Computational Geometry

Motion Planning

Lecture \#10

Planning

current situation, desired situation

Planning

\Rightarrow
current situation, desired situation

Planning

current situation, desired situation

sequence of steps to reach the one from the other

Path Planning

current location, desired location

Path Planning

\Longrightarrow
current location,
desired location

Path Planning

current location, desired location

path to reach the one from the other

Point-Shaped Robots

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }}, p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }}, p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
$O(n \log n)$
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }}, p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
$O(n \log n)$
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }}, p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
$O(n \log n)$
$O(n)$
$O(n)$
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }} p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
$O(n \log n)$
- Remove vertical extensions inside obstacles.
$O(n)$
- Vertices at centers of trapez. and vertical ext.
$O(n)$
- Connect "neighboring" vertices by line segm.
$O(n)$
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }} p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
$O(n \log n)$
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
$O(n)$
$O(n)$
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
$O(n)$
$O(\log n)$
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }}, p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
$O(n \log n)$
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
$O(n)$
$O(n)$
$O(n)$
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
$O(\log n)$
$O(n)$
- Connect $p_{\text {start }} p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
$O(n \log n)$
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
$O(n)$
$O(n)$
$O(n)$
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }} p_{\text {goal }}$ to π by line segments.
$O(\log n)$
$O(n)$
$O(1)$

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
$O(n \log n)$
- Remove vertical extensions inside obstacles.
$O(n)$
- Vertices at centers of trapez. and vertical ext.
$O(n)$
- Connect "neighboring" vertices by line segm.
$O(n)$
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
$O(\log n)$
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }} p_{\text {goal }}$ to π by line segments.

Point-Shaped Robots

- Create trapezoidal map of obstacle edges.
$O(n \log n)$
- Remove vertical extensions inside obstacles.
$O(n)$
- Vertices at centers of trapez. and vertical ext.
$O(n)$
- Connect "neighboring" vertices by line segm.
$O(n)$
- Locate $p_{\text {start }}, p_{\text {goal }}$ in map $\rightarrow \Delta_{\text {start }}, \Delta_{\text {goal }}$.
$O(\log n)$
- Do breadth-first search in the roadmap to find a path π from $\Delta_{\text {start }}$ to $\Delta_{\text {goal }}$.
- Connect $p_{\text {start }}, p_{\text {goal }}$ to π by line segments.
$O(n)$
$O(1)$

A First Result

Theorem: We can preprocess a set of polygonal obstacles with a total of n edges in $O(n \log n)$ expected time such that, given a start and a goal position, we can find a collision-free path for a point robot in $O(n)$ time if it exists.

A First Result

Theorem: We can preprocess a set of polygonal obstacles with a total of n edges in $O(n \log n)$ expected time such that, given a start and a goal position, we can find a collision-free path for a point robot in $O(n)$ time if it exists.

A First Result

Theorem: We can preprocess a set of polygonal obstacles with a total of n edges in $O(n \log n)$ expected time such that, given a start and a goal position, we can find a collision-free path for a point robot in $O(n)$ time if it exists.

What about, say, polygonal robots?

Degrees of Freedom

Every robot has some number d of degrees of freedom, meaning that its configuration with respect to the world can be specified by d parameters.

Degrees of Freedom

Every robot has some number d of degrees of freedom, meaning that its configuration with respect to the world can be specified by d parameters.

Degrees of Freedom

Every robot has some number d of degrees of freedom, meaning that its configuration with respect to the world can be specified by d parameters.

2D translating robot

2D translating, rotating robot

Degrees of Freedom

Every robot has some number d of degrees of freedom, meaning that its configuration with respect to the world can be specified by d parameters.

2D translating robot

3D translating robot

Degrees of Freedom

Every robot has some number d of degrees of freedom, meaning that its configuration with respect to the world can be specified by d parameters.

2D translating robot

3D translating robot

2D translating, rotating robot

3D translating, rotating robot

Configuration Space

robotic arm

Configuration Space

robotic arm
The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Configuration Space

robotic arm

work space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Configuration Space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Configuration Space

robotic arm

work space

configuration space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Configuration Space

robotic arm

work space

configuration space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Configuration Space

robotic arm

work space

configuration space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Configuration Space

robotic arm

work space

configuration space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Configuration Space

robotic arm

work space

configuration space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.
Path for a point through configuration space

Configuration Space

robotic arm

work space

configuration space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.
Path for a point through configuration space

$$
\Downarrow
$$

Configuration Space

robotic arm

work space

configuration space

The configuration space is the d-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.
Path for a point through configuration space

$$
\Downarrow
$$

path for the robot in the original space.

Example: Translating 2D Polygonal Robots

work space
configuration space

Example: Translating 2D Polygonal Robots

work space
configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.

