Visualisation of graphs

Planar straight-line drawings Canonical order \& shift method

Jonathan Klawitter • Summer semester 2020

Motivation

- So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

Motivation

■ So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
■ Why straight-line? Why planar?

Motivation

■ So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
■ Why straight-line? Why planar?

- Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"
3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98, DH96, Pur02, TR05,TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930]

■ Recognition: For a graph G with n vertices, there is an $\mathcal{O}(n)$ time algorithm to test if G is planar. [Hopcroft \& Tarjan 1974]
■ Also computes an embedding in $\mathcal{O}(n)$.

Planar graphs

- Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930]

■ Recognition: For a graph G with n vertices, there is an $\mathcal{O}(n)$ time algorithm to test if G is planar. [Hopcroft \& Tarjan 1974]

- Also computes an embedding in $\mathcal{O}(n)$.

■ Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
■ The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

Planar graphs

■ Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

Planar graphs

- Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

■ Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
■ Idea: Place vertices in the barycentre of neighbours.

- Drawback: Requires large grids.

Planar graphs

- Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

■ Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]

- Idea: Place vertices in the barycentre of neighbours.
- Drawback: Requires large grids.
- We focus on triangulations:

with planar embedding

- A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
- Every plane graph is subgraph of a plane triangulation.

Planar graphs

■ Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

■ Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]

- Idea: Place vertices in the barycentre of neighbours.
- Drawback: Requires large grids.
- We focus on triangulations: with planar embedding
- A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.
■ Every plane graph is subgraph of a plane triangulation.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea.

- Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

■ To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.
■ Neighbours of v_{i+1} in G_{i} have to form path of length at least two.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.
\square (C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.
\square (C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.

- (C3) If $k<n$ then vertex v_{k+1} lies in the outer face of G_{k}, and all neighbors of v_{k+1} in G_{k} appear on the boundary of G_{k} consecutively.

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

chord
edge joining two nonadjacent vertices in a cycle

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
■ Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
\square Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

- Induction step: Consider G_{k}. We search for v_{k}.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
\square Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

- Induction step: Consider G_{k}. We search for v_{k}.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
■ Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

- Induction step: Consider G_{k}. We search for v_{k}.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
■ Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.
\square Induction step: Consider G_{k}. We search for v_{k}.

Have to show:

1. v_{k} not adjacent to chord is sufficient
2. Such v_{k} exists

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Claim 2.

There exists a vertex in G_{k} that is not adjacent to a chord as choice for v_{k}.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Claim 2.

There exists a vertex in G_{k} that is not adjacent to a chord as choice for v_{k}.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Claim 2.

There exists a vertex in G_{k} that is not adjacent to a chord as choice for v_{k}.

This completes proof of Lemma. \square

Canonical order - implementation

Algorithm CanonicalOrder

forall $v \in V$ do

$L \operatorname{chords}(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false;
$\operatorname{out}\left(v_{1}\right)$, out $\left(v_{2}\right), \operatorname{out}\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose $v \neq v_{1}, v_{2}$ such that $\operatorname{mark}(v)=$ false, out $(v)=$ true, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v ; \operatorname{mark}(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k}
out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$
update number of chords for w_{i} and its neighbours

- chord(v) - \# chords adjacent to v
- mark $(v)=$ true iff vertex v was numbered
$\square \operatorname{out}(v)=$ true iff v is currently outer vertex

Canonical order - implementation

Algorithm CanonicalOrder

forall $v \in V$ do

$L \operatorname{chords}(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false;
out $\left(v_{1}\right)$, out $\left(v_{2}\right)$, out $\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose $v \neq v_{1}, v_{2}$ such that $\operatorname{mark}(v)=$ false, out $(v)=$ true, and chords $(v)=0$
$v_{k} \leftarrow v ; \operatorname{mark}(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k}
out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$
update number of chords for w_{i} and its neighbours

■ chord(v) - \# chords adjacent to v

- mark $(v)=$ true iff vertex v was numbered
$\square \operatorname{out}(v)=$ true iff v is currently outer vertex

Canonical order - implementation

Algorithm CanonicalOrder

forall $v \in V$ do

L chords $(v) \leftarrow 0$; out $(v) \leftarrow$ false; mark $(v) \leftarrow$ false;
$\operatorname{out}\left(v_{1}\right), \operatorname{out}\left(v_{2}\right), \operatorname{out}\left(v_{n}\right) \leftarrow \operatorname{true}$
for $k=n$ to 3 do
choose $v \neq v_{1}, v_{2}$ such that $\operatorname{mark}(v)=$ false, out $(v)=\operatorname{true}$, and $\operatorname{chords}(v)=0$
$v_{k} \leftarrow v ; \operatorname{mark}(v) \leftarrow$ true
$/ /$ Let $w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}$ denote the boundary of G_{k-1} and let w_{p}, \ldots, w_{q} be the unmarked neighbors of v_{k}
out $\left(w_{i}\right) \leftarrow$ true for all $p<i<q$
update number of chords for w_{i} and its neighbours

■ chord(v) - \# chords adjacent to v

- mark $(v)=$ true iff vertex v was numbered
$\square \operatorname{out}(v)=$ true iff v is currently outer vertex

Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,
- boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

Algorithm invariants/constraints:

G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-4,0)$,
■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

- v_{k} on grid, beause we had even Manhattan distance

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.
- v_{k} on grid, beause we had even Manhattan distance

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - planarity

Shift method - planarity

Shift method - planarity

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - planarity

Observations.

■ Each internal vertex is covered exactly once.

- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - planarity

Observations.

■ Each internal vertex is covered exactly once.

- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - planarity

Observations.

■ Each internal vertex is covered exactly once.

- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - planarity

```
Lemma.Let 0< \delta1 \leq \delta 2 \leq . S 林\in\mathbb{N}\mathrm{ , such}
that }\mp@subsup{\delta}{q}{}-\mp@subsup{\delta}{p}{}\geq2\mathrm{ and even.
If we shift L(wi) by }\mp@subsup{\delta}{i}{}\mathrm{ to the right, we get a planar
straight-line drawing.
```


Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - planarity

```
Lemma. Let 0< \delta1 \leq \delta 2 \leq w \leq \delta t \in\mathbb{N}\mathrm{ , such}
that }\mp@subsup{\delta}{q}{}-\mp@subsup{\delta}{p}{}\geq2\mathrm{ and even.
If we shift L(wi) by }\mp@subsup{\delta}{i}{}\mathrm{ to the right, we get a planar straight-line drawing.
```

Proof by induction:

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - pseudocode

```
Let v}\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of G
for }i=1\mathrm{ to 3 do
    L(\mp@subsup{v}{i}{})\leftarrow{\mp@subsup{v}{i}{}}
P(\mp@subsup{v}{1}{})\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)
for }i=4\mathrm{ to }n\mathrm{ do
        Let ww
        and let }\mp@subsup{w}{p}{},\ldots,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{k}{
        for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
        x(v)\leftarrowx(v)+1
        for }\forallv\in\mp@subsup{\cup}{j=q}{t}L(\mp@subsup{w}{j}{})\mathrm{ do
        Lx(v)\leftarrowx(v)+2
```



```
        L(vi})\leftarrow\mp@subsup{\cup}{j=p+1}{q-i}L(\mp@subsup{w}{j}{})\cup{\mp@subsup{v}{i}{}
```


Shift method - pseudocode

```
Let v}\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of G
for }i=1\mathrm{ to 3 do
    L(\mp@subsup{v}{i}{})\leftarrow{\mp@subsup{v}{i}{}}
P(\mp@subsup{v}{1}{})\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)
for }i=4\mathrm{ to }n\mathrm{ do
        Let ww
        and let }\mp@subsup{w}{p}{},\ldots,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{k}{
        for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
        x(v)\leftarrowx(v)+1
for }\forallv\in\mp@subsup{\cup}{j=q}{t}L(\mp@subsup{w}{j}{})\mathrm{ do
        Lx(v)}\leftarrowx(v)+
        P(\mp@subsup{v}{i}{})\leftarrow\mathrm{ intersection of +1/-1 edges from P(wop) and P(wq})
        L(vi})\leftarrow\mp@subsup{\cup}{j=p+1}{q-i}L(\mp@subsup{w}{j}{})\cup{\mp@subsup{v}{i}{}
        | Runtime \mathcal{O (n }\mp@subsup{}{}{2})
                            \square Can we do better?
```


Shift method - linear time implementation

■ Idea 1. To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$, we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$

Shift method - linear time implementation

\square Idea 1. To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$, we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Idea 1. To compute $x\left(v_{k}\right) \& y\left(v_{k}\right)$, we only need $y\left(w_{p}\right)$ and $y\left(w_{q}\right)$ and $x\left(w_{q}\right)-x\left(w_{p}\right)$

- Idea 2. Instead of storing explicit x-coordinates, we store certain \times differences.

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

Relative x distance tree.
For each vertex v store
■ x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Shift method - linear time implementation

Relative x distance tree.
For each vertex v store
■ x-offset $\Delta_{x}(v)$ from parent

- y -coordinate $y(v)$

Shift method - linear time implementation

Relative x distance tree.
For each vertex v store
■ x-offset $\Delta_{x}(v)$ from parent
■ y-coordinate $y(v)$

Shift method - linear time implementation

Relative x distance tree.
For each vertex v store
x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Calculations. $\quad \Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

Relative x distance tree.
For each vertex v store
x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Calculations. $\quad \Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$
$\square \Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$
$\square \Delta_{x}\left(v_{k}\right)$ by (3) $\square y\left(v_{k}\right)$ by (2)

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

Relative x distance tree.
For each vertex v store
x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Calculations. $\quad \Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$
$\square \Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$
$\square \Delta_{x}\left(v_{k}\right)$ by (3) $\quad y\left(v_{k}\right)$ by (2)

- $\Delta_{x}\left(w_{q}\right)=\Delta_{x}\left(w_{p}, w_{q}\right)-\Delta_{x}\left(v_{k}\right)$
$\square \Delta_{x}\left(w_{p+1}\right)=\Delta_{x}\left(w_{p+1}\right)-\Delta_{x}\left(v_{k}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

Relative x distance tree.
For each vertex v store x-offset $\Delta_{x}(v)$ from parent

- y-coordinate $y(v)$

Calculations. $\quad \Delta_{x}\left(w_{p+1}\right)++, \Delta_{x}\left(w_{q}\right)++$
$\square \Delta_{x}\left(w_{p}, w_{q}\right)=\Delta_{x}\left(w_{p+1}\right)+\ldots+\Delta_{x}\left(w_{q}\right)$
$\square \Delta_{x}\left(v_{k}\right)$ by (3) $\quad y\left(v_{k}\right)$ by (2)
■ $\Delta_{x}\left(w_{q}\right)=\Delta_{x}\left(w_{p}, w_{q}\right)-\Delta_{x}\left(v_{k}\right)$
■ $\Delta_{x}\left(w_{p+1}\right)=\Delta_{x}\left(w_{p+1}\right)-\Delta_{x}\left(v_{k}\right)$
(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

- After v_{n}, use preorder traversal to compute x-coordinates
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Literature

- [PGD Ch. 4.2] for detailed explanation of shift method

■ [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid" 1990 - original paper on shift method

