Visualization of graphs

Contact representations of planar graphs

 Triangle contacts and rectangular duals```
Jonathan Klawitter · Summer semester 2020
```



## Intersection representation of graphs

## Definitions. <br> In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.

## Intersection representation of graphs

## Definitions.

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.


## Intersection representation of graphs

## Definitions.

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.


## Intersection representation of graphs

## Definitions.

In an intersection representation of a graph each vertex is represented as a set such that two sets intersect if and only if the corresponding vertices are adjacent.
For a collection $\mathcal{S}$ of sets $S_{1}, \ldots, S_{n}$, the intersection graph $G(\mathcal{S})$ of $\mathcal{S}$ has vertex set $\mathcal{S}$ and edge set $\left\{S_{i} S_{j}: i, j \in\{1, \ldots, n\}, i \neq j\right.$, and $\left.S_{i} \cap S_{j} \neq \varnothing\right\}$.


## Contact representation of graphs

## Definitions.

A collection of interiorly disjoint objects $\mathcal{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ is a called a contact representation of its interesction graph $G(\mathcal{S})$.


## Contact representation of graphs

## Definitions.

A collection of interiorly disjoint objects $\mathcal{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ is a called a contact representation of its interesction $\operatorname{graph} G(\mathcal{S})$.


■ Objects could be circles, line segments, triangles, boxes, ...
■ Domain could be 2D, 3D, ...

## Contact representation of planar graphs

- Is the intersection graph of a contact representation always planar?


## Contact representation of planar graphs

- Is the intersection graph of a contact representation always planar?
■ No, not even for planar object types.


## Contact representation of planar graphs

- Is the intersection graph of a contact representation always planar?
- No, not even for planar object types.

■ Which object types can be used to represent all planar graphs?
■ Contact of disks [Koebe '36]
■ Corner contact of triangles and T-shapes [de Fraysseix et al. '94]

- Side contacts of 3D Boxes [Thomassen '86]


## Contact representation of planar graphs

- Is the intersection graph of a contact representation always planar?
- No, not even for planar object types.

■ Which object types can be used to represent all planar graphs?
■ Contact of disks [Koebe '36]
■ Corner contact of triangles and T-shapes [de Fraysseix et al. '94]
■ Side contacts of 3D Boxes [Thomassen '86]

■ Some object types are used to represent special classes of planar graphs:
■ Line segment contact on grids for bipartite planar graphs [Hartman et al. '91, de Fraysseix et al. '94]
■ Rectangle dissections for so-called properly triangulated planar graphs [Kant, He '97]

- L-shapes, k-bend path, ...


## General approach

How to compute a contact representation of a given graph $G$ ?

## General approach

How to compute a contact representation of a given graph $G$ ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges



## General approach

How to compute a contact representation of a given graph $G$ ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges
- Describe contact representation combinatorically.
- Which objects contact each other in which way?



## General approach

How to compute a contact representation of a given graph $G$ ?

- Consider only inner triangulations (or maximally bipartite graphs, etc)
- Triangulate by adding vertices, not by adding edges
- Describe contact representation combinatorically. - Which objects contact each other in which way?
- Compute combinatorical description.
- Show that combinatorical description can be used
 to construct drawing.


## In this lecture

■ Representations with right-triangles and corner contact
■ Use Schnyder realizer to describe contacts between triangles

- Use canonical order to calculate drawing



## In this lecture

- Representations with right-triangles and corner contact

■ Use Schnyder realizer to describe contacts between triangles
■ Use canonical order to calculate drawing


■ Representation with dissection of a rectangle, called rectangular dual
■ Find similar description like Schnyder realizer for rectangles
■ Construct drawing via st-digraphs, duals, and topological sorting.


## Triangle corner contact representation

## Idea.

Use canonical order and Schnyder forest to find coordinates for triangles.

## Triangle corner contact representation

## Idea.

Use canonical order and Schnyder forest to find coordinates for triangles.


## Triangle corner contact representation

## Idea.

Use canonical order and Schnyder forest to find coordinates for triangles.


## Triangle corner contact representation

## Idea.

Use canonical order and Schnyder forest to find coordinates for triangles.


## Triangle corner contact representation

## Idea.

Use canonical order and Schnyder forest to find coordinates for triangles.


## Observation.

■ Can set base of triangle at height equal to position in canonical order.

