Visualisation of graphs

Upward planar drawings

Flow methods

Jonathan Klawitter • Summer semester 2020

Upward planar drawings - motivation

- What may the direction of edges in a digraph represent?
- Time
- Flow
- Hierarchie

PERT diagram

Petri net

Phylogenetic network

Upward planar drawings - motivation

- What may the direction of edges in a digraph represent?
- Time
- Flow
- Hierarchie
- Would be nice to have general direction preserved in drawing.

PERT diagram

Petri net

Phylogenetic network

Upward planar drawings - definition

Definition.

A directed graph $G=(V, E)$ is upward planar when it admits a drawing Γ (vertices $=$ points, edges $=$ simple curves) that is

- planar and
where each edge is drawn as an upward, y-monotone curve.

Upward planarity - necessary conditions

- For a digraph G to be upward planar, it has to be:
- planar

Upward planarity - necessary conditions

- For a digraph G to be upward planar, it has to be:
- planar
- acyclic

Upward planarity - necessary conditions

- For a digraph G to be upward planar, it has to be:
- planar
- acyclic

bimodal vertex

not bimodal

Upward planarity - necessary conditions

- For a digraph G to be upward planar, it has to be:
- planar
- acyclic
- bimodal

bimodal vertex

not bimodal

Upward planarity - necessary conditions

- For a digraph G to be upward planar, it has to be:
- planar
- acyclic
- bimodal

■ . . . but these conditions are not sufficient.

bimodal vertex

not bimodal

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.
no crossings

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.
no crossings
acyclic digraph with
a single source s and single sink t

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Additionally: Embedded such that s and t are on the outerface f_{0}.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Additionally:
Embedded such that s and t are on the outerface f_{0}.
or:

Edge (s, t) exists.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can draw in prespecified

triangle.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can draw in prespecified triangle.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can draw in prespecified triangle.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can draw in prespecified triangle.
Apply induction.

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can draw in prespecified triangle. Apply induction.

Case 2:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can draw in prespecified triangle. Apply induction.

Case 2:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:
Claim.

Can draw in prespecified triangle. Apply induction.

Case 2:

Upward planarity - characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can draw in prespecified triangle. Apply induction.

Case 2:

Upward planarity - complexity

Theorem. [Garg, Tamassia, 1995]
For a planar acyclic digraph it is in general NP-hard to decide whether it is upward planar.

Upward planarity - complexity

Theorem. [Garg, Tamassia, 1995]

For a planar acyclic digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.

Upward planarity - complexity

Theorem. [Garg, Tamassia, 1995]
For a planar acyclic digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.

Corollary.
For a triconnected planar digraph it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.

Upward planarity - complexity

Theorem. [Garg, Tamassia, 1995]

For a planar acyclic digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.

Corollary.

For a triconnected planar digraph it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.

Theorem. [Hutton, Libow, 1996]

For a single-source acyclic digraph it can be tested in $\mathcal{O}(n)$ time whether it is upward planar.

The problem

Fixed embedding upward planarity testing.
Let $G=(V, E)$ be a plane digraph with the embedding given by the set of faces F and the outer face f_{0}. Test whether G is upward planar (wrt to F, f_{0}).

The problem

Fixed embedding upward planarity testing.

Let $G=(V, E)$ be a plane digraph with the embedding given by the set of faces F and the outer face f_{0}. Test whether G is upward planar (wrt to F, f_{0}).

Idea.

- Find property that any upward planar drawing of G satisfies.
- Formalise property.
- Find algorithm to test property.

Angles, local sources \& sinks

Definitions.

Angles, local sources \& sinks

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f.

Angles, local sources \& sinks

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f.
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f.

Angles, local sources \& sinks

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f.
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f.
- An angle α is large when $\alpha>\pi$ and small otherwise.
- $L(v)=$ \# large angles at v
- $L(f)=$ \# large angles in f

Angles, local sources \& sinks

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f.
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f.
- An angle α is large when $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v

- $L(f)=\#$ large angles in f
- $S(v) \& S(f)$ for $\#$ small angles

Angles, local sources \& sinks

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f.
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f.
- An angle α is large when $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v

- $L(f)=\#$ large angles in f
- $S(v) \& S(f)$ for $\#$ small angles

■ $A(f)=\#$ local sources wrt to f
$=\#$ local sinks wrt to f

Angles, local sources \& sinks

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f.
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f.
- An angle α is large when $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v

- $L(f)=\#$ large angles in f
- $S(v) \& S(f)$ for $\#$ small angles
- $A(f)=$ \# local sources wrt to f
$=\#$ local sinks wrt to f

```
Lemma 1.
L(f)+S(f)=2A(f)
```


Assignment problem

■ Vertex v is a global source for f_{1} and f_{2}.

