Advanced Algorithms

Winter term 2019/20

Lecture 12. Rearrangement distance of phylogenetic trees

Phylogenetic trees

Phylogenetic trees

Let $X=\{1,2, \ldots, n\}$.
A phylogenetic tree T is a rooted, binary tree where the leaves are bijectively labelled with X.

Inference methods compute a phylogenetic tree based on some model and data.

Different methods/models/data yield different phylogenetic trees.

- How can we compare T and T^{\prime} ? \rightarrow We want a metric on phylogenetic trees.

Subtree Prune \& Regraft (SPR)

Define SPR-rearrangement graph $G=(V, E)$ with
■ $V=\{$ all phylogenetic trees on $X\}$ and
■ $\left\{T, T^{\prime}\right\} \in E$ if T can be transformed into T^{\prime} with an SPR.

SPR-distance

Define the SPR-distance of T and T^{\prime} as

$$
\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\text { distance of } T \text { and } T^{\prime} \text { in } G .
$$

Lemma. The SPR-rearrangement graph G is connected.
Proof. See blackboard (or exercise).
Corollary. The SPR-distance is a metric.
Proof. G is connected and undirected.
Goal. Compute the SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.
Problem. G is huge!
$|V(G)|=(2 n-3)!!=(2 n-3) \cdot(2 n-5) \cdot \ldots \cdot 5 \cdot 3$

- Can we rephrase the problem?

Maximum agreement forests

F into $T^{\prime \prime}$

Maximum agreement forests

An agreement forest F of T and $T^{\prime \prime}$ is a forest $\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ such that
■ label sets of the T_{i} partition $X \cup\{\rho\}$,

- ρ is in label set of T_{ρ}, and
- there exist edge-disjoint embeddings of subdivisions of the T_{i} 's into T and $T^{\prime \prime}$ that cover all edges.
If k is minimal, F is a maximum agreement forest (MAF).

Characterisation

Let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Then define

$$
m\left(T, T^{\prime}\right)=k .
$$

Theorem. Let T and T^{\prime} be two phylogenetic trees on X. Then

$$
m\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. See blackboard.

Theorem. Computing the SPR-distance of T and T^{\prime} is NP-hard.

Proof is via reduction from Exact Cover by 3-Sets.
See Bordewich, Semple, "On the computational complexity of the rooted subtree prune and regraft distanc" and Hein et al., "On the complexity of comparing evolutionary trees" for details.

Kernelisation (1 of 2)

■ Common subtree reduction:
Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.

Lemma. Applying common subtree reduction is safe; i.e. $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.
Suppose

is covered by two trees of MAF

then there is alternative MAF

Kernelisation (2 of 2)

■ Chain reduction:
Replace any chain of leaves that occurs identically in both trees by three new leaves.

Lemma. Applying chain reduction is safe; i.e. $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.

Show there is a tree with abc-chain in a MAF.

Case $1 \quad F$ into S

Kernelisation (2 of 2)

■ Chain reduction:
Replace any chain of leaves that occurs identically in both trees by three new leaves.

Lemma. Applying chain reduction is safe; i.e. $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.

Show there is a tree with abc-chain in a MAF.

Case $2 F$ into S

Kernelisation (2 of 2)

■ Chain reduction:
Replace any chain of leaves that occurs identically in both trees by three new leaves.

Lemma. Applying chain reduction is safe; i.e. $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.

Show there is a tree with abc-chain in a MAF.

Swap abc-chain with original chain for MAF of T and T^{\prime}.

