1

Julius-Maximilians- Chair for X .
UNIVERSITAT INFORMATICS | ||||I | fl
WURZBURG Efficient Algorithms and

KnOWledge'Based SyStemS Institute for Informatics

Computational Geometry

Motion Planning

Lecture #10

Thomas van Dijk Winter Semester 2018/19

Planning

ooO
Hﬁgvga
current situation,
desired situation

Planning

ooO
Hﬁgvga
current situation,
desired situation

Planning

=

Ke
=\ — =
HEEEH
current situation, sequence of steps to reach

desired situation the one from the other

Path Planning

® o
~—

T

current location,
desired location

Path Planning

® o
~—

T

current location,
desired location

Path Planning

® o
~—

T

current location, path to reach the
desired location one from the other

Point-Shaped
Robots

Point-Shaped

m/ goal

Robots

|
Pstart

£

® Create trapezoidal map of obstacle edges.

Point-Shaped
Robots

|
Pstart

.\ m/ goal

Pt

® Create trapezoidal map of obstacle edges.
® Remove vertical extensions inside obstacles.

Point-Shaped
Robots

Q @)

|
Pstart © ?

® Create trapezoidal map of obstacle edges.
® Remove vertical extensions inside obstacles.

® Vertices at centers of trapez. and vertical ext.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.

® Remove vertical extensions inside obstacles.
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.

® Remove vertical extensions inside obstacles.
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.
® [.ocate pstart, Pooal In map

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.

® Remove vertical extensions inside obstacles.
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.

® Remove vertical extensions inside obstacles.
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.

® Remove vertical extensions inside obstacles.
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.

® Remove vertical extensions inside obstacles.
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges. O(nlogn)
® Remove vertical extensions inside obstacles.
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges. O(nlogn)
® Remove vertical extensions inside obstacles. | O(n)
® Vertices at centers of trapez. and vertical ext.
® Connect “neighboring” vertices by line segm.
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges. O(nlogn)
® Remove vertical extensions inside obstacles. | O(n)
® Vertices at centers of trapez. and vertical ext. | O(n)
® Connect “neighboring” vertices by line segm.
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges. O(nl
® Remove vertical extensions inside obstacles. | O(n)
® Vertices at centers of trapez. and vertical ext. | O(n)
e Connect “neighboring” vertices by line segm. | O(n)
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.
® Remove vertical extensions inside obstacles.

® Connect “neighboring” vertices by line segm.

O(nl

O(n)
® Vertices at centers of trapez. and vertical ext. | O(n)
. o(n)
® Locate pstart, Pgoal 1IN MaAP — Astart, Agoal- O(

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges. O(nlogn)
® Remove vertical extensions inside obstacles. | O(n)
® Vertices at centers of trapez. and vertical ext. | O(n)
e Connect “neighboring” vertices by line segm. | O(n)
® Locate pstart, Pgoal iIN MAP — Agtart, Dgoal- O(logn)
® Do breadth-first search in the roadmap O(n)
to find a path 7t from Aggart to Aooal-
e Connect pstart, Pgoal tO 7T by line segments.

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.
® Remove vertical extensions inside obstacles.

® Connect “neighboring” vertices by line segm.

O
O
® Vertices at centers of trapez. and vertical ext. | O
O
® Locate pstart, Pgoal 1N MapP — Astart, Dgpal- O

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments. O

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.
® Remove vertical extensions inside obstacles.

® Connect “neighboring” vertices by line segm.

O
O
® Vertices at centers of trapez. and vertical ext. | O
O
O

® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments. O

preprocessing

Point-Shaped
Robots

® Create trapezoidal map of obstacle edges.
® Remove vertical extensions inside obstacles.

