

# Visualisation of graphs

#### Planar straight-line drawings Canonical order & shift method

Jonathan Klawitter · Summer semester 2020







#### Motivation

So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

#### Motivation

So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

Why straight-line? Why planar?

#### Motivation

- So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
- Why straight-line? Why planar?
- Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"

#### 3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to *minimize the number of edge crossings* in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to *minimize the number of edge bends* within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of *keeping edge bends uniform* with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

**Characterisation:** A graph is planar iff it contains neither a  $K_5$  nor a  $K_{3,3}$  minor.

[Kuratowski 1930]



■ **Characterisation:** A graph is planar iff it contains neither a K<sub>5</sub> nor a K<sub>3,3</sub> minor.

[Kuratowski 1930]



Recognition: For a graph G with n vertices, there is an O(n) time algorithm to test if G is planar. [Hopcroft & Tarjan 1974]
 Also computes an embedding in O(n).

**Characterisation:** A graph is planar iff it contains neither a  $K_5$  nor a  $K_{3,3}$  minor.

[Kuratowski 1930]



- Recognition: For a graph G with n vertices, there is an O(n) time algorithm to test if G is planar. [Hopcroft & Tarjan 1974]
   Also computes an embedding in O(n).
- Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
   The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]



Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]





- Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
   Idea: Place vertices in the barycentre of neighbours.
  - Drawback: Requires large grids.

Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]





- Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
   Idea: Place vertices in the barycentre of neighbours.
  - Drawback: Requires large grids.

with planar embedding

- We focus on triangulations:
  - A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
  - Every plane graph is subgraph of a plane triangulation.

Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]





- Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
   Idea: Place vertices in the barycentre of neighbours.
  - Drawback: Requires large grids.

with planar embedding

- We focus on triangulations:
  - A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
  - Every plane graph is subgraph of a plane triangulation.



#### Planar straight-line drawings

**Theorem.** [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size  $(2n - 4) \times (n - 2)$ .

**Theorem.** [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size  $(n-2) \times (n-2)$ .

#### Planar straight-line drawings

**Theorem.** [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size  $(2n - 4) \times (n - 2)$ .

#### Idea.

- Start with singe edge  $(v_1, v_2)$ . Let this be  $G_2$ .
- To obtain  $G_{i+1}$ , add  $v_{i+1}$  to  $G_i$  so that neighbours of  $v_{i+1}$  are on the outer face of  $G_i$ .
- Neighbours of  $v_{i+1}$  in  $G_i$  have to form path of length at least two.



**Theorem.** [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size  $(n-2) \times (n-2)$ .

#### **Definition.** Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each $k, 3 \le k \le n$ :

# **Definition**. Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$ : (C1) Vertices $\{v_1, \ldots, v_k\}$ induce a biconnected internally triangulated graph; call it $G_k$ .

# Definition. Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices. An order π = (v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>) is called a canonical order, if the following conditions hold for each k, 3 ≤ k ≤ n: (C1) Vertices {v<sub>1</sub>,...v<sub>k</sub>} induce a biconnected internally triangulated graph; call it G<sub>k</sub>. (C2) Edge (v<sub>1</sub>, v<sub>2</sub>) belongs to the outer face of G<sub>k</sub>.

#### **Definition**. Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, 3 < k < n: (C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it $G_k$ . (C2) Edge $(v_1, v_2)$ belongs to the outer face of $G_k$ . (C3) If k < n then vertex $v_{k+1}$ lies in the outer face of $G_k$ , and all neighbors of $v_{k+1}$ in $G_k$ appear on the boundary of $G_k$ consecutively.





























Lemma.

Every triangulated plane graph has a canonical order.

#### Lemma.

Every triangulated plane graph has a canonical order.

#### **Proof.**

Let  $G_n = G$ , and let  $v_1, v_2, v_n$  be the vertices of the outer face of  $G_n$ . Conditions C1-C3 hold.

#### Lemma.

Every triangulated plane graph has a canonical order.

