

Visualization of graphs

Contact representations of planar graphs

Triangle contacts and rectangular duals

Jonathan Klawitter · Summer semester 2020

Definitions.

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

Definitions.

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

Definitions.

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

Definitions.

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

For a collection S of sets S_1, \ldots, S_n , the **intersection graph** G(S) of S has vertex set S and edge set $\{S_iS_j: i, j \in \{1, \ldots, n\}, i \neq j, \text{ and } S_i \cap S_j \neq \emptyset\}.$

Definitions.

A collection of interiorly disjoint **objects** $S = \{S_1, ..., S_n\}$ is a called a **contact** representation of its interesction graph G(S).

Definitions.

A collection of interiorly disjoint **objects** $S = \{S_1, ..., S_n\}$ is a called a **contact** representation of its interesction graph G(S).

- Objects could be circles, line segments, triangles, boxes, . . .
- Domain could be 2D, 3D, ...

■ Is the intersection graph of a contact representation always planar?

- Is the intersection graph of a contact representation always planar?
 - No, not even for planar object types.

- Is the intersection graph of a contact representation always planar?
 - No, not even for planar object types.
- Which object types can be used to represent all planar graphs?
 - Contact of disks [Koebe '36]
 - Corner contact of triangles and T-shapes [de Fraysseix et al. '94]
 - Side contacts of 3D Boxes [Thomassen '86]

- Is the intersection graph of a contact representation always planar?
 - No, not even for planar object types.
- Which object types can be used to represent all planar graphs?
 - Contact of disks [Koebe '36]
 - Corner contact of triangles and T-shapes [de Fraysseix et al. '94]
 - Side contacts of 3D Boxes [Thomassen '86]
 - . . .
- Some object types are used to represent special classes of planar graphs:
 - Line segment contact on grids for bipartite planar graphs [Hartman et al. '91, de Fraysseix et al. '94]
 - Rectangle dissections for so-called properly triangulated planar graphs [Kant, He '97]
 - L-shapes, k-bend path, . . .

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Describe contact representation combinatorically.
 - Which objects contact each other in which way?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
 - Triangulate by adding vertices, not by adding edges

- Describe contact representation combinatorically.
 - Which objects contact each other in which way?
- Compute combinatorical description.
- Show that combinatorical description can be used to construct drawing.

In this lecture

- Representations with right-triangles and corner contact
 - Use Schnyder realizer to describe contacts between triangles
 - Use canonical order to calculate drawing

In this lecture

- Representations with right-triangles and corner contact
 - Use Schnyder realizer to describe contacts between triangles
 - Use canonical order to calculate drawing

- Representation with dissection of a rectangle, called rectangular dual
 - Find similar description like Schnyder realizer for rectangles
 - Construct drawing via st-digraphs, duals, and topological sorting.

Idea.

Idea.

Idea.

Idea.

Idea.

Use canonical order and Schnyder forest to find coordinates for triangles.

Observation.

- Can set base of triangle at height equal to position in canonical order.
- Triangle tip is precisely at base of triangle corresponding to cover neighbor.
- Outgoing edges in Schnyder forest indicate corner contacts.

Triangle-contact representation example

T-shape contact representation

T-shape contact representation

T-shape contact representation

Definition.

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle.

Definition.

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle.

When does G admit a rectangular dual?

Definition.

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle.

When does G admit a rectangular dual?

Definition.

A triangle *C* of *G* whose removal results in at least two connected components is called a **separating triangle**.

Does not have a rectangular dual. To enclose an area we need at least four rectangles.

Definition.

A rectangular dual of a graph G is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle.

A triangle *C* of *G* whose removal results in at least two connected components is called a **separating triangle**.

Does not have a rectangular dual. To enclose an area we need at least four rectangles.

When does G admit a rectangular dual?

- *G* has no separating triangle
- *G* has at least 4 vertices on outer face; wlog assume this
- lacktriangle each inner face of G must be a triangle

Proper triangular planar graph

Definition.

An internally triangulated, plane graph G without separating triangles and exactly four vertices on the outer face is called **properly** triangulated planar (PTP).

Proper triangular planar graph

Definition.

An internally triangulated, plane graph G without separating triangles and exactly four vertices on the outer face is called **properly** triangulated planar (PTP).

Theorem. [Koźmiński, Kinnen '85]

A graph G has a rectangular dual \mathcal{R} with four rectangles on the boundary of \mathcal{R} if and only if G is a PTP graph.

A rectangular dual gives rise to a 2-coloring and an orientation of the inner edges of G:

A rectangular dual gives rise to a 2-coloring and an orientation of the inner edges of G:

Definition.

A regular edge labeling (REL) is a 2-coloring and an orientation of inner edges of G such that

A rectangular dual gives rise to a 2-coloring and an orientation of the inner edges of G:

Definition.

A regular edge labeling (REL) is a 2-coloring and an orientation of inner edges of G such that

A rectangular dual gives rise to a 2-coloring and an orientation of the inner edges of *G*:

Definition.