® Connect “neighboring” vertices by line segm.

querying

O
O
® Vertices at centers of trapez. and vertical ext. | O
O
O

® Locate pstart, Pgoal 1N MapP — Astart, Dgpal-

® Do breadth-first search in the roadmap
to find a path 7t from Aggart to Aooal-

e Connect pstart, Pgoal tO 7T by line segments. O

A First Result

Theorem: We can preprocess a set of polygonal obstacles
with a total of n edges in O(nlogn) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.

A First Result

Theorem: We can preprocess a set of polygonal obstacles
with a total of n edges in O(nlogn) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.

A First Result

Theorem: We can preprocess a set of polygonal obstacles
with a total of n edges in O(nlogn) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.

What about, say, polygonal robots?

Degrees of Freedom

Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

Degrees of Freedom

Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

o
* L J
v ﬂ
[l]
1 4 !
1 1

2D -translating robot

Degrees of Freedom

Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

P2 o0
e ¢ S
. .
1 1 1 1
LY. A | 1 [1
1 1 1 1
1

2D translating robot 2D translating, rotating robot

Degrees of Freedom

Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

2D translating robot 2D translating, rotating robot

3D translating robot

Degrees of Freedom

Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can

be specified by d parameters.

| W

2D translating robot 2D translating, rotating robot

G*Q
PRl 2 L YN
Py PR ~
] Y 4 1
| IR 4 .
[IR4 AN

1
4 ') <~ %
LI 1 .’ ~.~:;'o
~ . S .

3D translating robot 3D translating, rotating robot

Configuration Space

robotic arm

Configuration Space

robotic arm

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Configuration Space

obstacle
[.

robot

robotic arm work space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Configuration Space

obstacle

/E robot
7

reference
point

robotic arm work space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Configuration Space

obstacle

/E robot
7

reference
point

robotic arm work space configuration space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Configuration Space

obstacle

/E robot "
e

reference
point

robotic arm work space configuration space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Configuration Space

obstacle

/E robot "
e

reference
point

robotic arm work space configuration space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Configuration Space

obstacle

/E robot "
e

reference
point

robotic arm work space configuration space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Configuration Space

obstacle

/E robot "
e

reference
point

robotic arm work space configuration space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Path for a point through configuration space

Configuration Space

P

obstacle

/E robot

reference

robotic arm point

work space

configuration space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value

combinations.

Path for a point through configuration space

\

Configuration Space

obstacle

/£ robot "
e

reference
point

robotic arm work space configuration space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

Path for a point through configuration space

.

path for the robot in the original space.

Example: Translating 2D Polygonal Robots

A A
| 0 _
R(x,y) gy Y
v/l LY
R(x'y')
R(0,0) x' Tx (0,0) x' X

work space configuration space

Example: Translating 2D Polygonal Robots

))
| A _
: R(x,y) (x", ') o
y +]] !
R(x.y')
N\ @
-1 1 T \ —p | —i T —
R(0,0) X X (0,0) X X
work space configuration space

e Compute CP; = {(x,v) : R(x,y) NP; # @D} for each P;.

Example: Translating 2D Polygonal Robots

))
I
R(x,y)
y't -
R(x.y')
N\ @
_ - \—> | —=
R(0,0) X X (0,0)
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.

Example: Translating 2D Polygonal Robots

A

A

A .
R(x,y) (x,y)
y'} = =
R(x.y')
A <z NG
TR(O,O) ¥ T [7N0,0 ¥ \VIEN
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.

Example: Translating 2D Polygonal Robots

))
I
R(x,y)
y't -
R(x.y')
N\ @
_ - \—> | —=
R(0,0) X X (0,0)
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.

Example: Translating 2D Polygonal Robots

A A
e A
R(x,y)
y't -
R(x',y')
A @
| :/ \| —
"R(0,0) X X
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.
¢ Find a path for a point in the complement Cyee 0f Ciorp-

Example: Translating 2D Polygonal Robots

work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.
¢ Find a path for a point in the complement Cyee 0f Ciorp-

Example: Translating 2D Polygonal Robots

work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.

