

Lehrstuhl für **INFORMATIK I** Effiziente Algorithmen und wissensbasierte Systeme

Advanced Algorithms

Winter term 2019/20

Lecture 12. Rearrangement distance of phylogenetic trees

Jonathan Klawitter

Chair for Computer Science I

Phylogenetic trees

Phylogenetic trees

Let $X = \{1, 2, ..., n\}.$

A phylogenetic tree *T* is a rooted, binary tree where the leaves are bijectively labelled with *X*.

Inference methods compute a phylogenetic tree based on some model and data.

Different methods/models/data yield different phylogenetic trees.

How can we compare *T* and *T*'?
 We want a metric on phylogenetic trees.

Subtree Prune & Regraft (SPR)

Define SPR-rearrangement graph G = (V, E) with

• $V = \{ all phylogenetic trees on X \} and$

• $\{T, T'\} \in E$ if *T* can be transformed into *T'* with an SPR.

SPR-distance

Define the SPR-distance of *T* and *T'* as $d_{SPR}(T, T') = \text{distance of } T \text{ and } T' \text{ in } G.$

Lemma. The SPR-rearrangement graph *G* is connected.

Proof. See blackboard (or exercise).

Corollary. The SPR-distance is a metric.

Proof. *G* is connected and undirected.

Goal. Compute the SPR-distance $d_{SPR}(T, T')$.

Problem. *G* is huge!

$$|V(G)| = (2n-3)!! = (2n-3) \cdot (2n-5) \cdot \ldots \cdot 5 \cdot 3$$

Can we rephrase the problem?

Maximum agreement forests

Maximum agreement forests

An agreement forest *F* of *T* and *T*^{$\prime\prime$} is a forest $\{T_{\rho}, T_1, T_2, \ldots, T_k\}$ such that

- label sets of the T_i partition $X \cup \{\rho\}$,
- ρ is in label set of T_{ρ} , and
- there exist edge-disjoint embeddings of subdivisions of the *T_i*'s into *T* and *T''* that cover all edges.

If *k* is minimal, *F* is a maximum agreement forest (MAF).

Characterisation

Let $F = \{T_{\rho}, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Then define

$$m(T,T')=k.$$

Theorem. Let *T* and *T'* be two phylogenetic trees on *X*. Then $m(T,T') = d_{SPR}(T,T').$

Proof. See blackboard.

Theorem. Computing the SPR-distance of T and T' is NP-hard.

Proof is via reduction from Exact Cover by 3-Sets.

See Bordewich, Semple, "On the computational complexity of the rooted subtree prune and regraft distanc" and Hein et al., "On the complexity of comparing evolutionary trees" for details.

Kernelisation (1 of 2)

Common subtree reduction:

Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.

Kernelisation (2 of 2)

Chain reduction:

Replace any chain of leaves that occurs identically in both trees by three new leaves.

 $d_{\text{SPR}}(T,T') = d_{\text{SPR}}(S,S').$

Proof.Case 1 F into SShow there is a
tree with abc-chain
in a MAF.F

Kernelisation (2 of 2)

Chain reduction:

Replace any chain of leaves that occurs identically in both trees by three new leaves.

Lemma. Applying chain reduction is safe; i.e. $d_{SPR}(T,T') = d_{SPR}(S,S')$.

Proof. Case 2 *F* into *S* tree with abc-chain in a MAF. Case 2 F into *S* f_{a}^{b} f_{a}^{b}

Kernelisation (2 of 2)

Chain reduction:

Replace any chain of leaves that occurs identically in both trees by three new leaves.

$$d_{\rm SPR}(T,T') = d_{\rm SPR}(S,S').$$

Proof.

Show there is a tree with abc-chain in a MAF.

Swap abc-chain with original chain for MAF of T and T'.

Theorem. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

 $|X'| \leq 28 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Proof. Let $F = \{T_{\rho}, T_1, \ldots, T_k\}$ be MAF for *S* and *S'*.

Let $n(T_i)$ be # T_j it overlaps with in embedding of F into T. Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Theorem. Reduce *T* and *T'* to *S* and *S'* by exhaustively applying the reduction rules. Let *S* and *S'* be on *X'*. Then

 $|X'| \leq 28 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Proof. Let $F = \{T_{\rho}, T_1, \ldots, T_k\}$ be MAF for *S* and *S'*.

Let $n(T_i)$ be # T_j it overlaps with in embedding of F into T.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 \operatorname{d}_{\operatorname{SPR}}(T, T').$$

Theorem. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

 $|X'| \leq 28 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Proof. Let $F = \{T_{\rho}, T_1, \ldots, T_k\}$ be MAF for *S* and *S'*.

Let $n(T_i)$ be # T_j it overlaps with in embedding of F into T. Claim 1. $\sum_{i=o}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

Theorem. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

 $|X'| \leq 28 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Proof. Let $F = \{T_{\rho}, T_1, \ldots, T_k\}$ be MAF for *S* and *S'*.

Let $n(T_i)$ be # T_j it overlaps with in embedding of F into T. Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 \operatorname{d}_{\operatorname{SPR}}(T, T')$. Claim 2. # leaves of $T_i \le 7(n(T_i) + n'(T_i))$.

 $\sum_{i=\rho}^{k}$ # leaves of $T_i \leq$

Theorem. Reduce *T* and *T'* to *S* and *S'* by exhaustively applying the reduction rules. Let *S* and *S'* be on *X'*. Then

 $|X'| \le 28 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Proof. Let $F = \{T_{\rho}, T_1, \ldots, T_k\}$ be MAF for *S* and *S'*.

Let $n(T_i)$ be # T_j it overlaps with in embedding of F into T. Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 \operatorname{d}_{\operatorname{SPR}}(T, T')$. Claim 2. # leaves of $T_i \le 7(n(T_i) + n'(T_i))$. $\sum_{i=\rho}^{k}$ # leaves of $T_i \le \sum_{i=\rho}^{k} 7(n(T_i) + n'(T_i)) \le 28k$.

Theorem. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

 $|X'| \leq 28 \operatorname{d}_{\operatorname{SPR}}(T, T').$

Corollary. Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof. Reduce *T* and *T'* to *S* and *S'*. Let $k = d_{SPR}(S, S')$.

- S has at most 4|X'|² neighbours.
 S has ≤ 2|X'| edges to cut and attach to.
- Length-*k* BFS from *S* visits at most $O((4|X'|^2)^k) = O((56k)^{2k})$ trees.

Approximation algorithm

Algorithm: dSPRApprox(T, T')

 $i \leftarrow 1$

$$G_i \leftarrow T$$

 $H_i \leftarrow T'$

while \exists pair of sibling leaves *a* and *b* in *G_i* **do** find the case that applies to *a* and *b* in *H_i* apply the corresponding transaction to obtain *G_{i+1}* from *G_i* and *H_{i+1}* from *H_i* i + +

return H_i

Approximation algorithm

Approximation algorithm

References

- Bordewich, Semple, "On the computational complexity of the rooted subtree prune and regraft distance", 2005 for SPR, MAF, characterisation, fpt, divide & conquer
- Hein et al., "On the complexity of comparing evolutionary trees", 1996 for NP-hardness proof
- Rodrigues et al., "The maximum agreement forest problem: Approximation algorithms and computational experiments", 2006