1

Julius-Maximilians- Chair for Y .
UNIVERSITAT ~ INFORMATICS | I U I | fl
WURZBURG Efficient Algorithms and

Knowledge-Based Systems

Institute for Informatics

Advanced Algorithms

Winter term 2019/20

Lecture 13. Linear Time Planarity Testing via PQ-trees

Steven Chaplick Chair for Computer Science I

An Efficient Certitying Planarity Test

Thm
Given an n-vertex m-edge graph G = (V, E), testing
whether G is planar can be done in O(n + m) time.

When G is planar, a planar embedding can be produced
in the same time. Otherwise, a K5 or K3 3 minor can be
found in the same time.

Edge Ordering and Embeddings

Embeddings are encoded as an edge A
ordering for each vertex. j<:
~~ Rotation-System '1

Does a given rotation system descibe a planar embedding?

How can you test this?

Planarity Testing, 1st idea

Idea: Iteratively add nodes ~~ three types of edges:

e embedded o—-O
® half-embedded Oo—
® absent

Objective: Save all possible partial embeddings (i.e.,
positions of the embedded and half-embedded edges).

®
No planar full embedding possible Full embedding possible.

~ Exponential runtime & space @

Planarity Testing, refined

Idea to reduce options for insertions:

Force insertions always on the outerface.
Is this possible?
What do we get from it?

[Process vertices bottom-up via a DFS spanning tree.

All halfedges must be embedded on the same (outer) face.

®

-
-

-

-

-®
~, -

Planarity Testing, Vertex Insertion

e®
-
e®
~~~~~
_____
-----

1. Restriction: Half-embedded edges incident to v that
belong to the same component must be consecutive.

2. Combination: Components and half-embedded edges
hanging from v can be ordered arbitrarily.

Still too many options to store all of them. @

\_

Solution: data structure to compactly represent such ==
constrained orders. &






PQ-Tree

19
21 %) 1917 ® P-node
22 16 permute children freely
15
SNV
1 only “flipping” allowed
, / 13
——— 12 '
4// S 1 ' >< '
> o) 10 Single P—node‘w all possible
6 7 8 circular orderings of its leaves.

PQ-tree represents all circular orderings of its leaves by
these operations



9

Order-Preserving Contraction, Null-Tree

Order-preserving contraction

*NOTE* this restricts the representable orderings!

Null-tree: represents the empty set of permutations

*NOTE* Null-tree# empty tree (represents permutations of the
empty set)



) - No rearrangment with the )
/ red leaves consecutive
=
The result is a Null-tree

Consecutivity of Subsets

Find new PQ-tree, representing exactly
the orderings which :
® are admitted by the current tree and
\ ® have the red leaves consecutive

.

10-6

\_

An edge is partial when both subtrees have both red and
black leaves ~~ partial edges allow forbidden orderings

.

Lemma: If an arrangement of the PQ-tree has the red
leaves consecutive, the partial edges form a path.




Updating PQ-Trees

1. Find the path of partial edges and arrange the tree to
split red and black leaves.

2. Split partial path (terminal path), insert a new Q-node x

3. Contract edges from x to other Q-nodes, dissolve inner
nodes of degree 2.

11 -



12 -6

Correctness

Thm: The update algorithm is correct.

Proof:

® For any ordering represented before with the red leaves
consecutive, the operation is the same and succeeds.

® Fach ordering of the resulting PQ-tree is represented by
the original. u

LObs.: Update can be implemented in polynomial time. 1

What runtime can we easily guarantee?

A linear time implementation needs more ideas ...



13

Back to Planaritv Testing



14 -

Planarity Testing, vertex insertion

.®
-
.
~~~~~


~

1. Restriction: Half-embedded edges incident to v that
belong to the same component must be consecutive.

2. Combination: Components and half-embedded edges
hanging from v can be ordered arbitrarily.

_

Explicitly representing all options is too expensive.

~ use PQ-trees! @

Planarity Testing, vertex ins. (PQ-trees)
0\}0/\

One PQ-tree for each component

® Restriction: for each component C, make Cv edges
consecutive in C’s PQ-tree

® Combination: merge PQ-trees of v’s components into
one, and hang new half-embedded edges.

~ single PQ-tree for the resulting component
Cost per vertex: one consecutivity constraint O(degv)

15 -

16 - 2

Planarity Testing

Graph is planar if and only if all reduction steps succeed. W

Embedding can be recovered by undoing steps.
Select/expand orders within the PQ-tree.

Warning on linear runtime: finding a terminal path
efficiently is tricky, involves rooting each PQ-tree.
When merging, need to root consistently.

_

What about the sequence to process vertices?

® (s, t)-ordering (two-connected graphs)
(see graph visualization lecture) [Lempel, Even, Cederbaum ’67]

® Depth-first search [Shih, Hsu 99, Boyer, Myrvold "04]

17

18

Linear-time PO-Tree construction

19

Linear-time PQ-tree construction

double-linked
pointer

® choose root
® store each edge in both directions
® store incoming edges at each node (/ N\

in double-linked list ¢

Linear time implementation details @

-~

® mark each edge regarding orientation to root
® P-nodes have pointer to parent

NOTE: Parent of a Q-node is “expensive” to determine,
but this means we do not need to keep track of it when
editing Q-nodes.

20-5

Computing the Terminal Path

length of terminal path number of consecutive elements

! .
Lemma: Terminal path can be found in O(?9 + k) time.

~N

Classify the nodes of the PQ-tree:

® a leaf is full when it is a red element
® an inner node is full when all but one neighbor is full.
® a non-full node is partial at least one neighbor is full.

- O(k) time until all nodes are labelled.

Key idea: Partial nodes must belong to the terminal path

¢ extend potential path from each partial node to parent

e stop extending when another path is hit, and join

® leads to a tree with at most one degree 3 node (o.w. reject)

® highest node found which is either partial or meeting of two
extensions, is the high point of the terminal path.

How do we find the parent nodes quickly?
where is the parent-edge with respect to full child-edges?

Update Step

Split terminal path, new nodes will receive full neighbors.

Single Split, for each node of the terminal path:
® detach full neighbors F, and delete incident edges to

21 -

neighbors on the path O(1)
® make a copy, hang F from it. O(#full neighbors)
O(p + k)

Create central Q-node, O(p) time
Each contraction, O(1) time

NOTE if terminal path contains g > 2 Q-nodes, then
number of Q-nodes decreases by g — 1, i.e., cost of
processing this terminal path saves g — 1 for us for later.

22

Runtime analysis

X ground set
U={U,..., Uy} collection of subsets of X.

Thm: PQ-tree representing all orderings where Uy, ..., Uy
are consecutive can be computed in
O(|X| + |Uy| + - - -+ |Uy|) time (amortized analysis).

Proof: Consider potential function
(U, 1) = 2u; + |Qj| + Lrep,(deg(x) — 1), where:
®u; =) i |Ujl
® J; = Q-nodes in PQ-tree T; after processing Uy, ..., U;.
® P; = P-nodes in T;
¢(U,0) =O(|X|+ Y |U;|) (budget to be used)
Inductively show budget ¢(U,i —1)— cost(U;) > ¢p(U, 1)
need: ¢ stay to stay > 0
~ claimed runtime.

~N

	Titel