¢ Find a path for a point in the complement Cyee 0f Ciorp-
= collision-free path for the robot in work space

Example: Translating 2D Polygonal Robots

work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.

¢ Find a path for a point in the complement Cyee 0f Ciorp-
= collision-free path for the robot in work space

Some Linear Algebra

Vector sums

Some Linear Algebra

Vector sums ﬁ
p+q

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,9y) = (Px + qx, Py + qy) -
p—Tq

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

). 7.

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

). 7.

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}

). 7.

Some Linear Algebra

Vector sums

Algebra: (px, py) + (qx,qy) = (px + 9z, Py +4y)
Geometry: place vectors head to tail

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}
Geometry: place copy of one shape

at every point of the other

). 1.

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}
Geometry: place copy of one shape

at every point of the other

). 1.

Inversion

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

Algebra: S1® S, ={p+4q|p€S1,9 €S2}

Geometry: place copy of one shape
at every point of the other

b

Inversion

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

Algebra: S1® S, ={p+4q|p€S1,9 €S2}

Geometry: place copy of one shape
at every point of the other

L\ L
Inversion

Algebra: —S={—-p|peS}

Some Linear Algebra

Vector sums p
Algebra: (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}
Geometry: place copy of one shape

at every point of the other

L\ N
Inversion

Algebra: —S={—-p|peS}
Geometry: rotate 180° (point-mirror) — J:g — (m

around reference point

10-1

Characterizing CP
Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.

10-2

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

CP

10-3

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

CP

10-4

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))
Proof.

CP

10 -5

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))
Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

CP

@ i
R(x,y)

R (0,0)

10-6

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).
/Ij//

CP

@ i
R(x,y)

R (0,0)

7, 77
<=

10-7

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.

In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).
“=" Suppose R(x,vy) intersects P.

CP

@ i
R(x,y)

R (0,0)

7, 77
<=

10 - 8

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

41 77 CP
=

@ i
R(x,y)

R (0,0)

10-9

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

7, 77
<=

10 -10

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

7, 77
<=

10 - 11

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

@ i
R(x,y)

R (0,0)

CP

10 -12

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

CP
""" Let (x,y) € P®(—R(0,0)).
Then there are points
g€ PandreR(0,0)
such that ... h
R(x,y)

R (0,0)

10 - 13

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...

10 - 14

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...

10 - 15

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...

10 - 16

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

prr

11 -

11-2

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

prr

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

prr
PDOR

A 7

e

11 -

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -

Minkowski Sums: Computation

12 -2

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?

POR

12-3

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea:

POR

12 -4

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})

POR

12-5

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})

POR

12-6

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem:

POR

12-7

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})

\

Problem: complexity € O()

W o
““““
1

POR

1
l
'
’
'
’
'
’
]
[
]
- [
’
- .
’
'
l
'
l
'
’
'
’
L
L

Minkowski Sums: Computation

Task:
Idea:

Problem:

12 -

How would you compute P @ R given P and R?
P®R=CH({p+r|peP,reR})

complexity € O(|P| - |R|)

W o
““““
1

1
l
'
’
'
’
'
’
]
[
]
-)
’
- .
’
'
l
'
l
'
’
'
’
L
L

- (

POR

12-9

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12 - 10

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12 -11

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12 -12

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12 -13

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12 -14

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12 -15

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12 -16

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.:-)

POR

12-17

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P

and R can be computed in O(|P| + |R|) time.
O\

POR

12 -18

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.

-
/

12-19

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.

{ 77@72:\
/

12 - 20

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem: Com;)rlexity c O(|P|-|R|)

Theorem. The Minkowski sum of two convex polygons P
and R can be computed in O(|P| + |R|) time.

/

Pseudodisks
%05

Definition: A pair of planar objects 01 and 05 is a pair of
pseudodisks if:
® Jo; Nint(0y) is connected, and
® Jo, Nint(o7) is connected.