Example: Translating 2D Polygonal Robots

work space
configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.

Example: Translating 2D Polygonal Robots

work space
configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$.

Example: Translating 2D Polygonal Robots

work space
configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$.

Example: Translating 2D Polygonal Robots

work space

configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$.
- Find a path for a point in the complement $\mathcal{C}_{\text {free }}$ of $\mathcal{C}_{\text {forb }}$.

Example: Translating 2D Polygonal Robots

work space

configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$.
- Find a path for a point in the complement $\mathcal{C}_{\text {free }}$ of $\mathcal{C}_{\text {forb }}$.

Example: Translating 2D Polygonal Robots

work space

configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$.
- Find a path for a point in the complement $\mathcal{C}_{\text {free }}$ of $\mathcal{C}_{\text {forb }}$. \Rightarrow collision-free path for the robot in work space

Example: Translating 2D Polygonal Robots

work space

configuration space

- Compute $\mathcal{C} \mathcal{P}_{i}=\left\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P}_{i} \neq \varnothing\right\}$ for each \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$.
- Find a path for a point in the complement $\mathcal{C}_{\text {free }}$ of $\mathcal{C}_{\text {forb }}$. \Rightarrow collision-free path for the robot in work space

Some Linear Algebra

Vector sums

Some Linear Algebra

Vector sums

Some Linear Algebra

Vector sums
Algebra: $\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$

Some Linear Algebra

Vector sums
Algebra: $\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Some Linear Algebra

Vector sums
Algebra: $\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums

Some Linear Algebra

Vector sums
Algebra: $\quad\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums

\oplus

Some Linear Algebra

Vector sums
Algebra: $\quad\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums
Algebra: $\quad S_{1} \oplus S_{2}=\left\{p+q \mid p \in S_{1}, q \in S_{2}\right\}$

\oplus

Some Linear Algebra

Vector sums
Algebra: $\quad\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums
Algebra: $\quad S_{1} \oplus S_{2}=\left\{p+q \mid p \in S_{1}, q \in S_{2}\right\}$
Geometry: place copy of one shape at every point of the other

\oplus

Some Linear Algebra

Vector sums
Algebra: $\quad\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums
Algebra: $\quad S_{1} \oplus S_{2}=\left\{p+q \mid p \in S_{1}, q \in S_{2}\right\}$
Geometry: place copy of one shape at every point of the other

\oplus

Inversion

Some Linear Algebra

Vector sums
Algebra: $\quad\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums

Algebra: $\quad S_{1} \oplus S_{2}=\left\{p+q \mid p \in S_{1}, q \in S_{2}\right\}$
Geometry: place copy of one shape at every point of the other

\oplus

Inversion

Some Linear Algebra

Vector sums
Algebra: $\quad\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums
Algebra: $\quad S_{1} \oplus S_{2}=\left\{p+q \mid p \in S_{1}, q \in S_{2}\right\}$
Geometry: place copy of one shape at every point of the other

\oplus

Inversion
Algebra: $\quad-S=\{-p \mid p \in S\}$

Some Linear Algebra

Vector sums
Algebra: $\quad\left(p_{x}, p_{y}\right)+\left(q_{x}, q_{y}\right)=\left(p_{x}+q_{x}, p_{y}+q_{y}\right)$
Geometry: place vectors head to tail

Minkowski sums
Algebra: $\quad S_{1} \oplus S_{2}=\left\{p+q \mid p \in S_{1}, q \in S_{2}\right\}$
Geometry: place copy of one shape at every point of the other

\oplus
 $\overline{=}$

Inversion
Algebra: $\quad-S=\{-p \mid p \in S\}$
Geometry: rotate 180° (point-mirror
around reference point

Characterizing $\mathcal{C P}$
Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}.

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$. Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof.

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.

$$
" \Rightarrow "
$$

$" \Leftarrow "$

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$. " \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
$" \Leftarrow "$

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
" $\Leftarrow "$

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then... " $\Leftarrow "$

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
$" \Leftarrow "$

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
$" \Leftarrow "$ Let $(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
$" \Leftarrow "$ Let $(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
Then there are points $q \in \mathcal{P}$ and $r \in \mathcal{R}(0,0)$ such that...

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
$" \Leftarrow "$ Let $(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
Then there are points $q \in \mathcal{P}$ and $r \in \mathcal{R}(0,0)$ such that...

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
$" \Leftarrow "$ Let $(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
Then there are points $q \in \mathcal{P}$ and $r \in \mathcal{R}(0,0)$ such that...

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
$" \Leftarrow "$ Let $(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
Then there are points $q \in \mathcal{P}$ and $r \in \mathcal{R}(0,0)$ such that...

