
1

Lecture 11. Alternative Parameterization: Tree Decomposition

(slides by Thomas van Dijk & Alexander Wolff)

Steven Chaplick Lehrstuhl für Informatik I

Source: PA §7.2, 7.3.1

Advanced Algorithms

Winter term 2019/20

2 - 3

Independent Set

Independent Set

Thm: Independent Set is NP-complete.

Thm: Independent Set can be solved in linear time on trees.

Given: graph G, weight function ω : V → N
Question: What is the maximum weight of a set S ⊆ V

where no pair in S forms an edge in G?

3 - 14

Independent Sets in Trees

Choose an arbitrary root w.

Let T (v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T (v)

Let B(v) := maximum weight of
an independent set S in T (v)
where v 6∈ S

When v is a leaf: A(v) = ω(v) and B(v) = 0

When v has children x1, . . . , xr:

B(v) =
∑r

i=1 A(xi)

A(v) = max{
∑r

i=1 A(xi), ω(v) +
∑r

i=1 B(xi) }

Algo: Compute A(·) and B(·) bottom-up

w

A(w) = solution

4 - 5

s, t-series parallel graphs

Def.: A graph G = (V,E) is 2-terminal when it contains two
special vertices s and t

Def.: A 2-terminal graph G is series parallel when:

• G is a single edge (s, t)

• G is a series composition of two series parallel graphs

• G is a parallel composition of two series parallel graphs

recursive definition:
series parallel graphs have a natural tree-structure

5 - 8

SP-tree

ts

S

P P

S

Let i be a node in an SP-tree.
G(i) := graph represented by the
subtree rooted at i

iG(i)

si ti

6 - 19

Independent Set on SP-trees

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight independent set S in G(i) where
si ∈ S and ti ∈ S

BA(i) := maximum weight independent set S in G(i) where
si 6∈ S and ti ∈ S

AB(i) and BB(i) def. similarly

other cases omitted... (easy exercise)

O(1) time per SP-node

Thm: Independent Set on series parallel graphs with a
given SP-tree can be solved in O(n) time.

7 - 4

Generalization?

Many ways to generalize the concept of having a “tree structure”

Ex.: k-terminal graph G = (V,E, T), |T | = k

+ →

Example Operation: “gluing”

8 - 15

Example: Tree Decomposition

a

b

c

g h

f

d e

a, b, c

a, c, f

a, f, g

g, h

c, d, e

Graph G = (V,E): Tree Decomposition:

9 - 6

Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V,E) is:

• a tuple D = (X,T)

• T = (P, F) is a tree

• X = {Xp | p ∈ P} is a set family of subsets of V (one for
each node in P)

•
⋃
p∈P

Xp = V

• ∀{u, v} ∈ E ∃p ∈ P where u, v ∈ Xp

• ∀v ∈ V : {p ∈ P | v ∈ Xp} is connected in T

10 - 8

Treewidth (formal)

Def. Width (tree decomposition): maxp∈P |Xp| − 1,
i.e., cardinality of the largest bag −1

Def. Treewidth tw(G) is the minimum width of a tree

decomposition of G

Thm: There is a tree decomposition of width tw(G) where |P |
is polynomial in n, i.e., the tree has polynomial size in n

Exercise: Trees have treewidth 1

Exercise: Series parallel graphs have treewidth 2

Obs. tw(G) < n

• a tuple D = (X,T) • T = (P, F) is a tree

Question: Which graphs have treewidth 0? E = ∅

11 - 18

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) · poly(n)) time.

Ex.: k-Vertex Cover

k-Coloring

k-Independent Set

k-Dominating Set

FPT

likely not FPT, W [1]-comp.

NP-comp. k ≥ 3

Independent Set (treewidth) FPT

List Coloring (treewidth) W [1]-comp.

Channel Assignment (treewidth) NP-comp. k ≥ 3

O(f(tw(G)) · poly(n)) time.

likely not FPT, W [2]-comp.

See PA §13.3

12 - 7

Computing Treewidth

Thm: k-Treewidth is FPT

k-Treewidth
Given: graph G = (V,E)
Parameter: number k
Question: tw(G) ≤ k?

Treewidth
Given: Graph G = (V,E), number k
Question: tw(G) ≤ k?

Thm: Treewidth is NP-complete

How can we make “fixed-treewidth-tractable” algorithms?

See PA §7.6.

13 - 5

item #1: nice tree decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

• Leaf: the bag is a leaf and contains only one vertex

• Introduce:
The bag has exactly one child and contains the child’s

vertices and exactly one new vertex.

• Forget:
The bag has exactly one child and contains

one vertex fewer than the child.
• Join:

The bag has exactly two children and these three nodes

have exactly the same vertices

B

B B

14 - 10

item #1: nice tree decompositoins

c, d

c

a, b, c

a, c

a, c, f

a, f, g

g, h

c, d, e

Introduce b

Forget f

a, c, f

a, c, f

Join

a, c

Introduce f

Introduce a

Forget d

Forget e

Introduce e

c, d Introduce d

&c.

15 - 4

item #2: DP on nice Tree Decomp.

Cor: For FPT-Algorithms it suffices to use nice tree decomp.

Thm: k-Treewidth is FPT

Thm: Tree decompositions → nice in polynomial time.

Strategy: Build a recurrence for each type of bag, and use
dynamic programming.

16 - 25

Indep.Set on Nice Tree Decomp.

Let G(i) := Graph induced by the vertices in the subtree at i

For bag i and S ⊆ Xi, let:

R(i, S) := maximum weight of an indep. set I in G(i)

with I ∩Xi = S

Algo.: Compute R(i, S) for all i and corresponding S

Runtime: ?

Thm: The independent set problem is FPT parameterized by
treewidth.