Pseudodisks
%05

Definition: A pair of planar objects 01 and 05 is a pair of
pseudodisks if:
® Jo; Nint(0y) is connected, and
® Jo, Nint(o7) is connected.

Pseudodisks
%05

Definition: A pair of planar objects 01 and 05 is a pair of
pseudodisks if:
® Jo; Nint(0y) is connected, and
® Jo, Nint(o7) is connected.

p € doq M doy is a boundary crossing if do1 crosses at p from
the interior to the exterior of 0.

Pseudodisks
%05

Definition: A pair of planar objects 01 and 05 is a pair of
pseudodisks if:
® Jo; Nint(0y) is connected, and
® Jo, Nint(o7) is connected.

p € doq M doy is a boundary crossing if do1 crosses at p from
the interior to the exterior of 0.

Observation: A pair of polygonal pseudodisks defines at
most two boundary crossings.

14 -1

Extreme Directions

Observation: Let Py, P, be interior-disjoint convex polygons

14 -2

Extreme Directions

Observation: Let Py, P, be interior-disjoint convex polygons
Let dq and d» be directions in which P; is
more extreme than Ps.

14 -3

Extreme Directions

Observation: Let Py, P, be interior-disjoint convex polygons
Let dq and d» be directions in which P; is
more extreme than Ps.

14 -4

Extreme Directions

Observation: Let Py, P, be interior-disjoint convex polygons
Let dq and d» be directions in which P; is
more extreme than Ps.

Then ‘P; is more extreme than P, either in

[dl,dz] Or iIn [dz, dl]

14 -5

Extreme Directions

Observation: Let Py, P, be interior-disjoint convex polygons
Let dq and d» be directions in which P; is
more extreme than Ps.

Then ‘P; is more extreme than P, either in

[dl,dz] Or iIn [dz, dl]

14 -6

Extreme Directions

Observation: Let Py, P, be interior-disjoint convex polygons
Let dq and d» be directions in which P; is
more extreme than Ps.

Then ‘P; is more extreme than P, either in

[dl,dz] Or iIn [dz, dl]

14 -7

Extreme Directions

Observation: Let Py, P, be interior-disjoint convex polygons
Let dq and d» be directions in which P; is
more extreme than Ps.

Then ‘P; is more extreme than P, either in

[dl,dz] Or iIn [dz, dl]

e e dy P, and Py

equally
extreme
dq
dq ‘W P1 more
d, extreme
P> more

extreme

15-1

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,
then P © R and P, @ R is a pair of pseudodisks.

15-2

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,

then P © R and P, @ R is a pair of pseudodisks.
—— ——
CPq CP>

15-3

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,

then P © R and P, @ R is a pair of pseudodisks.
—— ——
CPq CP>

Proof. It suffices to show: CPq \ CP; is connected.

15-4

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,

then P © R and P, @ R is a pair of pseudodisks.
—— ——
CPq CP>

Proof. It suffices to show: C'P; \ CP; is connected.
Suppose CPq \ CP; is not connected...

N CPZ

CPly

15-5

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,

then P © R and P, @ R is a pair of pseudodisks.
—— ——
CPq CP>

Proof. It suffices to show: C'P; \ CP; is connected.
Suppose CPq \ CP; is not connected...

r
CP1

S

15-6

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,

then P © R and P, @ R is a pair of pseudodisks.
—— ——
CPq CP>

Proof. It suffices to show: C'P; \ CP; is connected.
Suppose CPq \ CP; is not connected...

15-7

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,

then P © R and P, @ R is a pair of pseudodisks.
—— ——
CPq CP>

Proof. It suffices to show: C'P; \ CP; is connected.
Suppose CPq \ CP; is not connected...

15-8

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,

then P © R and P, @ R is a pair of pseudodisks.
—— ——
CPq CP>

Proof. It suffices to show: C'P; \ CP; is connected.
Suppose CPq \ CP; is not connected...

4 to previous observation!

