
1

Jonathan Klawitter Chair for Computer Science I

Advanced Algorithms
Winter term 2019/20

Lecture 12. Rearrangement distance of phylogenetic trees

2 - 2

Phylogenetic trees

2 - 8

Phylogenetic trees

1 2 3 4 5 6

Let X = {1, 2, . . . , n}.
A phylogenetic tree T is a rooted,
binary tree where the leaves are
bijectively labelled with X.

T

1 23 4 56

T′

Inference methods compute a
phylogenetic tree based on
some model and data.

Different methods/models/data
yield different phylogenetic trees.

� How can we compare T and T′?
We want a metric on
phylogenetic trees.

3 - 11

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prune regraft

1 2 34 5

T′

subtree

SPR

Define SPR-rearrangement graph G = (V, E) with

� V = { all phylogenetic trees on X } and

� {T, T′} ∈ E if T can be transformed into T′ with an SPR.

4 - 7

SPR-distance

Proof. See blackboard (or exercise).

Lemma. The SPR-rearrangement graph G is connected.

Define the SPR-distance of T and T′ as

dSPR(T, T′) = distance of T and T′ in G.

Corollary. The SPR-distance is a metric.

� Can we rephrase the problem?

Problem. G is huge!
|V(G)| = (2n− 3)!! = (2n− 3) · (2n− 5) · . . . · 5 · 3

Proof. G is connected and undirected.

Goal. Compute the SPR-distance dSPR(T, T′).

5 - 7

Maximum agreement forests

1 2 3 4 5

T

1 2 34 5

T′′SPR SPR
ρ ρ ρ

1 2 3 45

ρ
F

1 2 3 4 5

ρ
F into T

ρ
F into T′′

1 2 34 5

1 2 34 5

T′

5 - 11

Maximum agreement forests

1 2 3 4 5

T

1 2 34 5

T′′
ρ ρ

An agreement forest F of T and T′′ is a forest
{Tρ, T1, T2, . . . , Tk} such that

� label sets of the Ti partition X ∪ {ρ},

If k is minimal, F is a maximum agreement forest (MAF).

1 2 3 45

ρ
FF

� ρ is in label set of Tρ, and
� there exist edge-disjoint embeddings of subdivisions of

the Ti’s into T and T′′ that cover all edges.

6 - 4

Characterisation

Theorem. Let T and T′ be two phylogenetic trees on X.
Then

m(T, T′) = dSPR(T, T′).

Let F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Then define

m(T, T′) = k.

Proof.

Theorem. Computing the SPR-distance of T and T′ is
NP-hard.

Proof is via reduction from Exact Cover by 3-Sets.
See Bordewich, Semple, “On the computational complexity of the rooted subtree prune and regraft distanc” and
Hein et al., “On the complexity of comparing evolutionary trees” for details.

See blackboard.

7 - 6

Kernelisation (1 of 2)
� Common subtree reduction:

Replace any pendant subtree that occurs identically in
both trees by a single leaf with a new label.

Lemma. Applying common subtree reduction is safe; i.e.
dSPR(T, T′) = dSPR(S, S′).

Proof.

T T′

Suppose
is covered by
two trees of

MAF

then there is
alternative

MAF

S S′

a a

8 - 8

Kernelisation (2 of 2)
� Chain reduction:

Replace any chain of leaves that occurs identically in
both trees by three new leaves.

T T′

Lemma. Applying chain reduction is safe; i.e.
dSPR(T, T′) = dSPR(S, S′).

Proof.
Show there is a
tree with abc-chain
in a MAF.

S S′

a
b

c

a
b

c

Case 1 F into S

a
b

c

a
b

c
a

b
c

a
b

c

a
b

c

8 - 10

Kernelisation (2 of 2)
� Chain reduction:

Replace any chain of leaves that occurs identically in
both trees by three new leaves.

T T′

Lemma. Applying chain reduction is safe; i.e.
dSPR(T, T′) = dSPR(S, S′).

Proof.
Show there is a
tree with abc-chain
in a MAF.

S S′

a
b

c

a
b

c

Case 2 F into S

a
b

c

a
b

c

a
b

c

a
b

c

8 - 11

Kernelisation (2 of 2)
� Chain reduction:

Replace any chain of leaves that occurs identically in
both trees by three new leaves.