#### Proof.

- Let  $G_n = G$ , and let  $v_1, v_2, v_n$  be the vertices of the outer face of  $G_n$ . Conditions C1-C3 hold.
- Induction hypothesis: Vertices  $v_{n-1}, \ldots, v_{k+1}$  have been chosen such that conditions C1-C3 hold for  $k+1 \le i \le n$ .

#### Lemma.

Every triangulated plane graph has a canonical order.

#### Proof.

- Let  $G_n = G$ , and let  $v_1, v_2, v_n$  be the vertices of the outer face of  $G_n$ . Conditions C1-C3 hold.
- Induction hypothesis: Vertices  $v_{n-1}, \ldots, v_{k+1}$  have been chosen such that conditions C1-C3 hold for  $k+1 \le i \le n$ .
- Induction step: Consider  $G_k$ . We search for  $v_k$ .



#### Lemma.

Every triangulated plane graph has a canonical order.

#### Proof.

- Let  $G_n = G$ , and let  $v_1, v_2, v_n$  be the vertices of the outer face of  $G_n$ . Conditions C1-C3 hold.
- Induction hypothesis: Vertices  $v_{n-1}, \ldots, v_{k+1}$  have been chosen such that conditions C1-C3 hold for  $k+1 \le i \le n$ .
- Induction step: Consider  $G_k$ . We search for  $v_k$ .


$v_k$ 

#### Lemma.

Every triangulated plane graph has a canonical order.

#### **Proof**.

- Let  $G_n = G$ , and let  $v_1, v_2, v_n$  be the vertices of the outer face of  $G_n$ . Conditions C1-C3 hold.
- Induction hypothesis: Vertices  $v_{n-1}, \ldots, v_{k+1}$  have been chosen such that conditions C1-C3 hold for k + 1 < i < n.

Induction step: Consider  $G_k$ . We search for  $v_k$ . UK should not be adjacent to a chord



 $v_k$ 

#### Lemma.

Every triangulated plane graph has a canonical order.

#### **Proof**.

- Let  $G_n = G$ , and let  $v_1, v_2, v_n$  be the vertices of the outer face of  $G_n$ . Conditions C1-C3 hold.
- Induction hypothesis: Vertices  $v_{n-1}, \ldots, v_{k+1}$  have been chosen such that conditions C1-C3 hold for k+1 < i < n.

Induction step: Consider  $G_k$ . We search for  $v_k$ . Uk should not be adjacent to a chord

#### Have to show:

1.  $v_k$  not adjacent to chord is sufficient

7 - 7

2. Such  $v_k$  exists













**Claim 1.** If  $v_k$  is not adjacent to a chord then removal of  $v_k$  leaves the graph biconnected.

#### Claim 2.

There exists a vertex in  $G_k$  that is not adjacent to a chord as choice for  $v_k$ .



**Claim 1.** If  $v_k$  is not adjacent to a chord then removal of  $v_k$  leaves the graph biconnected.

#### Claim 2.

There exists a vertex in  $G_k$  that is not adjacent to a chord as choice for  $v_k$ .



**Claim 1.** If  $v_k$  is not adjacent to a chord then removal of  $v_k$  leaves the graph biconnected.

#### Claim 2.

There exists a vertex in  $G_k$  that is not adjacent to a chord as choice for  $v_k$ .



## Canonical order – implementation

#### **Algorithm CanonicalOrder**

forall  $v \in V$  do | chords(v)  $\leftarrow$  0; out(v)  $\leftarrow$  false; mark(v)  $\leftarrow$  false;  $\operatorname{out}(v_1)$ ,  $\operatorname{out}(v_2)$ ,  $\operatorname{out}(v_n) \leftarrow \operatorname{true}$ for k = n to 3 do choose  $v \neq v_1, v_2$  such that mark(v) = false, out(v) = true, and chords(v) = 0 $v_k \leftarrow v$ ; mark $(v) \leftarrow$  true // Let  $w_1 = v_1, w_2, ..., w_{t-1}, w_t = v_2$  denote the boundary of  $G_{k-1}$  and let  $w_p, \ldots, w_q$  be the unmarked neighbors of  $v_k$  $out(w_i) \leftarrow true for all p < i < q$ update number of chords for  $w_i$  and its neighbours