- Has v a large angle in f_{1} or f_{2} ?

Angle relations

$$
L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}
$$

Angle relations

$$
L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}
$$

Proof by induction.

- $L(f)=0$

Angle relations

> Lemma 2.
> $L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

Angle relations

$$
\text { Lemma } 2 .
$$

$L(f)-S(f)=\left\{\begin{array}{ll}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{array} \quad ■ L(f)=0\right.$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

Angle relations

Lemma 2.

$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- $\operatorname{sink} v$ with small angle:

Angle relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- $\operatorname{sink} v$ with small angle:

Angle relations

Lemma 2.

$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- $\operatorname{sink} v$ with small angle:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2
\end{aligned}
$$

Angle relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- sink v with small/large angle:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2
\end{aligned}
$$

Angle relations

Lemma 2.

$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.
$\square L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- source v with small angle:

Angle relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- source v with smatt angle:

Angle relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to

- source v with smatt/large angle:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+2 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)\right) \\
= & -2
\end{aligned}
$$

Angle relations

Lemma 2.

$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- vertex v that is neither source nor sink:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2
\end{aligned}
$$

Angle relations

Lemma 2.

$L(f)-S(f)= \begin{cases}-2, & f \neq f_{0} \\ +2, & f=f_{0}\end{cases}$

Proof by induction.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to

- vertex v that is neither source nor sink:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2
\end{aligned}
$$

■ Otherwise "high" source u exists.

Number of large angles

Lemma 3.

In every upward planar drawing of G holds that

- for each vertex $v \in V: L(v)= \begin{cases}0 & v \text { inner vertex, } \\ 1 & v \text { source/sink; }\end{cases}$
for each face $f: L(f)= \begin{cases}A(f)-1 & f \neq f_{0} \\ A(f)+1 & f=f_{0}\end{cases}$

Proof.

Observation and from Lemma 1: $L(f)+S(f)=2 A(f)$ and from Lemma 2: $L(f)-S(f)= \pm 2$.

Number of large angles

Lemma 3.

In every upward planar drawing of G holds that

- for each vertex $v \in V: L(v)= \begin{cases}0 & v \text { inner vertex, } \\ 1 & v \text { source/sink; }\end{cases}$
for each face $f: L(f)= \begin{cases}A(f)-1 & f \neq f_{0} \\ A(f)+1 & f=f_{0}\end{cases}$

Proof.

Observation and from Lemma 1: $L(f)+S(f)=2 A(f)$ and from Lemma 2: $L(f)-S(f)= \pm 2$.

Assignment of large angles to faces

\square Let S and T be the sets of sources and sinks, respectively.

Assignment of large angles to faces

\square Let S and T be the sets of sources and sinks, respectively.

Definition.
A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where
$\Phi: v \mapsto$ incident face, where v forms large angle
such that

$$
\left|\Phi^{-1}(f)\right|=
$$

Assignment of large angles to faces

\square Let S and T be the sets of sources and sinks, respectively.

Definition.
A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where
$\Phi: v \mapsto$ incident face, where v forms large angle
such that

$$
\left|\Phi^{-1}(f)\right|=L(f)=
$$

Assignment of large angles to faces

- Let S and T be the sets of sources and sinks, respectively.

Definition.

A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where
$\Phi: v \mapsto$ incident face, where v forms large angle
such that

$$
\left|\Phi^{-1}(f)\right|=L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0} \\ A(f)+1 & \text { if } f=f_{0}\end{cases}
$$

Example of angle to face assignment

Example of angle to face assignment

- global sources \& sinks

Example of angle to face assignment

Example of angle to face assignment

Example of angle to face assignment

- global sources \& sinks
$A(f)$ \# sources/sinks of f
assignment $\Phi: S \cup T \rightarrow F$

Result characterisation

```
Theorem 3.
Let \(G=(V, E)\) be an acyclic plane digraph with embedding
given by \(F, f_{0}\).
Then \(G\) is upward planar (respecting \(F, f_{0}\) ) if and only if \(G\) is
bimodal and there exists consistent assignment \(\Phi\).
```


Result characterisation

Theorem 3.

Let $G=(V, E)$ be an acyclic plane digraph with embedding given by F, f_{0}.
Then G is upward planar (respecting F, f_{0}) if and only if G is bimodal and there exists consistent assignment Φ.

Proof.
\Rightarrow : As constructed before.

Result characterisation

Theorem 3.

