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of trees and series-parallel graphs.
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Motivation

� So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

� Why straight-line? Why planar?

� Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”
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Planar graphs

� Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930]

� Recognition: For a graph G with n vertices, there is an O(n) time algorithm to
test if G is planar. [Hopcroft & Tarjan 1974]
� Also computes an embedding in O(n).

� Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
� The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.
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� Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]
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Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).
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Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).

Idea.
� Start with singe edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.

vk

v1 v2
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Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

� (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

� (C2) Edge (v1, v2) belongs to the outer face of Gk.

� (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.
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Canonical order – example
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v16
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v15

G15
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v14

G14

v1 v2

v16

v15
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Canonical order – example
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Canonical order – example

G13

v1 v2

v16

v15
v13

v14
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Canonical order – example

G12

v1 v2

v16

v15
v13

v14
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Canonical order – example

chord

G13

v1 v2

v16

v15
v14

edge joining two
nonadjacent
vertices in a cycle
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Canonical order – example
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G12

v1 v2

v16

v15
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Canonical order – example

v3
v7

v8

v9

v12
v13

v10
v11

v5
v4

v6

v1 v2

v16

v15
v14
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Canonical order – existence

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical order – existence

� Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

Proof.

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical order – existence
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Canonical order – existence

� Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

� Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

Proof.

� Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical order – existence

� Let Gn = G, and let v1, v2, vn be the vertices of the
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� Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
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v k
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ould
not be

adjacent to
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Canonical order – existence

� Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

� Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

v k
sh

ould
not be

adjacent to
a chord

Have to show:
1. vk not adjacent

to chord is
sufficient

2. Such vk exists

Proof.

� Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical order – existence

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.
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Canonical order – existence

vkGk

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.
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Canonical order – existence

vkGk

v1 v2

contradiction to edges
being consecutive

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.
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Canonical order – existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.



8 - 9

Canonical order – existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1
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Canonical order – existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

vk

This completes proof of Lemma. �

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.
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Canonical order – implementation

Algorithm CanonicalOrder

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false;

out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v 6= v1, v2 such that mark(v) = false,
out(v) = true, and chords(v) = 0

vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the

unmarked neighbors of vk
out(wi) ← true for all p < i < q
update number of chords for wi and its neighbours

� chord(v) – # chords
adjacent to v

� mark(v) = true iff vertex
v was numbered

� out(v) = true iff v is
currently outer vertex
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vk

wp wq
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Canonical order – implementation

Algorithm CanonicalOrder

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false;

out(v1), out(v2), out(vn) ← true
for k = n to 3 do

choose v 6= v1, v2 such that mark(v) = false,
out(v) = true, and chords(v) = 0

vk ← v; mark(v) ← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the
boundary of Gk−1 and let wp, . . . , wq be the

unmarked neighbors of vk
out(wi) ← true for all p < i < q
update number of chords for wi and its neighbours

� chord(v) – # chords
adjacent to v

� mark(v) = true iff vertex
v was numbered

� out(v) = true iff v is
currently outer vertex

vk

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 4, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 4, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is
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� each edge of the boundary of Gk−1 (minus
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Shift method

x

y

Algorithm invariants/constraints:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 4, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

vk
� vk on grid, beause we

had even Manhattan
distance
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Shift method

x

y

Algorithm invariants/constraints:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 4, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

L(vk)

vk
� vk on grid, beause we

had even Manhattan
distance
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Shift method – example
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Shift method – example

(0, 0) (2n− 4, 0)

(n− 2, n− 2)

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



12 - 1

Shift method – planarity

w1 wt

vk

Gk−1
w2

wp wq
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Shift method – planarity
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Shift method – planarity

w1 wt

vk

Gk−1

covered vertices

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.w2

wp wq

wt−1
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Shift method – planarity

w1 wt

vk

Gk−1
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� Each internal vertex is covered exactly once.
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Shift method – planarity

w1 wt

vk

Gk−1

Observations.
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Shift method – planarity

w1 wt
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Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.w2

wp wq

wt−1

L(wi)

Lemma. Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N, such
that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right, we get a planar
straight-line drawing.



12 - 8

Shift method – planarity

w1 wt

vk

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.w2

wp wq

wt−1

L(wi)

Proof by induction:
If Gk−1 straight-line planar, then also Gk.

Lemma. Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N, such
that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right, we get a planar
straight-line drawing.
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Shift method – pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vk

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 edges from P(wp) and P(wq)

L(vi)← ∪
q−i
j=p+1L(wj) ∪ {vi}
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for ∀v ∈ ∪t
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x(v)← x(v) + 2

P(vi)← intersection of +1/−1 edges from P(wp) and P(wq)

L(vi)← ∪
q−i
j=p+1L(wj) ∪ {vi}

� Runtime O(n2)
� Can we do better?
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Shift method – linear time implementation

� Idea 1. To compute x(vk) & y(vk), we only need
y(wp) and y(wq) and x(wq)− x(wp)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1
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� Idea 1. To compute x(vk) & y(vk), we only need
y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

� Idea 2. Instead of storing explicit x-coordinates,
we store certain x differences.
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Shift method – linear time implementation

w1 wt

Gk−1
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wp wq

wt−1

Relative x distance tree.
For each vertex v store
� x-offset ∆x(v) from parent
� y-coordinate y(v)

root

wp+1 wq−1
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Relative x distance tree.
For each vertex v store
� x-offset ∆x(v) from parent
� y-coordinate y(v)

root

wp+1 wq−1

Calculations.
� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)
� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)
� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

Relative x distance tree.
For each vertex v store
� x-offset ∆x(v) from parent
� y-coordinate y(v)

� y(vk) by (2)

� ∆x(wp+1)++, ∆x(wq)++
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For each vertex v store
� x-offset ∆x(v) from parent
� y-coordinate y(v)
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Calculations.
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� ∆x(vk) by (3)
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For each vertex v store
� x-offset ∆x(v) from parent
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� y(vk) by (2)

� ∆x(wp+1)++, ∆x(wq)++

� After vn, use preorder
traversal to compute
x-coordinates
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Literature

� [PGD Ch. 4.2] for detailed explanation of shift method

� [dFPP90] de Fraysseix, Pach, Pollack ”How to draw a planar graph on a
grid”1990 – original paper on shift method
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