higher numbered neighbors of vk, we
call (vk, vk1) left edge and (vk, vkl

) right edge.

vt1
vtl

vk1 vkl

vk

vta
ta ≤ t1, . . . , tl

Lemma 1.
Left edge or right edge cannot be a base edge.

Proof. Suppose left edge (vk, vk1) is base edge
of vk1 . Since G triangulated, (vt1 , vk1) ∈ E(G).
Contradiction since vk > vt1 .
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From refined canonical order to REL

vt1
vtl

vk1 vkl

vk

vta
ta ≤ t1, . . . , tl

Lemma 2.
An edge is either a left edge, a right edge or a base edge.
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From refined canonical order to REL

vt1
vtl

vk1 vkl

vk

vta
ta ≤ t1, . . . , tl

Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
� Exclusive “or” follows from Lemma 1.

� Let (vta , vk) be base edge of vk.

� vta is right point of vta−1 ; vti is right point of vti−1 :
� vti has at least two higher-numbered neighbors.

� One of them is vk; the other one is either vti−1 or vti+1
.

� For 1 ≤ i < a− 1, it is vti−1 .

� Edges (vti , vk), 1 ≤ i < a− 1, are right edges.

� Similarly, (vti , vk), for a + 1 ≤ i ≤ l, are left edges.
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From refined canonical order to REL

vt1
vtl

vk1 vkl

vk

vta
ta ≤ t1, . . . , tl

Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
� Exclusive “or” follows from Lemma 1.

� Let (vta , vk) be base edge of vk.

� vta is right point of vta−1 ; vti is right point of vti−1 :
� vti has at least two higher-numbered neighbors.

� One of them is vk; the other one is either vti−1 or vti+1
.

� For 1 ≤ i < a− 1, it is vti−1 .

� Edges (vti , vk), 1 ≤ i < a− 1, are right edges.

� Similarly, (vti , vk), for a + 1 ≤ i ≤ l, are left edges.
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edge
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vk1 vkl

vk

kl ≥ 2
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vk1 vkl

vk

kl ≥ 2

left edge
of vk

right edge
of vk
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vk1 vkl

vk

kl ≥ 2

left edge
of vk

right edge
of vk

base edges of
vk2 . . . vkl−1
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vk1 vkl

vk

kl ≥ 2

left edge
of vk

right edge
of vk

base edges of
vk2 . . . vkl−1

vkd

kd = max{vk1 . . . vkl
}
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk
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edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vk1 vkl

vk

kl ≥ 2

left edge
of vk

right edge
of vk

base edges of
vk2 . . . vkl−1

vkd

kd = max{vk1 . . . vkl
} � k1 < k2 < . . . < kd and

kd > kd+1 > . . . > kl
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vk1 vkl

vk

kl ≥ 2

left edge
of vk

right edge
of vk

base edges of
vk2 . . . vkl−1

vkd

kd = max{vk1 . . . vkl
} � k1 < k2 < . . . < kd and

kd > kd+1 > . . . > kl

� (vk, vki
), 2 ≤ i ≤ d− 1 are red

� (vk, vki
), d + 1 ≤ i ≤ l − 1 are blue

� (vk, vkd
) is either red or blue
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From refined canonical order to REL

Coloring.
� Color right (left) edges in red (blue).

� Color a base edge (vti , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vk1 vkl

vk

kl ≥ 2

left edge
of vk

right edge
of vk

base edges of
vk2 . . . vkl−1

vkd

kd = max{vk1 . . . vkl
} � k1 < k2 < . . . < kd and

kd > kd+1 > . . . > kl

� (vk, vki
), 2 ≤ i ≤ d− 1 are red

� (vk, vki
), d + 1 ≤ i ≤ l − 1 are blue

� (vk, vkd
) is either red or blue

⇒ circular order of outgoing edges of vk correct
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From REL to st-digraphs to coordinates
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From REL to st-digraphs to coordinates
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From REL to st-digraphs to coordinates

WE network Ghor

vEvW

vS

vN
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From REL to st-digraphs to coordinates

vEvW

vS

vN
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From REL to st-digraphs to coordinates
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Rectangular dual algorithm

For a PTP graph G = (V, E):

� Find a REL Tr, Tb of G;

� Construct a SN network Gver of G (consists of Tb plus outer
edges)

� Construct the dual G?
ver of Gver and compute a topological

ordering fver of G?
ver

� For each vertex v ∈ V, let g and h be the face on the left and
face on the right of v. Set x1(v) = fver(g) and x2(v) = fver(h).