- Triangle tip is precisely at base of triangle corresponding to cover neighbor.
- Outgoing edges in Schnyder forest indicate corner contacts.

Triangle-contact representation example


Triangle-contact representation example

16


## T-shape contact representation



## T-shape contact representation



## T-shape contact representation



## Rectangular dual

## Definition.

A rectangular dual of a graph $G$ is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle.



## Rectangular dual

## Definition.

A rectangular dual of a graph $G$ is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle.


When does $G$ admit a rectangular dual?

## Rectangular dual

## Definition.

A rectangular dual of a graph $G$ is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
$\square$ the union of all rectangles is a rectangle.



## Definition.

A triangle $C$ of $G$ whose removal results in at least two connected components is called a separating triangle.


Does not have a rectangular dual.
To enclose an area we need at least four rectangles.

When does $G$ admit a rectangular dual?

## Rectangular dual

## Definition.

A rectangular dual of a graph $G$ is a contact representation with axis aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle.



## Definition.

A triangle $C$ of $G$ whose removal results in at least two connected components is called a separating triangle.


Does not have a rectangular dual. To enclose an area we need at least four rectangles.

When does $G$ admit a rectangular dual?
■ G has no separating triangle

- $G$ has at least 4 vertices on outer face; wlog assume this
■ each inner face of $G$ must be a triangle



## Proper triangular planar graph

> Definition.
> An internally triangulated, plane graph $G$ without separating triangles and exactly four vertices on the outer face is called properly triangulated planar (PTP).

## Proper triangular planar graph

## Definition.

An internally triangulated, plane graph $G$ without separating triangles and exactly four vertices on the outer face is called properly triangulated planar (PTP).

## Theorem. [Koźmiński, Kinnen '85]

A graph $G$ has a rectangular dual $\mathcal{R}$ with four rectangles on the boundary of $\mathcal{R}$ if and only if $G$ is a PTP graph.

## Regular edge labeling

A rectangular dual gives rise to a 2 -coloring and an orientation of the inner edges of $G$ :


## Regular edge labeling

A rectangular dual gives rise to a 2 -coloring and an orientation of the inner edges of $G$ :


## Definition.

A regular edge labeling (REL) is a 2 -coloring and an orientation of inner edges of $G$ such that

## Regular edge labeling

A rectangular dual gives rise to a 2 -coloring and an orientation of the inner edges of $G$ :


## Definition.

A regular edge labeling (REL) is a 2-coloring and an orientation of inner edges of $G$ such that

for every
inner vertex

## Regular edge labeling

A rectangular dual gives rise to a 2 -coloring and an orientation of the inner edges of $G$ :


## Definition.

A regular edge labeling (REL) is a 2-coloring and an orientation of inner edges of $G$ such that


## Refined canonical order

## Theorem/Definition.

Let $G$ be a PTP graph. There exists a labeling $v_{1}=v_{s}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of $G$ such that for every $4 \leq k \leq n$ :

- The subgraph $G_{k-1}$ induced by $v_{1}, \ldots, v_{k-1}$ is biconnected and boundary $C_{k-1}$ of $G_{k-1}$ contains the edge ( $v_{S}, v_{W}$ ).
■ $v_{k}$ is in exterior face of $G_{k-1}$, and its neighbors in $G_{k-1}$ form (at least 2-element) subinterval of the path
 $C_{k-1} \backslash\left(v_{S}, v_{W}\right)$.
- If $k \leq k-2, v_{k}$ has at least 2 neighbors in $G \backslash G_{k-1}$.

Refined canonical order example


## From refined canonical order to REL

Given a refined canonical ordering of $G$ we construct a REL as follows:
$\square$ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from $v_{i}$ to $v_{j}$;
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of $v_{k}$ and $v_{t_{l}}$ is right point of $v_{k}$.
■ Base edge of $v_{k}$ is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{l}}$ are higher numbered neighbors of $v_{k}$, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{l}}\right)$ right edge.


## From refined canonical order to REL

Given a refined canonical ordering of $G$ we construct a REL as follows:
$\square$ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from $v_{i}$ to $v_{j}$;
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of $v_{k}$ and $v_{t_{l}}$ is right point of $v_{k}$.
■ Base edge of $v_{k}$ is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{l}}$ are higher numbered neighbors of $v_{k}$, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{l}}\right)$ right edge.