Kernelisation and fpt algorithm

Theorem. Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.
Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right) .
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $n\left(T_{i}\right)$ be $\# T_{j}$ it overlaps with in embedding of F into T.
Claim 1. $\sum_{i=\rho}^{k}\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right) \leq 4 k=4 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Kernelisation and fut algorithm

Theorem. Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.
Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right) .
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $n\left(T_{i}\right)$ be \# T_{j} it overlaps with in embedding of F into T.
Claim 1. $\sum_{i=\rho}^{k}\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right) \leq 4 k=4 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\begin{aligned}
|V(H)| & =k+1 \\
& =|E(H)|+1 \\
\sum n\left(T_{i}\right) & =2|E(H)| \leq 2 k
\end{aligned}
$$

Kernelisation and fpt algorithm

Theorem. Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.
Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right) .
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $n\left(T_{i}\right)$ be $\# T_{j}$ it overlaps with in embedding of F into T.
Claim 1. $\sum_{i=\rho}^{k}\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right) \leq 4 k=4 \mathrm{~d}_{\mathrm{SRR}}\left(T, T^{\prime}\right)$.
Claim 2. \# leaves of $T_{i} \leq 7\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right)$.

Kernelisation and fpt algorithm

Theorem. Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.
Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right) .
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $n\left(T_{i}\right)$ be $\# T_{j}$ it overlaps with in embedding of F into T.
Claim 1. $\sum_{i=\rho}^{k}\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right) \leq 4 k=4 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.
Claim 2. \# leaves of $T_{i} \leq 7\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right)$.
$\sum_{i=\rho}^{k} \#$ leaves of $T_{i} \leq$

Kernelisation and fpt algorithm

Theorem. Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.
Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right) .
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $n\left(T_{i}\right)$ be $\# T_{j}$ it overlaps with in embedding of F into T.
Claim 1. $\sum_{i=\rho}^{k}\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right) \leq 4 k=4 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.
Claim 2. \# leaves of $T_{i} \leq 7\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right)$.
$\sum_{i=\rho}^{k}$ \# leaves of $T_{i} \leq \sum_{i=\rho}^{k} 7\left(n\left(T_{i}\right)+n^{\prime}\left(T_{i}\right)\right) \leq 28 k$.

Kernelisation and fpt algorithm

Theorem. Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.
Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right) .
$$

Corollary. Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.
Proof. \quad Reduce T and T^{\prime} to S and S^{\prime}. Let $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.
■ S has at most $4\left|X^{\prime}\right|^{2}$ neighbours.
$\square S$ has $\leq 2\left|X^{\prime}\right|$ edges to cut and attach to.

- Length- k BFS from S visits at most $O\left(\left(4\left|X^{\prime}\right|^{2}\right)^{k}\right)=O\left((56 k)^{2 k}\right)$ trees.

Approximation algorithm

Algorithm: dSPRApprox $\left(T, T^{\prime}\right)$
$i \leftarrow 1$
$G_{i} \leftarrow T$
$H_{i} \leftarrow T^{\prime}$
while \exists pair of sibling leaves a and b in G_{i} do
find the case that applies to a and b in H_{i}
 apply the corresponding transaction to obtain G_{i+1} from G_{i} and H_{i+1} from H_{i}
$i++$
return H_{i}
Case 1
Case 2
Case 3
Case 4

Approximation algorithm

Ca
H_{i}
H_{i+1}
Cost

1
c
no
mistake

2

3 cuts $1+$ good

3

2 cuts
$1+$ good

1 cut
1 good

Approximation algorithm

Case $G_{i} H_{i} \leadsto G_{i+1} \quad H_{i+1} \quad$ Cost
Theorem. dSPRApprox is a 3-approximation algorithm for $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ with $O\left(|X|^{2}\right)$ running time.

2

3 cuts $\begin{array}{lllllll}a & b & a & b & c & c & \end{array}$

 ${ }_{a}^{a} \lambda \stackrel{o}{b}^{a} \lambda$

2 cuts
$1+$ good

1 cut
1 good

References
■ Bordewich, Semple, "On the computational complexity of the rooted subtree prune and regraft distance", 2005 for SPR, MAF, characterisation, fpt , divide \& conquer

■ Hein et al., "On the complexity of comparing evolutionary trees", 1996 for NP-hardness proof

■ Rodrigues et al., "The maximum agreement forest problem: Approximation algorithms and computational experiments", 2006