A regular edge labeling (REL) is a 2-coloring and an orientation of inner edges of G such that

Refined canonical order

Theorem/Definition.

Let G be a PTP graph. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in exterior face of G_{k-1} , and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le k-2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Given a refined canonical ordering of G we construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Given a refined canonical ordering of G we construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1.

Left edge or right edge cannot be a base edge.

Given a refined canonical ordering of G we construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l} , we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k .
- Base edge of v_k is (v_{t_a}, v_k) , where $t_a < k$ is minimal.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k , we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1.

Left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v_k, v_{k_1}) is base edge of v_{k_1} . Since G triangulated, $(v_{t_1}, v_{k_1}) \in E(G)$. Contradiction since $v_k > v_{t_1}$.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

Exclusive "or" follows from Lemma 1.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; v_{t_i} is right point of $v_{t_{i-1}}$:
 - \mathbf{v}_{t_i} has at least two higher-numbered neighbors.
 - One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \le i < a 1$, it is $v_{t_{i-1}}$.

Lemma 2.

An edge is either a left edge, a right edge or a base edge.

Proof.

- Exclusive "or" follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k .
- $lackbox{v}_{t_a}$ is right point of $v_{t_{a-1}}$; v_{t_i} is right point of $v_{t_{i-1}}$:
 - \mathbf{v}_{t_i} has at least two higher-numbered neighbors.
 - One of them is v_k ; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
 - For $1 \le i < a 1$, it is $v_{t_{i-1}}$.
- Edges (v_{t_i}, v_k) , $1 \le i < a 1$, are right edges.
- Similarly, (v_{t_i}, v_k) , for $a + 1 \le i \le l$, are left edges.

Coloring.

Color right (left) edges in red (blue).

Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Proof.

$$k_l \geq 2$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_l \geq 2$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_l \geq 2$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_l \geq 2$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_l \geq 2$$

$$k_d = \max\{v_{k_1}\dots v_{k_l}\} \qquad \qquad k_1 < k_2 < \dots < k_d \text{ and}$$
 base edges of
$$k_d > k_{d+1} > \dots > k_l$$

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

$$k_l \geq 2$$

- $k_1 < k_2 < \ldots < k_d$ and $k_d > k_{d+1} > \ldots > k_1$
- $(v_k, v_{k_i}), 2 \leq i \leq d-1$ are red
- $(v_k, v_{k_i}), d+1 \leq i \leq l-1$ are blue
- (v_k, v_{k_d}) is either red or blue

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{t_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

Let T_r be the red edges and T_b the blue edges.

Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

Proof.

$$k_l \geq 2$$

- $k_1 < k_2 < \ldots < k_d$ and $k_d > k_{d+1} > \ldots > k_l$
- $(v_k, v_{k_i}), 2 \leq i \leq d-1$ are red
- $(v_k, v_{k_i}), d+1 \leq i \leq l-1$ are blue
- (v_k, v_{k_d}) is either red or blue

 \Rightarrow circular order of outgoing edges of v_k correct

Rectangular dual algorithm

For a PTP graph G = (V, E):

- Find a REL T_r , T_b of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N) = x_1(v_S) = 1$ and $x_2(v_N) = x_2(v_S) = \max f_{\text{ver}} 1$

Rectangular dual algorithm

For a PTP graph G = (V, E):

- Find a REL T_r , T_b of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N) = x_1(v_S) = 1$ and $x_2(v_N) = x_2(v_S) = \max f_{\text{ver}} 1$
- Analogously compute y_1 and y_2 with G_{hor} .

Rectangular dual algorithm

For a PTP graph G = (V, E):

- Find a REL T_r , T_b of G;
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges)
- Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star}
- For each vertex $v \in V$, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N) = x_1(v_S) = 1$ and $x_2(v_N) = x_2(v_S) = \max f_{\text{ver}} 1$
- Analogously compute y_1 and y_2 with G_{hor} .
- For each $v \in V$, assign a rectangle R(v) bounded by x-coordinates $x_1(v)$, $x_2(v)$ and y-coordinates $y_1(v)$, $y_2(v)$.

$$x_1(v_N) = 1$$
, $x_2(v_N) = 15$
 $x_1(v_S) = 1$, $x_2(v_S) = 15$
 $x_1(v_W) = 0$, $x_2(v_W) = 1$
 $x_1(v_E) = 15$, $x_2(v_E) = 16$
 $x_1(a) = 1$, $x_2(a) = 3$
 $x_1(b) = 3$, $x_2(b) = 5$
 $x_1(c) = 5$, $x_2(c) = 14$
 $x_1(d) = 14$, $x_2(d) = 15$
 $x_1(e) = 13$, $x_2(e) = 15$

. .

$$x_1(v_N) = 1$$
, $x_2(v_N) = 15$
 $x_1(v_S) = 1$, $x_2(v_S) = 15$
 $x_1(v_W) = 0$, $x_2(v_W) = 1$
 $x_1(v_E) = 15$, $x_2(v_E) = 16$
 $x_1(a) = 1$, $x_2(a) = 3$
 $x_1(b) = 3$, $x_2(b) = 5$
 $x_1(c) = 5$, $x_2(c) = 14$
 $x_1(d) = 14$, $x_2(d) = 15$
 $x_1(e) = 13$, $x_2(e) = 15$
...