Let $G=(V, E)$ be an acyclic plane digraph with embedding given by F, f_{0}.
Then G is upward planar (respecting F, f_{0}) if and only if G is bimodal and there exists consistent assignment Φ.

Proof.
\Rightarrow : As constructed before.
\Leftarrow : Idea:

- Construct planar st-digraph that is supergraph of G.
- Apply equivalence from Theorem 1.

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)
■ x sink \Rightarrow insert edge (x, z).

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)
■ x sink \Rightarrow insert edge (x, z).

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)
■ x sink \Rightarrow insert edge (x, z).

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)
■ x sink \Rightarrow insert edge (x, z).

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)

■ x sink \Rightarrow insert edge (x, z).

- Refine outer face f_{0}.

Refinement algorithm - $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).
\square For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)

■ x sink \Rightarrow insert edge (x, z).

- Refine outer face f_{0}.

\square Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.

Refinement example

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]
 For a combinatorially embedded planar digraph G it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph G it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.
Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph G it can be tested in $\mathcal{O}\left(n^{2}\right)$ time whether it is upward planar.

Proof.

- Test for bimodality.

■ Test for a consistent assignment Φ (via flow network).
■ If G bimodal and Φ exists, refine G to plane st-digraph H.

- Draw H upward planar.

■ Deleted edges added in refinement step.

Finding a consistent assignment

Idea.
Flow $(v, f)=1$ from global source $/ \operatorname{sink} v$ to the incident face f its large angle gets assigned to.

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$

- $W=$
- $E^{\prime}=$
- $\ell(e)=$
- $u(e)=$

■ $d(p)=$

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$

- $W=$
- $E^{\prime}=$
- $\ell(e)=$
- $u(e)=$
$\square d(p)=$

Example.

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$

- $W=\{v \in V \mid v \underset{\substack{\text { source or sink }}}{ } \cup$
- $E^{\prime}=$
- $\ell(e)=$
- $u(e)=$
- $d(p)=$

Example.

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$
$\square W=\{v \in V \mid v$ source or sink $\} \cup \underset{\square}{F}$

- $E^{\prime}=$
- $\ell(e)=$
- $u(e)=$
- $d(p)=$

Example.

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the
incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$
$\square W=\{v \in V \mid v$ source or sink $\} \cup \underset{\square}{F}$
$\square E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$

- $\ell(e)=$
- $u(e)=$
- $d(p)=$

Example.

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the
incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$
$\square W=\{v \in V \mid v$ source or sink $\} \cup \underset{\square}{F}$
$\square E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$

- $d(p)=$

Example.

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the
incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$
$\square W=\{v \in V \mid v \underset{0}{\text { source or sink }}\} \cup \underset{\square}{F}$
$\square E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
■ $\ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$
$\square d(p)= \begin{cases}1 & \forall p \in W \cap V \\ -(A(p)-1) & \forall p \in F \backslash\left\{f_{0}\right\} \\ -(A(p)+1) & p=f_{0}\end{cases}$

Example.

Finding a consistent assignment

Idea.

Flow $(v, f)=1$ from global source/sink v to the
incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; \ell ; u ; d\right)$
$\square W=\{v \in V \mid v \underset{0}{\text { source or sink }}\} \cup \underset{\square}{F}$
$\square E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$
$\square d(p)= \begin{cases}1 & \forall p \in W \cap V \\ -(A(p)-1) & \forall p \in F \backslash\left\{f_{0}\right\} \\ -(A(p)+1) & p=f_{0}\end{cases}$

Example.

Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]
■ Finding assignment in Theorem 2 can be sped up to $\mathcal{O}\left(n+r^{1.5}\right)$ where $r=\#$ sources/sinks. [Abbasi, Healy, Rextin 2010]

Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]
- Finding assignment in Theorem 2 can be sped up to $\mathcal{O}\left(n+r^{1.5}\right)$ where $r=\#$ sources/sinks. [Abbasi, Healy, Rextin 2010]

■ Many related concepts have been studied: quasi-planarity, upward drawings of mixed graphs, upward planarity on cyclinder/torus, ...

Literature

- [GD Ch. 6] for detailed explanation

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets

■ [Di Battista, Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
■ [Garg, Tamassia '95] On the Computational Complexity of Upward and Rectilinear Planarity Testing
■ [Hutton, Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
■ [Bertolazzi, Di Battista, Mannino, Tamassia '94] Upward Drawings of Triconnected Digraphs
■ [Healy, Lynch '05] Building Blocks of Upward Planar Digraphs

- [Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing

■ [Abbasi, Healy, Rextin '10] Improving the running time of embedded upward planarity testing