Characterizing $\mathcal{C P}$

Recall that $\mathcal{C P}=\{(x, y): \mathcal{R}(x, y) \cap \mathcal{P} \neq \varnothing\}$ for an obstacle \mathcal{P}. In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad(x, y) \in \mathcal{C} \mathcal{P}$.

Theorem. $\quad \mathcal{C P}=\mathcal{P} \oplus(-\mathcal{R}(0,0))$
Proof. Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
" \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P}.
Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then...
$" \Leftarrow "$ Let $(x, y) \in \mathcal{P} \oplus(-\mathcal{R}(0,0))$.
Then there are points $q \in \mathcal{P}$ and $r \in \mathcal{R}(0,0)$ such that...

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Complexity

Theorem: If \mathcal{P} and \mathcal{R} are convex polygons with n and m edges, respectively, then $\mathcal{P} \oplus \mathcal{R}$ is a convex polygon with at most $n+m$ edges.

Minkowski Sums: Computation

Minkowski Sums: Computation

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Minkowski Sums: Computation

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Idea:

Minkowski Sums: Computation

Task: Idea: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad \text { (Proof?) }
$$

Minkowski Sums: Computation

Task: Idea: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad \text { (Proof?) }
$$

Minkowski Sums: Computation

Task:
Idea:
Problem:

Minkowski Sums: Computation

Task: Idea:

Problem:

Minkowski Sums: Computation

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ? Idea:
Problem:
complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($

Minkowski Sums: Computation

Task:
Idea:
Problem: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($
Theorem. The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

$$
\text { complexity } \in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-(
$$

The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($
The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($
The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($
The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($
The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($
The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

complexity $\in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-($
The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.:-)

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem. How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

$$
\text { complexity } \in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-(
$$

The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem. How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

$$
\text { complexity } \in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-(
$$

The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.

Minkowski Sums: Computation

Task:
Idea:
Problem:
Theorem.

How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

$$
\text { complexity } \in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-(
$$

The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.

Minkowski Sums: Computation

Task: Idea:

Problem:
Theorem. How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

$$
\mathcal{P} \oplus \mathcal{R}=\mathrm{CH}(\underbrace{(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}}) \quad \text { (Proof?) }
$$

$$
\text { complexity } \in \Theta(|\mathcal{P}| \cdot|\mathcal{R}|) \quad:-(
$$

The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}|+|\mathcal{R}|)$ time.

Pseudodisks

Definition: A pair of planar objects o_{1} and o_{2} is a pair of pseudodisks if:

- $\partial o_{1} \cap \operatorname{int}\left(o_{2}\right)$ is connected, and
- $\partial o_{2} \cap \operatorname{int}\left(o_{1}\right)$ is connected.

Pseudodisks

Definition: A pair of planar objects o_{1} and o_{2} is a pair of pseudodisks if:

- $\partial o_{1} \cap \operatorname{int}\left(o_{2}\right)$ is connected, and
- $\partial o_{2} \cap \operatorname{int}\left(o_{1}\right)$ is connected.

Pseudodisks

Definition: A pair of planar objects o_{1} and o_{2} is a pair of pseudodisks if:

- $\partial o_{1} \cap \operatorname{int}\left(o_{2}\right)$ is connected, and
- $\partial o_{2} \cap \operatorname{int}\left(o_{1}\right)$ is connected.
$p \in \partial o_{1} \cap \partial o_{2}$ is a boundary crossing if ∂o_{1} crosses at p from the interior to the exterior of o_{2}.

Pseudodisks

Definition: A pair of planar objects o_{1} and o_{2} is a pair of pseudodisks if:

- $\partial o_{1} \cap \operatorname{int}\left(o_{2}\right)$ is connected, and
- $\partial o_{2} \cap \operatorname{int}\left(o_{1}\right)$ is connected.
$p \in \partial o_{1} \cap \partial o_{2}$ is a boundary crossing if ∂o_{1} crosses at p from the interior to the exterior of o_{2}.

Observation: A pair of polygonal pseudodisks defines at most two boundary crossings.

Extreme Directions

Observation: Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be interior-disjoint convex polygons

Extreme Directions

Observation: Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be interior-disjoint convex polygons Let d_{1} and d_{2} be directions in which \mathcal{P}_{1} is more extreme than \mathcal{P}_{2}.

Extreme Directions

Observation: Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be interior-disjoint convex polygons Let d_{1} and d_{2} be directions in which \mathcal{P}_{1} is more extreme than \mathcal{P}_{2}.

Extreme Directions

Observation: Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be interior-disjoint convex polygons Let d_{1} and d_{2} be directions in which \mathcal{P}_{1} is more extreme than \mathcal{P}_{2}.
Then \mathcal{P}_{1} is more extreme than \mathcal{P}_{2} either in [$\left.d_{1}, d_{2}\right]$ or in $\left[d_{2}, d_{1}\right]$.