 $y_1(v_W) = 0$, $y_2(v_W) = 10$
 $y_1(v_E) = 0$, $y_2(v_E) = 10$
 $y_1(v_S) = 0$, $y_2(v_S) = 1$
 $y_1(v_S) = 0$, $y_2(v_S) = 1$
 $y_1(a) = 1$, $y_2(a) = 2$
 $y_1(b) = 1$, $y_2(b) = 2$

. . .

```
10
```

```
x_1(v_N) = 1, x_2(v_N) = 15
x_1(v_S) = 1, \ x_2(v_S) = 15
x_1(v_W) = 0, x_2(v_W) = 1
x_1(v_E) = 15, \ x_2(v_E) = 16
x_1(a) = 1, \ x_2(a) = 3
x_1(b) = 3, \ x_2(b) = 5
x_1(c) = 5, \ x_2(c) = 14
x_1(d) = 14, \ x_2(d) = 15
x_1(e) = 13, x_2(e) = 15
y_1(v_W) = 0, y_2(v_W) = 10
y_1(v_E) = 0, \ y_2(v_E) = 10
y_1(v_N) = 9, y_2(v_N) = 10
y_1(v_S) = 0, \ y_2(v_S) = 1
y_1(a) = 1, \ y_2(a) = 2
y_1(b) = 1, y_2(b) = 2
```

. . .

$$x_1(v_N) = 1, \ x_2(v_N) = 15$$

 $x_1(v_S) = 1, \ x_2(v_S) = 15$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$
...

 $y_1(v_W) = 0, \ y_2(v_W) = 10$
 $y_1(v_E) = 0, \ y_2(v_E) = 10$
 $y_1(v_S) = 0, \ y_2(v_S) = 1$
 $y_1(a) = 1, \ y_2(a) = 2$
 $y_1(b) = 1, \ y_2(b) = 2$

. . .

$$x_2(u) = f_{\mathsf{ver}}(g) = x_1(v)$$

■ If edge (u, v) existens, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

If edge (u, v) existens, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

■ If edge (u, v) existens, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

$$y_1(v) = f_{hor}(a) < y_1(u) = f_{hor}(b) < y_2(v) = f_{hor}(c) < y_2(u) = f_{hor}(d)$$

■ If edge (u, v) existens, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

and their veritcal segment of their rectangles overlap.

$$y_1(v) = f_{hor}(a) < y_1(u) = f_{hor}(b) < y_2(v) = f_{hor}(c) < y_2(u) = f_{hor}(d)$$

■ If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.

If edge (u, v) existens, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

$$y_1(v) = f_{hor}(a) < y_1(u) = f_{hor}(b) < y_2(v) = f_{hor}(c) < y_2(u) = f_{hor}(d)$$

- If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.
- No two boxes overlap.

If edge (u, v) existens, then $x_2(u) = x_1(v)$

$$x_2(u) = f_{\text{ver}}(g) = x_1(v)$$

and their veritcal segment of their rectangles overlap.

$$y_1(v) = f_{hor}(a) < y_1(u) = f_{hor}(b) < y_2(v) = f_{hor}(c) < y_2(u) = f_{hor}(d)$$

- If path from u to v in red at least two edges long, then $x_2(u) < x_1(v)$.
- No two boxes overlap.

for details see He's paper [He '93]

Rectangular dual result

Theorem.

Every PTP graph G has a rectangular dual, which can be computed in linear time.

- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.
- Traverse the graph and color the edges.
- \blacksquare Construct G_{ver} and G_{hor} .
- Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .
- lacktriangle Compute a topological ordering for vertices of G_{ver}^{\star} and G_{hor}^{\star} .
- Assing coordinates to the rectangles representing vertices.

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is **area-universal** if and only if it is **one-sided**. [Eppstein et al. SIAM J. Comp. 2012]

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is **area-universal** if and only if it is **one-sided**. [Eppstein et al. SIAM J. Comp. 2012]

- Area universal rectlinear representation possible for all planar graphs
- Alam et al. 2013: 8 sides (matches the lower bound)

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is **area-universal** if and only if it is **one-sided**. [Eppstein et al. SIAM J. Comp. 2012]

- Area universal rectlinear representation possible for all planar graphs
- Alam et al. 2013: 8 sides (matches the lower bound)

■ Circular Arc Cartograms [Kämper, Kobourov, Nöllenburg. IEEE PasViz 2013]

Source: http://cartogram.cs.arizona.edu

Literature

Construction of triangle contact representations based on

■ [de Fraysseix, de Mendez, Rosenstiehl '94] On Triangle Contact Graphs

Construction of rectangular dual based on

- [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs
- [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs

and originally from

[Koźmiński, Kinnen '85] Rectangular Duals of Planar Graphs