## Lemma 1.

Left edge or right edge cannot be a base edge.

## From refined canonical order to REL

Given a refined canonical ordering of $G$ we construct a REL as follows:
$\square$ For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from $v_{i}$ to $v_{j}$;
$\square v_{k}$ has incoming edges from $v_{t_{1}}, \ldots, v_{t_{l}}$, we say that $v_{t_{1}}$ is left point of $v_{k}$ and $v_{t_{l}}$ is right point of $v_{k}$.
■ Base edge of $v_{k}$ is $\left(v_{t_{a}}, v_{k}\right)$, where $t_{a}<k$ is minimal.
■ If $v_{k_{1}}, \ldots, v_{k_{l}}$ are higher numbered neighbors of $v_{k}$, we call $\left(v_{k}, v_{k_{1}}\right)$ left edge and $\left(v_{k}, v_{k_{l}}\right)$ right edge.


## Lemma 1.

Left edge or right edge cannot be a base edge.
Proof. Suppose left edge $\left(v_{k}, v_{k_{1}}\right)$ is base edge of $v_{k_{1}}$. Since $G$ triangulated, $\left(v_{t_{1}}, v_{k_{1}}\right) \in E(G)$.
Contradiction since $v_{k}>v_{t_{1}}$.

## From refined canonical order to REL

## Lemma 2.

An edge is either a left edge, a right edge or a base edge.


## From refined canonical order to REL

## Lemma 2.

An edge is either a left edge, a right edge or a base edge.

## Proof.

- Exclusive "or" follows from Lemma 1.



## From refined canonical order to REL

## Lemma 2.

An edge is either a left edge, a right edge or a base edge.

## Proof.

■ Exclusive "or" follows from Lemma 1.
$\square$ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of $v_{k}$.

- $v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i}}$ is right point of $v_{t_{i-1}}$ :

$\square$ One of them is $v_{k}$; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
■ For $1 \leq i<a-1$, it is $v_{t_{i-1}}$.


## From refined canonical order to REL

## Lemma 2.

An edge is either a left edge, a right edge or a base edge.

## Proof.

- Exclusive "or" follows from Lemma 1.
$\square$ Let $\left(v_{t_{a}}, v_{k}\right)$ be base edge of $v_{k}$.
$\square v_{t_{a}}$ is right point of $v_{t_{a-1}} ; v_{t_{i}}$ is right point of $v_{t_{i-1}}$ :

$\square$ One of them is $v_{k}$; the other one is either $v_{t_{i-1}}$ or $v_{t_{i+1}}$.
- For $1 \leq i<a-1$, it is $v_{t_{i-1}}$.

■ Edges $\left(v_{t_{i}}, v_{k}\right), 1 \leq i<a-1$, are right edges.
$\square$ Similarly, $\left(v_{t_{i}}, v_{k}\right)$, for $a+1 \leq i \leq l$, are left edges.

## From refined canonical order to REL

## Coloring.

- Color right (left) edges in red (blue).
 blue if $i=l$ and otherwise arbitrarily. Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.
- Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and



## From refined canonical order to REL

## Coloring.

- Color right (left) edges in red (blue).
 blue if $i=l$ and otherwise arbitrarily. Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.


## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.
$\square$ Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and


## From refined canonical order to REL

## Coloring.

- Color right (left) edges in red (blue). blue if $i=l$ and otherwise arbitrarily. Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.


## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.


## Proof.

$$
k_{l} \geq 2
$$



## From refined canonical order to REL

## Coloring.

- Color right (left) edges in red (blue).
 blue if $i=l$ and otherwise arbitrarily. Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.


## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

## Proof.

$$
k_{l} \geq 2
$$



## From refined canonical order to REL

## Coloring.

- Color right (left) edges in red (blue).
 blue if $i=l$ and otherwise arbitrarily. Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.


## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

## Proof.

$$
k_{l} \geq 2
$$



## From refined canonical order to REL

## Coloring.

- Color right (left) edges in red (blue).
 blue if $i=l$ and otherwise arbitrarily. Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.


## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.

Proof. $k_{l} \geq 2$


## From refined canonical order to REL

## Coloring.

- Color right (left) edges in red (blue). blue if $i=l$ and otherwise arbitrarily. Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.


## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.