- chord(v) # chords
  adjacent to v
- mark(v) = true iff vertex
  v was numbered
- out(v) = true iff v is
  currently outer vertex

## Canonical order – implementation

#### **Algorithm CanonicalOrder**

forall  $v \in V$  do | chords(v)  $\leftarrow$  0; out(v)  $\leftarrow$  false; mark(v)  $\leftarrow$  false;  $\operatorname{out}(v_1)$ ,  $\operatorname{out}(v_2)$ ,  $\operatorname{out}(v_n) \leftarrow \operatorname{true}$ for k = n to 3 do choose  $v \neq v_1, v_2$  such that mark(v) = false, out(v) = true, and chords(v) = 0 $v_k \leftarrow v$ ; mark $(v) \leftarrow$  true // Let  $w_1 = v_1, w_2, ..., w_{t-1}, w_t = v_2$  denote the boundary of  $G_{k-1}$  and let  $w_p, \ldots, w_q$  be the unmarked neighbors of  $v_k$  $out(w_i) \leftarrow true for all p < i < q$ update number of chords for  $w_i$  and its neighbours

- chord(v) # chords
  adjacent to v
- mark(v) = true iff vertex
  v was numbered
- out(v) = true iff v is
  currently outer vertex



## Canonical order – implementation

#### **Algorithm CanonicalOrder**

forall  $v \in V$  do | chords(v)  $\leftarrow$  0; out(v)  $\leftarrow$  false; mark(v)  $\leftarrow$  false;  $\operatorname{out}(v_1)$ ,  $\operatorname{out}(v_2)$ ,  $\operatorname{out}(v_n) \leftarrow \operatorname{true}$ for k = n to 3 do choose  $v \neq v_1$ ,  $v_2$  such that mark(v) = false, out(v) = true, and chords(v) = 0 $v_k \leftarrow v$ ; mark $(v) \leftarrow$  true // Let  $w_1 = v_1, w_2, ..., w_{t-1}, w_t = v_2$  denote the boundary of  $G_{k-1}$  and let  $w_p, \ldots, w_q$  be the unmarked neighbors of  $v_k$  $out(w_i) \leftarrow true for all p < i < q$ update number of chords for  $w_i$  and its neighbours

- chord(v) # chords
  adjacent to v
- mark(v) = true iff vertex
  v was numbered
- out(v) = true iff v is
  currently outer vertex



#### Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in  $\mathcal{O}(n)$ time.

#### **Algorithm invariants/constraints:**

- $G_{k-1}$  is drawn such that
- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of G<sub>k-1</sub> (minus edge (v<sub>1</sub>, v<sub>2</sub>)) is drawn x-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes ±1.



 $v_1$ 

#### **Algorithm invariants/constraints:**

 $G_{k-1}$  is drawn such that

 $\mathcal{U}_{l}$ 

- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of G<sub>k-1</sub> (minus edge (v<sub>1</sub>, v<sub>2</sub>)) is drawn x-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes ±1.

#### **Algorithm invariants/constraints:**

- $G_{k-1}$  is drawn such that
- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn *x*-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes  $\pm 1$ .



 $\mathcal{U}_1$ 

#### **Algorithm invariants/constraints:**

 $G_{k-1}$  is drawn such that

 $\mathcal{U}_{l}$ 

- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn *x*-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes  $\pm 1$ .

**Overlaps!** 

 $\mathcal{U}_1$ 



 $G_{k-1}$  is drawn such that

 $\mathcal{U}_{l}$ 

- $v_1$  is on (0,0),  $v_2$  is on (2k-4,0),
- boundary of G<sub>k-1</sub> (minus edge (v<sub>1</sub>, v<sub>2</sub>)) is drawn x-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes  $\pm 1$ .

**Overlaps!** 



 $\mathcal{U}_1$ 

#### **Algorithm invariants/constraints:**

 $G_{k-1}$  is drawn such that

 $\mathcal{U}_l$ 

 $G_{k-1}$ 

- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of G<sub>k-1</sub> (minus edge (v<sub>1</sub>, v<sub>2</sub>)) is drawn x-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes ±1.