15-9

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,
then P © R and P, @ R is a pair of pseudodisks.

H/—/ H/—/
CP1 CP»
Proof. It suffices to show: CPq \ CP; is connected.

Suppose CPq \ CP; is not connected...

4 to previous observation!

since
—dg and d; are also extreme for P; and
—dy and d, are also extreme for Ps.

15-10

Polygonal Pseudodisks

Theorem: If Py and P, are convex polygons with disjoint
interiors, and ‘R is another convex polygon,
then P © R and P, @ R is a pair of pseudodisks.

H/—/ H/—/
CP1 CP»
Proof. It suffices to show: CPq \ CP; is connected.

Suppose CPq \ CP; is not connected...

4 to previous observation!

since
—dg and d; are also extreme for P; and
—dy and d, are also extreme for Ps.

(and P; and P, are convex and
interior-disjoint).

16 -

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

16 -2

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs

with 7 vtc in total has a union with < 2n vtc.
[]

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 -3

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs

with 7 vtc in total has a union with < 2n vtc.
[]

1y

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 -4

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 -5

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 -6

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 -7

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 -8

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

0

A

16 -9

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

0
R

16 - 10

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

A

16 - 11

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

RN

16 - 12

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

e A

16 -13

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 - 14

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

16 - 15

Union Complexity

Theorem: A collection S of convex polygonal pseudodiscs
with 7 vtc in total has a union with < 2n vtc.

‘boundary crossing

adjacent vitx

in the interior
of the union D

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

17 -

17 -2

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Summary and Main Result

Theorem: Let R be a constant-complexity convex

Proof.

robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

17 - G

Summary and Main Result

Theorem: Let R be a constant-complexity convex

Proof.

robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

e Triangulate the obstacles if not convex.

17 -

17 -5

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Proof.

e Triangulate the obstacles if not convex. Ch.3

17 -6

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Proof.

e Triangulate the obstacles if not convex. Ch.3

17 -7

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3

e Compute CP; for every convex obstacle P;.

17 -8

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3

e Compute CP; for every convex obstacle P;.

17 -9

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3
e Compute CP; for every convex obstacle P;.

® Compute their union Ciyp, = |J; CP;
using ...?

17 -10

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3
e Compute CP; for every convex obstacle P;.

e Compute their union Ciy, = UJ; CP;
using div. and conq. (merge by sweeping — Ch.2.3)

17 -11

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3
e Compute CP; for every convex obstacle P;.

e Compute their union Ciy, = UJ; CP;
using div. and conq. (merge by sweeping — Ch.2.3)

17 -12

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3
e Compute CP; for every convex obstacle P;.

e Compute their union Ciy, = UJ; CP;
using div. and conq. (merge by sweeping — Ch.2.3)

|Argue carefully about the number of intersection pts!]

17 -13

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3
e Compute CP; for every convex obstacle P;.

e Compute their union Ciy, = UJ; CP;
using div. and conq. (merge by sweeping — Ch.2.3)
|Argue carefully about the number of intersection pts!]

® Find a path for a point in the complement Cyee.

17 - 14

Summary and Main Result

Theorem: Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

We can preprocess S in O(nlog? 1) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free

path for R if it exists.
Proof.

e Triangulate the obstacles if not convex. Ch.3
e Compute CP; for every convex obstacle P;.

e Compute their union Ciy, = UJ; CP;
using div. and conq. (merge by sweeping — Ch.2.3)
|Argue carefully about the number of intersection pts!]

® Find a path for a point in the complement Cyee.

	Titel
	Planning
	Path Planning
	Point-Shaped Robots
	A First Result
	Degrees of Freedom
	Configuration Space
	Example: Translating 2D Polygonal Robots
	Some Linear Algebra
	Characterizing CP
	Minkowski Sums: Complexity
	Minkowski Sums: Computation
	Pseudodisks
	Extreme Directions
	Union Complexity
	Summary and Main Result

