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Planar straight-line drawings
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Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).
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Planar straight-line drawings

Idea.
� Fix outer triangle.
� Compute coordinates of inner vertices
� based on outer triangle
� and how much space there has to be for

other vertices
� using barycentric coordinates.

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).
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Planar straight-line drawings

Idea.
� Fix outer triangle.
� Compute coordinates of inner vertices
� based on outer triangle
� and how much space there has to be for

other vertices
� using barycentric coordinates.
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Every n-vertex planar graph has a planar straight-line
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Planar straight-line drawings

Idea.
� Fix outer triangle.
� Compute coordinates of inner vertices
� based on outer triangle
� and how much space there has to be for

other vertices
� using barycentric coordinates.

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).
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(2n− 5)× (2n− 5)
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Barycentric coordinates
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Barycentric coordinates
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Barycentric coordinates
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Barycentric coordinates

A B

C
α const. β const.

γ const.P
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Barycentric coordinates

A B

C
α const. β const.

γ const.P

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to 4ABC are a triple (α, β,γ) ∈ R3

≥0 such that
� α + β + γ = 1
� P = αA + βB + γC.
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Barycentric coordinates

A B

C
α const. β const.

γ const.

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

P

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to 4ABC are a triple (α, β,γ) ∈ R3

≥0 such that
� α + β + γ = 1
� P = αA + βB + γC.
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Barycentric representation

Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map φ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
� v1 + v2 + v3 = 1 for all v ∈ V
� for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map φ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
� v1 + v2 + v3 = 1 for all v ∈ V
� for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map φ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
� v1 + v2 + v3 = 1 for all v ∈ V
� for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation

y

B

C

x
A

max{x1, y1}

Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map φ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
� v1 + v2 + v3 = 1 for all v ∈ V
� for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation

y

forbidden triangle
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map φ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
� v1 + v2 + v3 = 1 for all v ∈ V
� for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.



5 - 1

Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.
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Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.

C

u

v

Proof. � No vertices occur “inside” an edge

BA
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Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.

C

u

v

� No pair of edges {u, v} and {u′, v′} cross: u′

v′

Proof. � No vertices occur “inside” an edge

BA
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Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.
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Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.

C

u

v

� No pair of edges {u, v} and {u′, v′} cross: u′

v′

u′i > ui, vi v′j > uj, vj uk > u′k, v′k vl > u′l, v′l

Proof. � No vertices occur “inside” an edge

BA
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Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.

C

u

v

� No pair of edges {u, v} and {u′, v′} cross: u′

v′

u′i > ui, vi v′j > uj, vj uk > u′k, v′k vl > u′l, v′l
⇒ {i, j} ∩ {k, l} = ∅

wlog i = j = 1 ⇒ u′1, v′1 > u1, v1

Proof. � No vertices occur “inside” an edge

BA
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Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.

C

u

v

� No pair of edges {u, v} and {u′, v′} cross: u′

v′

u′i > ui, vi v′j > uj, vj uk > u′k, v′k vl > u′l, v′l
⇒ {i, j} ∩ {k, l} = ∅

wlog i = j = 1 ⇒ u′1, v′1 > u1, v1 ⇒ separated by straight line

Proof. � No vertices occur “inside” an edge

BA
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Barycentric representations & planar graphs

Lemma.
Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside 4ABC.

C

u

v

� No pair of edges {u, v} and {u′, v′} cross: u′

v′

u′i > ui, vi v′j > uj, vj uk > u′k, v′k vl > u′l, v′l
⇒ {i, j} ∩ {k, l} = ∅

wlog i = j = 1 ⇒ u′1, v′1 > u1, v1 ⇒ separated by straight line

How to get vertices
on grid?

Proof. � No vertices occur “inside” an edge

BA
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Angle labeling

x

z

y

C

BA

Observation
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.
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Angle labeling

x

z

y

x1 > y1, z1
y2 > x2, z2
z3 > x3, y3

C

BA

Observation
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.
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Angle labeling

3

2
1

x

z

y

x1 > y1, z1
y2 > x2, z2
z3 > x3, y3

C

BA

Observation
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.
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Schnyder labeling

Definition.
A Schnyder labeling (normal labeling) of a triangulated
plane graph G is a labeling of all internal angles with labels
1, 2 and 3 such that:

Faces Each internal face contain vertices with all three
labels 1, 2 and 3 appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists
of a nonempty interval of 1’s followed by a nonempty
interval of 2’s followed by a nonempty interval of 3’s.
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Schnyder labeling

Definition.
A Schnyder labeling (normal labeling) of a triangulated
plane graph G is a labeling of all internal angles with labels
1, 2 and 3 such that:

Faces Each internal face contain vertices with all three
labels 1, 2 and 3 appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists
of a nonempty interval of 1’s followed by a nonempty
interval of 2’s followed by a nonempty interval of 3’s.
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Schnyder labeling

Definition.
A Schnyder labeling (normal labeling) of a triangulated
plane graph G is a labeling of all internal angles with labels
1, 2 and 3 such that:

Faces Each internal face contain vertices with all three
labels 1, 2 and 3 appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists
of a nonempty interval of 1’s followed by a nonempty
interval of 2’s followed by a nonempty interval of 3’s.
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Schnyder labeling

Definition.
A Schnyder labeling (normal labeling) of a triangulated
plane graph G is a labeling of all internal angles with labels
1, 2 and 3 such that:

Faces Each internal face contain vertices with all three
labels 1, 2 and 3 appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists
of a nonempty interval of 1’s followed by a nonempty
interval of 2’s followed by a nonempty interval of 3’s.
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Schnyder realiser

� Schnyder labeling induces an edge labeling
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Schnyder realiser

� Schnyder labeling induces an edge labeling
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Schnyder realiser

� Schnyder labeling induces an edge labeling
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Schnyder realiser
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Schnyder realiser
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Schnyder realiser
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� Schnyder labeling induces an edge labeling
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Schnyder realiser

3
3 3

1
1

1

2
2

� Schnyder labeling induces an edge labeling
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Schnyder realiser
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Schnyder realiser
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� Schnyder labeling induces an edge labeling
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Schnyder realiser

� Schnyder labeling induces an edge labeling
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Schnyder realiser

� Schnyder labeling induces an edge labeling
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Schnyder realiser

T1 T2

T3
� Schnyder labeling induces an edge labeling

21
3 2

2
1

1
1

2

2
3
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Definition.
A Schnyder forest or realiser of a triangulated plane graph
G = (V, E) is a partition of the inner edges of E into three sets of
oriented edges T1, T2, T3 such that for each inner vertex v ∈ V
holds:

� v has one outgoing edge in each of T1, T2, and T3.

� The ccw order of edges around v is: leaving in T1, entering in
T3, leaving in T2, entering in T1, leaving in T3, entering in T2.
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Schnyder realiser – existence

a

v1

v2

v3v4

a

v1

v2

v3v4

x

contracting

{a, x}

a and x must have
exactly 2 common

neighbors
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Schnyder realiser – existence

a

v1

v2

v3v4

a

v1

v2

v3v4

x

contracting

{a, x}

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

a and x must have
exactly 2 common

neighbors
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Schnyder realiser – existence

a

v1

v2

v3v4

a

v1

v2

v3v4

x

contracting

{a, x}

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

a and x must have
exactly 2 common

neighbors

Theorem.
Every triangulated plane graph has a Schnyder labeling.
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Schnyder realiser – existence

a

v1

v2

v3v4

a

v1

v2
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence
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v3v4
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling.
It can be implemented in O(n) time . . . as exercise.
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Schnyder realiser – existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x 6= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling.
It can be implemented in O(n) time . . . as exercise.

Corollary.
Every triangulated plane graph has a Schnyder realiser.

Theorem and previous construction imply:
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Schnyder realiser – properties
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Schnyder realiser – properties
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Schnyder realiser – properties
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Schnyder realiser – properties

c

ba

� For each v there exists a
directed red, blue, green path
from v to a, b, c, respectively.

� No monochromatix cycle exists

� Each monochromatic subgraph
is a tree!

� The sinks of red/blue/green
trees are the vertices a, b, c.



10 - 5

Schnyder realiser – properties

c

ba

� For each v there exists a
directed red, blue, green path
from v to a, b, c, respectively.

� No monochromatix cycle exists

� Each monochromatic subgraph
is a tree!

� The sinks of red/blue/green
trees are the vertices a, b, c.
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Schnyder realiser – properties

c

ba

� For each v there exists a
directed red, blue, green path
from v to a, b, c, respectively.

� No monochromatix cycle exists

� Each monochromatic subgraph
is a tree!