 $\mathcal{U}_1$ 

#### **Algorithm invariants/constraints:**

 $G_{k-1}$  is drawn such that

 $\mathcal{U}_l$ 

 $G_{k-1}$ 

- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of G<sub>k-1</sub> (minus edge (v<sub>1</sub>, v<sub>2</sub>)) is drawn x-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes  $\pm 1$ .



 $\mathcal{U}_1$ 

#### **Algorithm invariants/constraints:**

 $G_{k-1}$  is drawn such that

 $\mathcal{U}_l$ 

 $\mathcal{W}$ 

 $G_{k-1}$ 

- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of G<sub>k-1</sub> (minus edge (v<sub>1</sub>, v<sub>2</sub>)) is drawn x-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes  $\pm 1$ .



#### **Algorithm invariants/constraints:**

- $G_{k-1}$  is drawn such that
- $v_1$  is on (0,0),  $v_2$  is on (2k 4, 0),
- boundary of G<sub>k-1</sub> (minus edge (v<sub>1</sub>, v<sub>2</sub>)) is drawn x-monotone,
- each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn with slopes ±1.





distance

#### **Algorithm invariants/constraints:**

- $G_{k-1}$  is drawn such that
- $v_1$  is on (0,0),  $v_2$  is on (2k-4,0),
- boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn *x*-monotone,
- $\blacksquare$  each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$  is drawn with slopes  $\pm 1$ .



10 - 10



distance

#### **Algorithm invariants/constraints:**

- $G_{k-1}$  is drawn such that
- $v_1$  is on (0,0),  $v_2$  is on (2k-4,0),
- boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$ ) is drawn *x*-monotone,
- $\blacksquare$  each edge of the boundary of  $G_{k-1}$  (minus edge  $(v_1, v_2)$  is drawn with slopes  $\pm 1$ .




























































































- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in  $G_i$ ,  $1 \le i \le n-1$ .



- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in  $G_i$ ,  $1 \le i \le n-1$ .



- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in  $G_i$ ,  $1 \le i \le n-1$ .



- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in  $G_i$ ,  $1 \le i \le n-1$ .

**Lemma.** Let  $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$ , such that  $\delta_q - \delta_p \geq 2$  and even. If we shift  $L(w_i)$  by  $\delta_i$  to the right, we get a planar straight-line drawing.



- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- **and** a forest in  $G_i$ ,  $1 \le i \le n-1$ .

**Lemma.** Let  $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$ , such that  $\delta_q - \delta_p \geq 2$  and even. If we shift  $L(w_i)$  by  $\delta_i$  to the right, we get a planar straight-line drawing.

Proof by induction:

If  $G_{k-1}$  straight-line planar, then also  $G_k$ .



 $v_k$ 

- Each internal vertex is covered exactly once.
- $\blacksquare$  Covering relation defines a tree in G
- **and** a forest in  $G_i$ ,  $1 \le i \le n-1$ .

# Shift method – pseudocode

```
Let v_1, \ldots, v_n be a canonical order of G
for i = 1 to 3 do
| L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 denote the boundary of G_{i-1}
    and let w_p, \ldots, w_q be the neighbours of v_k
   for \forall v \in \cup_{i=p+1}^{q-1} L(w_i) do
    | x(v) \leftarrow x(v) + 1
   for \forall v \in \cup_{j=q}^{t} L(w_j) do
    x(v) \leftarrow x(v) + 2
   P(v_i) \leftarrow \text{intersection of } +1/-1 \text{ edges from } P(w_p) \text{ and } P(w_q)
   L(v_i) \leftarrow \cup_{i=p+1}^{q-i} L(w_i) \cup \{v_i\}
```

# Shift method – pseudocode

```
Let v_1, \ldots, v_n be a canonical order of G
for i = 1 to 3 do
 \mid L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for i = 4 to n do
    Let w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 denote the boundary of G_{i-1}
    and let w_p, \ldots, w_q be the neighbours of v_k
   for \forall v \in \cup_{i=p+1}^{q-1} L(w_i) do
                                                                                          Runtime \mathcal{O}(n^2)
    | x(v) \leftarrow x(v) + 1
                                                                                             Can we do better?
   for \forall v \in \cup_{j=q}^{t} L(w_j) do
    x(v) \leftarrow x(v) + 2
   P(v_i) \leftarrow \text{intersection of } +1/-1 \text{ edges from } P(w_p) \text{ and } P(w_q)
   L(v_i) \leftarrow \cup_{i=p+1}^{q-i} L(w_i) \cup \{v_i\}
```