## From refined canonical order to REL

## Coloring.

■ Color right (left) edges in red (blue).
 blue if $i=l$ and otherwise arbitrarily.
Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.

## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.


## From refined canonical order to REL

## Coloring.

$■$ Color right (left) edges in red (blue).
 blue if $i=l$ and otherwise arbitrarily.
Let $T_{r}$ be the red edges and $T_{b}$ the blue edges.

## Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.


- Color a base edge $\left(v_{t_{i}}, v_{k}\right)$ red if $i=1$ and

$\Rightarrow$ circular order of outgoing edges of $v_{k}$ correct

From REL to st-digraphs to coordinates


## Rectangular dual algorithm

For a PTP graph $G=(V, E)$ :
■ Find a REL $T_{r}, T_{b}$ of $G$;
■ Construct a SN network $G_{\mathrm{ver}}$ of $G$ (consists of $T_{b}$ plus outer edges)
■ Construct the dual $G_{\text {ver }}^{\star}$ of $G_{\text {ver }}$ and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
■ For each vertex $v \in V$, let $g$ and $h$ be the face on the left and face on the right of $v$. Set $x_{1}(v)=f_{\mathrm{ver}}(g)$ and $x_{2}(v)=f_{\text {ver }}(h)$.
$\square$ Define $x_{1}\left(v_{N}\right)=x_{1}\left(v_{S}\right)=1$ and $x_{2}\left(v_{N}\right)=x_{2}\left(v_{S}\right)=\max f_{\text {ver }}-1$

## Rectangular dual algorithm

For a PTP graph $G=(V, E)$ :
■ Find a REL $T_{r}, T_{b}$ of $G$;
■ Construct a SN network $G_{\mathrm{ver}}$ of $G$ (consists of $T_{b}$ plus outer edges)
■ Construct the dual $G_{\text {ver }}^{\star}$ of $G_{\text {ver }}$ and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
■ For each vertex $v \in V$, let $g$ and $h$ be the face on the left and face on the right of $v$. Set $x_{1}(v)=f_{\mathrm{ver}}(g)$ and $x_{2}(v)=f_{\text {ver }}(h)$.
$\square$ Define $x_{1}\left(v_{N}\right)=x_{1}\left(v_{S}\right)=1$ and $x_{2}\left(v_{N}\right)=x_{2}\left(v_{S}\right)=\max f_{\text {ver }}-1$

- Analogously compute $y_{1}$ and $y_{2}$ with $G_{\text {hor }}$.


## Rectangular dual algorithm

For a PTP graph $G=(V, E)$ :
■ Find a REL $T_{r}, T_{b}$ of $G$;
■ Construct a SN network $G_{\mathrm{ver}}$ of $G$ (consists of $T_{b}$ plus outer edges)

- Construct the dual $G_{\text {ver }}^{*}$ of $G_{\text {ver }}$ and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$
■ For each vertex $v \in V$, let $g$ and $h$ be the face on the left and face on the right of $v$. Set $x_{1}(v)=f_{\mathrm{ver}}(g)$ and $x_{2}(v)=f_{\mathrm{ver}}(h)$.
$\square$ Define $x_{1}\left(v_{N}\right)=x_{1}\left(v_{S}\right)=1$ and $x_{2}\left(v_{N}\right)=x_{2}\left(v_{S}\right)=\max f_{\text {ver }}-1$
- Analogously compute $y_{1}$ and $y_{2}$ with $G_{\text {hor }}$.

■ For each $v \in V$, assign a rectangle $R(v)$ bounded by x-coordinates $x_{1}(v), x_{2}(v)$ and $y$-coordinates $y_{1}(v), y_{2}(v)$.

Reading off coordinates to get rectangular dual


## Reading off coordinates to get rectangular dual



$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=1, \quad x_{2}\left(v_{S}\right)=15 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, \quad x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, \quad x_{2}(a)=3 \\
& x_{1}(b)=3, \quad x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, \quad x_{2}(d)=15 \\
& x_{1}(e)=13, \quad x_{2}(e)=15
\end{aligned}
$$

## Reading off coordinates to get rectangular dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=1, x_{2}\left(v_{S}\right)=15 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=10 \\
& y_{1}\left(v_{E}\right)=0, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$



## Reading off coordinates to get rectangular dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=1, x_{2}\left(v_{S}\right)=15 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=10 \\
& y_{1}\left(v_{E}\right)=0, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

## Reading off coordinates to get rectangular dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=1, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=1, x_{2}\left(v_{S}\right)=15 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=10 \\
& y_{1}\left(v_{E}\right)=0, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$



## Correctness of algorithm (sketch)

■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


Correctness of algorithm (sketch)

- If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


Correctness of algorithm (sketch)

- If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


Correctness of algorithm (sketch)
■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

## Correctness of algorithm (sketch)

■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

■ and their veritcal segment of their rectangles overlap.


