Julius-Maximilians- Lehrstuhl fir X .
UNIVERSITAT INFORMATIK | ||||I | h
WU RZ B U RG Effiziente Algorithmen und

wissensbasierte Systeme Institut fuir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 12. Rearrangement distance of phylogenetic trees

Jonathan Klawitter Chair for Computer Science I

Phylogenetic trees

A= [0

0 00

() fossil canids

00 0 0 fossil pinnipess |

§ O stem fossil Ursidae

|' @9 @ fossil Alluropodinae |

- —

§ fossil Arctodus

1

§) fossil Ursus

o

Paleocene Eocene Oligocene Miocene ':Tc_: g
II | | | l l | | | |

60 40 20 0

Time (My)

e Giant panda _&

erereeeeneeees Gray woIF h
-

e Spotted seal

—

Spectacled bear n

Sloth bear ”

eepisin

Brown bear "

Polar bear ‘

Sun bear m

Am. black bear ”

Asian black bear ﬂ
-—-‘

Phylogenetic trees T

Let X ={1,2,...,n}.
A phylogenetic tree T is a rooted,

binary tree where the leaves are
bijectively labelled with X.

Inference methods computea | », 3 4 5
phylogenetic tree based on /
some model and data. I

@)\

Different methods/models/data
yield different phylogenetic trees.

B How can we compare T and T'?

_, We want a metric on

phylogenetic trees.

—_
@)\
I
TN
Q1
N

Subtree Prune & Regraft (SPR)

SPR

T /\A T/

A

1 °2 3 4 5 1 2 3 4 5 1 4 2 3 5
/ ~ ~
subtree prune regraft
Define SPR-rearrangement graph G = (V, E) with
m V = { all phylogenetic trees on X } and

m {T,T'} € Eif T can be transformed into T" with an SPR.

SPR-distance

Define the SPR-distance of T and T’ as
dspr(T, T') = distance of T and T’ in G.

(Lemma. The SPR-rearrangement graph G is connected.)

Proof. See blackboard (or exercise).

(Corollary. The SPR-distance is a metric.)

Proof. G is connected and undirected.

[Goal. Compute the SPR-distance dspr (T, T'). J

Problem. G is huge!
ViG)|=2n-3)'=2n—-3)-(2n—-5)-...-5-3

B Can we rephrase the problem?

Maximum agreement forests

T SPR T’ SPR T"
1 2 3 4 5 1 4 2 3 5 4 1 2 3 5

Finto T F F into T"

A AT A

Maximum agreement forests

AK«KE p

2 3 4 5 5 2 3 4 4 1 2 3 5

An agreement forest F of T and T” is a forest
1Ty, Th, T2, . .., Tx} such that

B label sets of the T; partition X U {p},
B o is in label set of T,, and

B there exist edge-disjoint embeddings of subdivisions of
the T;’s into T and T"” that cover all edges.
If k is minimal, F is a maximum agreement forest (MAF).

-11

Characterisation

Let F ={T,,T1,T,,..., T} be a MAF of T and T".
Then define
m(T, T") = k.

‘Theorem. Let T and T' be two phylogenetic trees on X.
Then

TI”Z(T, T/) — dSPR(T/ T/)

. J

Proof. See blackboard.

NP-hard.

Proof is via reduction from Exact Cover by 3-Sets.

[Theorem. Computing the SPR-distance of T and T’ is]

See Bordewich, Semple, “On the computational complexity of the rooted subtree prune and regraft distanc” and
Hein et al., “On the complexity of comparing evolutionary trees” for details.

Kernelisation (1 of 2)

B Common subtree reduction:
Replace any pendant subtree that occurs identically in
both trees by a single leaf with a new label.

AMZVIAA

Lemma. Applymg common subtree reduction is safe; i.e.
dspr (T, T") = dgpr(S, S')

Proof. is covered by then there is
Suppose two trees of alternative
MAF MAF

Kernelisation (2 of 2)

B Chain reduction:
Replace any chain of leaves that occurs identically in
both trees by three new leaves.

T T S S’
—
Lemma. Applying chain reduction is safe; i.e.
dspr(T, T') = dgpr(S, S')

Proof. Case 1 F 1nto

Show there is a
tree with abc-chain Db“» é{
in a MAF. b b Db 3

Kernelisation (2 of 2)

B Chain reduction:
Replace any chain of leaves that occurs identically in
both trees by three new leaves.

T T S S’
—
Lemma. Applying chain reduction is safe; i.e.

Proof Case 2 P into S

Show tilere is a -
tree with abc-chain [1{ 6 é
in a MAE. Db b b 0 Ki

Kernelisation (2 of 2)

B Chain reduction:
Replace any chain of leaves that occurs identically in
both trees by three new leaves.

T T’ S S’
—

Lemma. Applying chain reduction is safe; i.e.
dgpr(T, T") = dgpr(S,S’).