■ Idea 1. To compute  $x(v_k) & y(v_k)$ , we only need  $y(w_p)$  and  $y(w_q)$  and  $x(w_q) - x(w_p)$ 



■ Idea 1. To compute  $x(v_k) & y(v_k)$ , we only need  $y(w_p)$  and  $y(w_q)$  and  $x(w_q) - x(w_p)$ 



(1) 
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$
  
(2)  $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$   
(3)  $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$ 

- Idea 1. To compute  $x(v_k) & y(v_k)$ , we only need  $y(w_p)$  and  $y(w_q)$  and  $x(w_q) x(w_p)$
- Idea 2. Instead of storing explicit x-coordinates, we store certain x differences.



(1) 
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$
  
(2)  $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$   
(3)  $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$ 

#### **Relative x distance tree.**

For each vertex v store x-offset  $\Delta_x(v)$  from parent y-coordinate y(v)



#### **Relative x distance tree.**

For each vertex v store x-offset  $\Delta_x(v)$  from parent y-coordinate y(v)



#### **Relative x distance tree.**

For each vertex v store x-offset  $\Delta_x(v)$  from parent y-coordinate y(v)



#### **Relative x distance tree.**

For each vertex v store x-offset  $\Delta_x(v)$  from parent y-coordinate y(v)

**Calculations.**  $\Delta_x(w_{p+1})$ ++,  $\Delta_x(w_q)$ ++



(1) 
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$
  
(2)  $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$   
(3)  $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$ 

#### **Relative x distance tree.**

For each vertex v store x-offset  $\Delta_x(v)$  from parent y-coordinate y(v)

Calculations.  $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \dots + \Delta_x(w_q) + \dots + \Delta_x(w_q)$   $\Delta_x(v_k) \text{ by (3)} \quad \forall y(v_k) \text{ by (2)}$ 



(1) 
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$
  
(2)  $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$   
(3)  $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$ 

#### **Relative x distance tree.**

For each vertex v store

- x-offset  $\Delta_x(v)$  from parent
- y-coordinate y(v)

# Calculations. $\Delta_x(w_{p+1}) + +, \Delta_x(w_q) + +$ $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \dots + \Delta_x(w_q)$ $\Delta_x(v_k) \text{ by (3)} \quad y(v_k) \text{ by (2)}$ $\Delta_x(w_q) = \Delta_x(w_p, w_q) - \Delta_x(v_k)$ $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) - \Delta_x(v_k)$

$$w_{p} \qquad w_{p+1} \qquad w_{q-1} \qquad w_{q} \qquad w_{q} \qquad w_{t-1} \qquad$$

(1)  $x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$ (2)  $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$ (3)  $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$ 

#### **Relative x distance tree.**

For each vertex v store

- x-offset  $\Delta_x(v)$  from parent
- y-coordinate y(v)

# Calculations. $\Delta_x(w_{p+1}) + A_x(w_q) + \Delta_x(w_q) + \Delta_x(w_q) = \Delta_x(w_{p+1}) + \dots + \Delta_x(w_q)$ $\Delta_x(v_k) \text{ by (3)} \quad y(v_k) \text{ by (2)}$ $\Delta_x(w_q) = \Delta_x(w_p, w_q) - \Delta_x(v_k)$ $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) - \Delta_x(v_k)$

(1) 
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

- (2)  $y(v_k) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) + y(w_p))$
- (3)  $x(v_k) x(w_p) = \frac{1}{2}(x(w_q) x(w_p) + y(w_q) y(w_p))$



After v<sub>n</sub>, use preorder traversal to compute x-coordinates

#### Literature

- [PGD Ch. 4.2] for detailed explanation of shift method
- [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid" 1990 – original paper on shift method