� Define x1(vN) = x1(vS) = 1 and
x2(vN) = x2(vS) = max fver − 1

� Analogously compute y1 and y2 with Ghor.
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Rectangular dual algorithm

For a PTP graph G = (V, E):

� Find a REL Tr, Tb of G;

� Construct a SN network Gver of G (consists of Tb plus outer
edges)

� Construct the dual G?
ver of Gver and compute a topological

ordering fver of G?
ver

� For each vertex v ∈ V, let g and h be the face on the left and
face on the right of v. Set x1(v) = fver(g) and x2(v) = fver(h).

� Define x1(vN) = x1(vS) = 1 and
x2(vN) = x2(vS) = max fver − 1

� Analogously compute y1 and y2 with Ghor.

� For each v ∈ V, assign a rectangle R(v) bounded by
x-coordinates x1(v), x2(v) and y-coordinates y1(v), y2(v) .
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Reading off coordinates to get rectangular dual
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Reading off coordinates to get rectangular dual
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Reading off coordinates to get rectangular dual
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Correctness of algorithm (sketch)

� If edge (u, v) existens, then x2(u) = x1(v)

u v
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Correctness of algorithm (sketch)
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� If path from u to v in red at least two edges long, then x2(u) < x1(v).

� and their veritcal segment of their rectangles overlap.
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Correctness of algorithm (sketch)

� If edge (u, v) existens, then x2(u) = x1(v)

u v
g

x2(u) = fver(g) = x1(v)

� If path from u to v in red at least two edges long, then x2(u) < x1(v).

� and their veritcal segment of their rectangles overlap.

vu
a

b

c
d

y1(v) = fhor(a) < y1(u) = fhor(b) <
y2(v) = fhor(c) < y2(u) = fhor(d)

� No two boxes overlap.
for details see He’s paper [He ’93]
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Rectangular dual result

Theorem.
Every PTP graph G has a rectangular dual, which
can be computed in linear time.

Proof.

� Compute a planar embedding of G.
� Compute a refined canonical ordering of G.
� Traverse the graph and color the edges.
� Construct Gver and Ghor.
� Construct their duals G?

ver and G?
hor.

� Compute a topological ordering for vertices of G?
ver and G?

hor.
� Assing coordinates to the rectangles representing vertices.
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Discussion

� A layout is area-universal if any assignment of areas to
rectangles can be realized by a combinatorially equivalent
rectangular layout.

� A rectangular layout is area-universal if and only if it is
one-sided. [Eppstein et al. SIAM J. Comp. 2012]

one-sided
not one-sided
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Discussion

� Circular Arc Cartograms [Kämper, Kobourov, Nöllenburg. IEEE PasViz 2013]

Source: http://cartogram.cs.arizona.edu
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Literature

Construction of rectangular dual based on
� [He ’93] On Finding the Rectangular Duals of Planar Triangulated Graphs
� [Kant, He ’94] Two algorithms for finding rectangular duals of planar

graphs
and originally from
� [Koźmiński, Kinnen ’85] Rectangular Duals of Planar Graphs

Construction of triangle contact representations based on
� [de Fraysseix, de Mendez, Rosenstiehl ’94] On Triangle Contact Graphs


	Title page
	Intersection representation of graphs
	Contact representation of graphs
	Contact representation of planar graphs

	General approach
	In this lecture
	Triangle corner contact representation
	Example
	T-shape contact representation

	Rectangular dual
	Proper triangular planar graph
	Regular edge labeling
	Refined canonical order
	Example
	From refined canonical order to REL
	From REL to st-digraphs to coordinates
	Rectangular dual algorithm
	Reading off coordinates to get rectangular dual
	Correctness of algorithm (sketch)
	Rectangular dual result

	Discussion
	Literature