Extreme Directions

Observation: Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be interior-disjoint convex polygons Let d_{1} and d_{2} be directions in which \mathcal{P}_{1} is more extreme than \mathcal{P}_{2}.
Then \mathcal{P}_{1} is more extreme than \mathcal{P}_{2} either in [$\left.d_{1}, d_{2}\right]$ or in $\left[d_{2}, d_{1}\right]$.

Extreme Directions

Observation: Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be interior-disjoint convex polygons Let d_{1} and d_{2} be directions in which \mathcal{P}_{1} is more extreme than \mathcal{P}_{2}.
Then \mathcal{P}_{1} is more extreme than \mathcal{P}_{2} either in $\left[d_{1}, d_{2}\right]$ or in $\left[d_{2}, d_{1}\right]$.

Extreme Directions

Observation: Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be interior-disjoint convex polygons Let d_{1} and d_{2} be directions in which \mathcal{P}_{1} is more extreme than \mathcal{P}_{2}.
Then \mathcal{P}_{1} is more extreme than \mathcal{P}_{2} either in [$\left.d_{1}, d_{2}\right]$ or in $\left[d_{2}, d_{1}\right]$.

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_{1} \oplus \mathcal{R}$ and $\mathcal{P}_{2} \oplus \mathcal{R}$ is a pair of pseudodisks.

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected.

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected. Suppose $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is not connected...

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected. Suppose $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is not connected...

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected. Suppose $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is not connected...

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected. Suppose $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is not connected...

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected. Suppose $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is not connected...

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected. Suppose $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is not connected...

Polygonal Pseudodisks

Theorem: If \mathcal{P}_{1} and \mathcal{P}_{2} are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\underbrace{\mathcal{P}_{1} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{1}}$ and $\underbrace{\mathcal{P}_{2} \oplus \mathcal{R}}_{\mathcal{C} \mathcal{P}_{2}}$ is a pair of pseudodisks.

Proof. It suffices to show: $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is connected. Suppose $\mathcal{C} \mathcal{P}_{1} \backslash \mathcal{C} \mathcal{P}_{2}$ is not connected...

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof. Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof.
Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof.
Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof. Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.
adjacent vtx
in the interior
of the union
Proof.
Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.
adjacent vtx
in the interior
of the union
Proof.
Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof. Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof. Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof. Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Proof. Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.

Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.
adjacent vtx in the interior
of the union
Proof.
Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.
adjacent vtx in the interior
of the union
Proof.
Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs with n vtc in total has a union with $\leq 2 n$ vtc.
adjacent vtx in the interior
of the union
Proof.
Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.
Proof.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.
Proof.

- Triangulate the obstacles if not convex.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

- Triangulate the obstacles if not convex.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.
Proof.
$O(n \log n) \bullet$ Triangulate the obstacles if not convex.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.
Proof.
$O(n \log n) \bullet$ Triangulate the obstacles if not convex.

- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.
Proof.
$O(n \log n)$

- Triangulate the obstacles if not convex.
- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

Proof.

- Triangulate the obstacles if not convex.
- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$ using ...?

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

Proof.

- Triangulate the obstacles if not convex. Ch. 3
- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$ using div. and conq. (merge by sweeping - Ch.2.3)

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

Proof.

$O(n \log n) \bullet$ Triangulate the obstacles if not convex.

- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.
$\left(n \log ^{2} n\right)$
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$ using div. and conq. (merge by sweeping - Ch.2.3)

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

Proof.

- Triangulate the obstacles if not convex. Ch. 3
- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.
$\left(n \log ^{2} n\right)$
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$ using div. and conq. (merge by sweeping - Ch.2.3) [Argue carefully about the number of intersection pts!]

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

Proof.

- Triangulate the obstacles if not convex. Ch. 3
- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.
$O\left(n \log ^{2} n\right)$
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$ using div. and conq. (merge by sweeping - Ch.2.3) [Argue carefully about the number of intersection pts!]
- Find a path for a point in the complement $\mathcal{C}_{\text {free }}$.

Summary and Main Result

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O\left(n \log ^{2} n\right)$ time such that, given any start and goal position, we can compute in $O(n)$ time a collision-free path for \mathcal{R} if it exists.

Proof.

- Triangulate the obstacles if not convex. Ch. 3
- Compute $\mathcal{C} \mathcal{P}_{i}$ for every convex obstacle \mathcal{P}_{i}.
$O\left(n \log ^{2} n\right)$
- Compute their union $\mathcal{C}_{\text {forb }}=\bigcup_{i} \mathcal{C} \mathcal{P}_{i}$ using div. and conq. (merge by sweeping - Ch.2.3) [Argue carefully about the number of intersection pts!]
- Find a path for a point in the complement $\mathcal{C}_{\text {free }}$.

