
1

Lecture 13. Linear Time Planarity Testing via PQ-trees

Advanced Algorithms
Winter term 2019/20

Steven Chaplick Chair for Computer Science I

(based on slides of Ignaz Rutter)

2 - 2

An Efficient Certifying Planarity Test

Thm
Given an n-vertex m-edge graph G = (V, E), testing
whether G is planar can be done in O(n + m) time.

When G is planar, a planar embedding can be produced
in the same time. Otherwise, a K5 or K3,3 minor can be
found in the same time.

we will skip the details of the certifying part

3 - 4

Edge Ordering and Embeddings

Embeddings are encoded as an edge
ordering for each vertex.

 Rotation-System

Does a given rotation system descibe a planar embedding?

How can you test this?
(hint: Euler’s formula)

4 - 3

Planarity Testing, 1st idea
Idea: Iteratively add nodes three types of edges:
• embedded
• half-embedded
• absent

 Exponential runtime & space

Objective: Save all possible partial embeddings (i.e.,
positions of the embedded and half-embedded edges).

No planar full embedding possible
Full embedding possible.

5 - 2

Planarity Testing, refined

Idea to reduce options for insertions:
Force insertions always on the outerface.

Is this possible?
What do we get from it?

v

Process vertices bottom-up via a DFS spanning tree.
All halfedges must be embedded on the same (outer) face.

6 - 3

Planarity Testing, Vertex Insertion

v

1. Restriction: Half-embedded edges incident to v that
belong to the same component must be consecutive.

2. Combination: Components and half-embedded edges
hanging from v can be ordered arbitrarily.

Still too many options to store all of them.

Solution: data structure to compactly represent such
constrained orders.

7

PQ-Tree

8 - 2

PQ-Tree

1

2

3
4

5
6 7 8 9

10
11

12

13

14

15
16

17181920
21

22

23

P-node

Q-node

permute children freely

only “flipping” allowed

PQ-tree represents all circular orderings of its leaves by
these operations

Single P-node all possible
circular orderings of its leaves.

9

Order-Preserving Contraction, Null-Tree

x y z
a

b

c d

e
f

g a

b

c d

e
f

g

NOTE this restricts the representable orderings!

Order-preserving contraction

Null-tree: represents the empty set of permutations
NOTE Null-tree 6= empty tree (represents permutations of the
empty set)

10 - 6

Consecutivity of Subsets

Find new PQ-tree, representing exactly
the orderings which :

• are admitted by the current tree and
• have the red leaves consecutive

No rearrangment with the
red leaves consecutive

⇒
The result is a Null-tree

An edge is partial when both subtrees have both red and
black leaves partial edges allow forbidden orderings
Lemma: If an arrangement of the PQ-tree has the red
leaves consecutive, the partial edges form a path.

11 - 5

Updating PQ-Trees
1. Find the path of partial edges and arrange the tree to
split red and black leaves.

2. Split partial path (terminal path), insert a new Q-node x
3. Contract edges from x to other Q-nodes, dissolve inner
nodes of degree 2.

xx

12 - 6

Correctness

Thm: The update algorithm is correct.

Proof:
• For any ordering represented before with the red leaves

consecutive, the operation is the same and succeeds.
• Each ordering of the resulting PQ-tree is represented by

the original.

Obs.: Update can be implemented in polynomial time.

A linear time implementation needs more ideas . . .

What runtime can we easily guarantee?

13

Back to Planarity Testing

14 - 2

Planarity Testing, vertex insertion

v

Explicitly representing all options is too expensive.

 use PQ-trees!

1. Restriction: Half-embedded edges incident to v that
belong to the same component must be consecutive.

2. Combination: Components and half-embedded edges
hanging from v can be ordered arbitrarily.

15 - 8

Planarity Testing, vertex ins. (PQ-trees)

One PQ-tree for each component
• Restriction: for each component C, make Cv edges

consecutive in C’s PQ-tree
• Combination: merge PQ-trees of v’s components into

one, and hang new half-embedded edges.

v

 single PQ-tree for the resulting component
Cost per vertex: one consecutivity constraint O(deg v)

16 - 3

Planarity Testing

Warning on linear runtime: finding a terminal path
efficiently is tricky, involves rooting each PQ-tree.
When merging, need to root consistently.

What about the sequence to process vertices?

• (s, t)-ordering (two-connected graphs)

• Depth-first search
[Lempel, Even, Cederbaum ’67]

[Shih, Hsu ’99, Boyer, Myrvold ’04]

Graph is planar if and only if all reduction steps succeed.

(see graph visualization lecture)

Embedding can be recovered by undoing steps.
Select/expand orders within the PQ-tree.

17

Examples

1 3 5

2 4 6

a
b

c
d

ef

g h j

1

2

3

4

5

6

18

Linear-time PQ-Tree construction

19

Linear-time PQ-tree construction

Linear time implementation details
• choose root
• store each edge in both directions
• store incoming edges at each node

in double-linked list

• mark each edge regarding orientation to root
• P-nodes have pointer to parent

double-linked
pointer

NOTE: Parent of a Q-node is “expensive” to determine,
but this means we do not need to keep track of it when
editing Q-nodes.

20 - 5

Computing the Terminal Path

How do we find the parent nodes quickly?

 O(k) time until all nodes are labelled.

Classify the nodes of the PQ-tree:
• a leaf is full when it is a red element
• an inner node is full when all but one neighbor is full.
• a non-full node is partial at least one neighbor is full.

length of terminal path number of consecutive elements

Terminal path can be found in O(p + k) time.Lemma:

where is the parent-edge with respect to full child-edges?

• extend potential path from each partial node to parent
• stop extending when another path is hit, and join
• leads to a tree with at most one degree 3 node (o.w. reject)
• highest node found which is either partial or meeting of two

extensions, is the high point of the terminal path.

Key idea: Partial nodes must belong to the terminal path

21 - 2

Update Step

Single Split, for each node of the terminal path:
• detach full neighbors F, and delete incident edges to

neighbors on the path
• make a copy, hang F from it. O(#full neighbors)

O(1)

O(p + k)
Create central Q-node, O(p) time
Each contraction, O(1) time

Split terminal path, new nodes will receive full neighbors.

NOTE if terminal path contains q ≥ 2 Q-nodes, then
number of Q-nodes decreases by q− 1, i.e., cost of
processing this terminal path saves q− 1 for us for later.

22

Runtime analysis
X ground set
U = {U1, . . . , U`} collection of subsets of X.

Proof: Consider potential function
φ(U , i) = 2ui + |Qi|+ ∑x∈Pi

(deg(x)− 1), where:
• ui = ∑j>i |Uj|
• Qi = Q-nodes in PQ-tree Ti after processing U1, . . . , Ui.
• Pi = P-nodes in Ti

φ(U , 0) = Θ(|X|+ ∑i |Ui|) (budget to be used)
Inductively show budget φ(U , i− 1)− cost(Ui) ≥ φ(U , i)
need: φ stay to stay ≥ 0
 claimed runtime.

Thm: PQ-tree representing all orderings where U1, . . . , U`

are consecutive can be computed in
O(|X|+ |U1|+ · · ·+ |U`|) time (amortized analysis).

	Titel