T T′

Lemma. Applying chain reduction is safe; i.e.
dSPR(T, T′) = dSPR(S, S′).

Proof.
Show there is a
tree with abc-chain
in a MAF.

S S′

a
b

c

a
b

c

Swap abc-chain with
original chain for MAF
of T and T′.

9 - 4

Kernelisation and fpt algorithm

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.Proof.

Let n(Ti) be # Tj it overlaps with in embedding of F into T.

Theorem. Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules.
Let S and S′ be on X′. Then

|X′| ≤ 28 dSPR(T, T′).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k = 4 dSPR(T, T′).

9 - 8

Kernelisation and fpt algorithm

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.Proof.

Let n(Ti) be # Tj it overlaps with in embedding of F into T.

Theorem. Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules.
Let S and S′ be on X′. Then

|X′| ≤ 28 dSPR(T, T′).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k = 4 dSPR(T, T′).

H |V(H)| = k + 1
= |E(H)|+ 1

∑ n(Ti) = 2|E(H)| ≤ 2k

9 - 16

Kernelisation and fpt algorithm

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.Proof.

Let n(Ti) be # Tj it overlaps with in embedding of F into T.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Theorem. Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules.
Let S and S′ be on X′. Then

|X′| ≤ 28 dSPR(T, T′).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k = 4 dSPR(T, T′).

Ti Ti Ti

Tj Tj Tj′

7 leaves

9 - 17

Kernelisation and fpt algorithm

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.Proof.

Let n(Ti) be # Tj it overlaps with in embedding of F into T.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

∑k
i=ρ # leaves of Ti ≤ ∑k

i=ρ 7(n(Ti) + n′(Ti)) ≤ 28k.

Theorem. Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules.
Let S and S′ be on X′. Then

|X′| ≤ 28 dSPR(T, T′).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k = 4 dSPR(T, T′).

9 - 19

Kernelisation and fpt algorithm

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.Proof.

Let n(Ti) be # Tj it overlaps with in embedding of F into T.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

∑k
i=ρ # leaves of Ti ≤ ∑k

i=ρ 7(n(Ti) + n′(Ti)) ≤ 28k.

Theorem. Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules.
Let S and S′ be on X′. Then

|X′| ≤ 28 dSPR(T, T′).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k = 4 dSPR(T, T′).

9 - 24

Kernelisation and fpt algorithm

Theorem. Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules.
Let S and S′ be on X′. Then

|X′| ≤ 28 dSPR(T, T′).

Proof.

Corollary. Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

� Reduce T and T′ to S and S′. Let k = dSPR(S, S′).

� S has at most 4|X′|2 neighbours.
� S has ≤ 2|X′| edges to cut and attach to.

� Length-k BFS from S visits at most
O((4|X′|2)k) = O((56k)2k) trees.

10 - 8

Approximation algorithm
Algorithm: dSPRApprox(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding transaction
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return Hi

a b

Case 1

a b a b
. . .

Case 2

a b

Case 3 Case 4

b

Gi

Hi

11 - 8

Approximation algorithm

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b

3

a b

4

a b

a b
. . .

a b
. . .

a b

a b

b

a b a b

ba b

no
mistake

3 cuts
1+ good

2 cuts
1+ good

1 cut
1 good

Cost

11 - 9

Approximation algorithm

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b

3

a b

4

a b

a b
. . .

a b
. . .

a b

a b

b

a b a b

ba b

no
mistake

3 cuts
1+ good

2 cuts
1+ good

1 cut
1 good

Theorem. dSPRApprox is a 3-approximation algorithm for
dSPR(T, T′) with O(|X|2) running time.

Cost

12

References

� Bordewich, Semple, “On the computational complexity
of the rooted subtree prune and regraft distance”, 2005
for SPR, MAF, characterisation, fpt, divide & conquer

� Hein et al., “On the complexity of comparing
evolutionary trees”, 1996
for NP-hardness proof

� Rodrigues et al., “The maximum agreement forest
problem: Approximation algorithms and computational
experiments”, 2006