Proof.
Show there is a Swap abc-chain with
tree with abc-chain original chain for MAF

in a MAF. of T and T'.

-11

Kernelisation and fpt algorithm

\

‘Theorem. Reduce Tand T’ to S and S’ by exhaustively
applying the reduction rules.

Let S and S’ be on X’. Then
\ X'| < 28depg(T,). J

Proof. Let F = {T,, T1,..., Ty} be MAF for S and S'.
Let n(T;) be # T; it overlaps with in embedding of F into T.

Claim 1. T (n(T;) + n'(T;)) < 4k = 4dspr(T, T').

>

A

Kernelisation and fpt algorithm

\

‘Theorem. Reduce Tand T’ to S and S’ by exhaustively
applying the reduction rules.

Let S and S’ be on X’. Then
\ X'| < 28depg(T,). J

Proof. Let F = {T,, T1,..., Ty} be MAF for S and S'.
Let n(T;) be # T; it overlaps with in embedding of F into T.

Claim 1. X o (n(T,)—I—n(T))<4k 4dgpr(T, T").
V(H)| = k+1

= |E(H)| +1
/<A /<\ T.) = 2|E(H)| < 2k

Kernelisation and fpt algorithm

‘Theorem. Reduce Tand T’ to S and S’ by exhaustively
applying the reduction rules.

Let S and S’ be on X’. Then
\ X'| < 28depg(T,).)

Proof. Let F = {T,, T1,..., Ty} be MAF for S and S'.
Let n(T;) be # T; it overlaps with in embedding of F into T.

Claim 1. X o (n(T,)—I—n(T))<4k 4d5pR(T T").
Claim 2. # leaves of T; < 7(n

& % @%} eaves

Kernelisation and fpt algorithm

‘Theorem. Reduce Tand T’ to S and S’ by exhaustively
applying the reduction rules.
Let S and S’ be on X'. Then

| X'| < 28dspr(T, T').

\. J

Proof. Let F = {T,, T1,..., Ty} be MAF for S and S'.
Let n(T;) be # T; it overlaps with in embedding of F into T.

Claim 1. T (n(T;) + n'(T;)) < 4k = 4dspr(T, T').
Claim 2. # leaves of T; < 7(n(T;) + n'(T;)).

Zﬁ-‘: 0 # leaves of T; <

Kernelisation and fpt algorithm

‘Theorem. Reduce Tand T’ to S and S’ by exhaustively
applying the reduction rules.
Let S and S’ be on X'. Then

| X'| < 28dspr(T, T').

\. J

Proof. Let F = {T,, T1,..., Ty} be MAF for S and S'.
Let n(T;) be # T; it overlaps with in embedding of F into T.

Claim 1. T (n(T;) + n'(T;)) < 4k = 4dspr(T, T').
Claim 2. # leaves of T; < 7(n(T;) + n'(T;)).
Zﬁ-‘:p # leaves of T; < Zé‘:p 7(n(T;) +n'(T;)) < 28k.

Kernelisation and fpt algorithm

‘Theorem. Reduce Tand T’ to S and S’ by exhaustively
applying the reduction rules.
Let S and S’ be on X'. Then

| X'| < 28dspr(T, T').

\. J

(Corollary. Computing dgpr(T, T') is fixed-parameter
tractable when parameterized by dgpr(T, T”).

J

Proof. m Reduce T and T’ to S and S’. Let k = dgpr(S, S').

B S has at most 4| X’|? neighbours.
m S has < 2| X’| edges to cut and attach to.

B Length-k BES from S visits at most
O((4]X’]2)k) — O((56k)2k) trees.

Approximation algorithm

Algorithm: dSPRApprox(T, T')

1< 1

G, < T

H; < T’

while 3 pair of sibling leaves 2 and b in G; do
find the case that applies to 4 and b in H;
apply the corresponding transaction

to obtain G; 1 from G; and H;,q from H;
i+ +

return H;

Case 1 Case 2 Case 3

" SRIn b

(ii/\o
a b
Case 4

10 -

11-8

Approximation algorithm

Case G; = Giq H;q Cost

/\> /\> i L ke

2 AN ETTRy S T2 1o
2/\5 IS BN N e
LA % T S

11-9

Approximation algorithm

Case G; H, —= Gy H;iq Cost

‘Theorem. dSPRApprox is a 3-approximation algorithm for
| dspr (T, T") with O(|X|?) running time.

\.

a b a b C C o
) 3 cuts
;Z/\,; m f% ;x“ﬁmg 1+ good
3 2 cuts
N gh Sy g e
N A S

b

12

References

B Bordewich, Semple, “On the computational complexity
of the rooted subtree prune and regraft distance”, 2005
for SPR, MAF, characterisation, fpt, divide & conquer

B Hein et al., “On the complexity of comparing
evolutionary trees”, 1996
for NP-hardness proot

B Rodrigues et al., “The maximum agreement forest
problem: Approximation algorithms and computational
experiments”, 2006