## Correctness of algorithm (sketch)

■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

■ and their veritcal segment of their rectangles overlap.


## Correctness of algorithm (sketch)

■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

- and their veritcal segment of their rectangles overlap.


$$
\begin{gathered}
y_{1}(v)=f_{\text {hor }}(a)<y_{1}(u)=f_{\text {hor }}(b)< \\
y_{2}(v)=f_{\text {hor }}(c)<y_{2}(u)=f_{\text {hor }}(d)
\end{gathered}
$$

## Correctness of algorithm (sketch)

■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


$$
x_{2}(u)=f_{\operatorname{ver}}(g)=x_{1}(v)
$$

- and their veritcal segment of their rectangles overlap.


$$
\begin{gathered}
y_{1}(v)=f_{\text {hor }}(a)<y_{1}(u)=f_{\text {hor }}(b)< \\
y_{2}(v)=f_{\text {hor }}(c)<y_{2}(u)=f_{\text {hor }}(d)
\end{gathered}
$$

$\square$ If path from $u$ to $v$ in red at least two edges long, then $x_{2}(u)<x_{1}(v)$.

## Correctness of algorithm (sketch)

■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


$$
x_{2}(u)=f_{\operatorname{ver}}(g)=x_{1}(v)
$$

- and their veritcal segment of their rectangles overlap.


$$
\begin{gathered}
y_{1}(v)=f_{\text {hor }}(a)<y_{1}(u)=f_{\text {hor }}(b)< \\
y_{2}(v)=f_{\text {hor }}(c)<y_{2}(u)=f_{\text {hor }}(d)
\end{gathered}
$$

$\square$ If path from $u$ to $v$ in red at least two edges long, then $x_{2}(u)<x_{1}(v)$.
■ No two boxes overlap.

## Correctness of algorithm (sketch)

■ If edge $(u, v)$ existens, then $x_{2}(u)=x_{1}(v)$


$$
x_{2}(u)=f_{\operatorname{ver}}(g)=x_{1}(v)
$$

- and their veritcal segment of their rectangles overlap.


$$
\begin{gathered}
y_{1}(v)=f_{\text {hor }}(a)<y_{1}(u)=f_{\text {hor }}(b)< \\
y_{2}(v)=f_{\text {hor }}(c)<y_{2}(u)=f_{\text {hor }}(d)
\end{gathered}
$$

$\square$ If path from $u$ to $v$ in red at least two edges long, then $x_{2}(u)<x_{1}(v)$.
■ No two boxes overlap.

## Rectangular dual result

## Theorem. <br> Every PTP graph $G$ has a rectangular dual, which can be computed in linear time.

## Proof.

- Compute a planar embedding of $G$.
- Compute a refined canonical ordering of $G$.
- Traverse the graph and color the edges.
- Construct $G_{\text {ver }}$ and $G_{\text {hor }}$.
- Construct their duals $G_{\text {ver }}^{\star}$ and $G_{\text {hor }}^{\star}$.
- Compute a topological ordering for vertices of $G_{\text {ver }}^{\star}$ and $G_{\text {hor }}^{\star}$.
- Assing coordinates to the rectangles representing vertices.


## Discussion

■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]
one-sided

not one-sided


## Discussion

■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- Area universal rectlinear representation - possible for all planar graphs
■ Alam et al. 2013: 8 sides (matches the lower bound)


## Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided. [Eppstein et al. SIAM J. Comp. 2012]

- Area universal rectlinear representation - possible for all planar graphs
■ Alam et al. 2013: 8 sides (matches the lower bound)



## Discussion

■ Circular Arc Cartograms [Kämper, Kobourov, Nöllenburg. IEEE PasViz 2013]


## Literature

Construction of triangle contact representations based on
■ [de Fraysseix, de Mendez, Rosenstiehl '94] On Triangle Contact Graphs
Construction of rectangular dual based on
■ [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs

- [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs
and originally from
■ [Koźmiński, Kinnen '85] Rectangular Duals of Planar Graphs