� The sinks of red/blue/green
trees are the vertices a, b, c.
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Schnyder realiser – properties

c

ba

� For each v there exists a
directed red, blue, green path
from v to a, b, c, respectively.

� No monochromatix cycle exists

� Each monochromatic subgraph
is a tree!

� The sinks of red/blue/green
trees are the vertices a, b, c.

This is ensured by construction via
contraction operation.
(Bonus: Can construct all valid
Schnyder realiser.)
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Schnyder drawing

T1 T2

T3

f : v ∈ V 7→ v1A + v2B + v3C

� How to get from Schnyder realiser to
barycentric representation
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Face regions

c

a b

v

P1

P3

P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces
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Face regions

c

a b
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R3(v)

R1v

P1
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P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces
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Face regions

Lemma.

� Paths P1(v), P2(v), P3(v) cross only at
vertex v.

� For inner vertices u 6= v it holds that
u ∈ Ri(v)⇒ Ri(u) ( Ri(v).

c

a b

R2
R3(v)

R1v

P1

P3

P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces



12 - 4

Face regions

Lemma.

� Paths P1(v), P2(v), P3(v) cross only at
vertex v.

� For inner vertices u 6= v it holds that
u ∈ Ri(v)⇒ Ri(u) ( Ri(v).

c

a b

R2
R3(v)

R1v

P1

P3

P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces

Proof . . .

T1 T2

T3



12 - 5

Face regions

Lemma.

� Paths P1(v), P2(v), P3(v) cross only at
vertex v.

� For inner vertices u 6= v it holds that
u ∈ Ri(v)⇒ Ri(u) ( Ri(v).

c

a b

R2
R3(v)

R1v

P1

P3

P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces

Proof . . .

T1 T2

T3



12 - 6

Face regions

Lemma.

� Paths P1(v), P2(v), P3(v) cross only at
vertex v.

� For inner vertices u 6= v it holds that
u ∈ Ri(v)⇒ Ri(u) ( Ri(v).

c

a b

R2
R3(v)

R1

u

v

P1

P3

P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces

Proof . . .

T1 T2

T3



12 - 7

Face regions

Lemma.

� Paths P1(v), P2(v), P3(v) cross only at
vertex v.

� For inner vertices u 6= v it holds that
u ∈ Ri(v)⇒ Ri(u) ( Ri(v).

c

a b

R2
R3(v)

R1

u
1 2

v

P1

P3

P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces

Proof . . .

T1 T2

T3



12 - 8

Face regions

Lemma.

� Paths P1(v), P2(v), P3(v) cross only at
vertex v.

� For inner vertices u 6= v it holds that
u ∈ Ri(v)⇒ Ri(u) ( Ri(v).

c

a b

R2
R3(v)

R1

u
1 2

v

R3(u)P1

P3

P2

� Pi(v) path from v to source of Ti
� R1(v), R2(v), R3(v) are sets of faces

Proof . . .

T1 T2

T3



13 - 1

Schnyder drawing
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Weak barycentric representation

Definition.
A weak barycentric representation of a graph G = (V, E)
is an injective map v ∈ V 7→ (v1, v2, v3) ∈ R3 with the
following properties:
� v1 + v2 + v3 = 1 for every v ∈ V
� for every {x, y} ∈ E and every z ∈ V \ {x, y} there is

k ∈ {1, 2, 3} with (xk, xk+1) <lex (zk, zk+1) and
(yk, yk+1) <lex (zk, zk+1).
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Weak barycentric representation

A weak barycentric representation
still provides a planar drawing.

Proof is similar to before.. and thus an exercise.
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Schnyder drawing

Theorem.
The mapping

f : v 7→ 1
n−1 (v

′
1, v′2, v′3)

is a weak barycentric represenation of G.
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Schnyder drawing

Remarks.
� By setting A = (n− 1, 0), B = (0, n− 1), C = (0, 0),

one obtains a planar straight-line drawing of G on an
(n− 2)× (n− 2) grid.

� To calculate all the coordinates, a constant number of
tree traversals are enough – exercise.

Theorem.
The mapping
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′
1, v′2, v′3)

is a weak barycentric represenation of G.
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Why do vertices land on a grid?
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Literature

� [PGD Ch. 4.3] for detailed explanation of shift method

� [Sch90] Schnyder “Embedding planar graphs on the grid” 1990 – original
paper on Schnyder realiser method
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