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What about, say, polygonal robots?
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Every robot has some number d of degrees of freedom,
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The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.
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path for the robot in the original space.



Example: Translating 2D Polygonal Robots

A A
| 0 _
R(x,y) gy Y
v/l LY
R(x'y')
R(0,0) x' Tx (0,0) x' X

work space configuration space




Example: Translating 2D Polygonal Robots

) )
| A _
: R(x,y) (x", ') o
y + ] ] !
R(x.y')
N\ @
-1 1 T \ —p | —i T —
R(0,0) X X (0,0) X X
work space configuration space

e Compute CP; = {(x,v) : R(x,y) NP; # @D} for each P;.




Example: Translating 2D Polygonal Robots

) )
I
R(x,y)
y't -
R(x.y')
N\ @
_ - \—> | —=
R(0,0) X X (0,0)
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.




Example: Translating 2D Polygonal Robots

A

A

A .
R(x,y) (x,y)
y'} = =
R(x.y')
A <z NG
TR(O,O) ¥ T [ 7N0,0 ¥ \VIEN
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.




Example: Translating 2D Polygonal Robots

) )
I
R(x,y)
y't -
R(x.y')
N\ @
_ - \—> | —=
R(0,0) X X (0,0)
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.




Example: Translating 2D Polygonal Robots

A A
e A
R(x,y)
y't -
R(x',y')
A @
| :/ \| —
"R(0,0) X X
work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.
¢ Find a path for a point in the complement Cyee 0f Ciorp-




Example: Translating 2D Polygonal Robots

work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.
¢ Find a path for a point in the complement Cyee 0f Ciorp-




Example: Translating 2D Polygonal Robots

work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.

¢ Find a path for a point in the complement Cyee 0f Ciorp-
= collision-free path for the robot in work space




Example: Translating 2D Polygonal Robots

work space configuration space

e Compute CP; = {(x,v) : R(x,y) N'P; # @} for each P;.
® Compute their union Ciyy, = UU; CP;.

¢ Find a path for a point in the complement Cyee 0f Ciorp-
= collision-free path for the robot in work space




Some Linear Algebra

Vector sums



Some Linear Algebra

Vector sums ﬁ
p+q



Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,9y) = (Px + qx, Py + qy) -
p—Tq



Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4



Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

). 7.




Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

). 7.




Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}

). 7.




Some Linear Algebra

Vector sums

Algebra:  (px, py) + (qx,qy) = (px + 9z, Py +4y)
Geometry: place vectors head to tail

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}
Geometry: place copy of one shape

at every point of the other

). 1.




Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}
Geometry: place copy of one shape

at every point of the other

). 1.

Inversion




Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

Algebra: S1® S, ={p+4q|p€S1,9 €S2}

Geometry: place copy of one shape
at every point of the other

b

Inversion




Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums

Algebra: S1® S, ={p+4q|p€S1,9 €S2}

Geometry: place copy of one shape
at every point of the other

L\ L
Inversion

Algebra: —S={—-p|peS}




Some Linear Algebra

Vector sums p
Algebra:  (px, py) + (9x,qy) = (Px + qx, Py + qy)

Geometry: place vectors head to tail P4

Minkowski sums
Algebra: S1® S, ={p+4q|p€S1,9 €S2}
Geometry: place copy of one shape

at every point of the other

L\ N
Inversion

Algebra: —S={—-p|peS}
Geometry: rotate 180° (point-mirror) — J:g — (m

around reference point




10-1

Characterizing CP
Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.



10-2

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

CP



10-3

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

CP



10-4

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))
Proof.

CP



10 -5

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))
Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

CP

@ i
R(x,y)

R (0,0)



10-6

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).
/Ij//

CP

@ i
R(x,y)

R (0,0)

7, 77
<=



10-7

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.

In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).
“=" Suppose R(x,vy) intersects P.

CP

@ i
R(x,y)

R (0,0)

7, 77
<=



10 - 8

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

41 77 CP
=

@ i
R(x,y)

R (0,0)



10-9

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

7, 77
<=




10 -10

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

7, 77
<=




10 - 11

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

@ i
R(x,y)

R (0,0)

CP



10 -12

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

CP
""" Let (x,y) € P®(—R(0,0)).
Then there are points
g€ PandreR(0,0)
such that ... h
R(x,y)

R (0,0)



10 - 13

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...




10 - 14

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...




10 - 15

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...




10 - 16

Characterizing CP

Recall that CP = {(x,vy): R(x,y) NP # @} for an obstacle P.
In other words: R(x,y) intersects P < (x,y) € CP.

Theorem. CP =P & (—R(0,0))

Proof. Show: R(x,y) intersects P < (x,y) € P @ (—R(0,0)).

“=" Suppose R(x,vy) intersects P.
Let g € R(x,y) N'P. Then...

‘" Let (x,y) € P @ (—R(0,0)).

Then there are points

g€ PandreR(0,0)
such that ...




Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

prr

11 -



11-2

Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

prr




Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -



Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

prr
PDOR

A 7

e

11 -



Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -



Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -



Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -



Minkowski Sums: Complexity

Theorem: If P and R are convex polygons with n and m
edges, respectively, then P @ R is a convex
polygon with at most n + m edges.

11 -



Minkowski Sums: Computation




12 -2

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?

POR




12-3

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea:

POR




12 -4

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})

POR




12-5

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})

POR




12-6

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})
Problem:

POR




12-7

Minkowski Sums: Computation

Task: How would you compute P © R given P and R?
Idea: P®R=CH({p+r|peP,reR})

\

Problem: complexity € O( )

W o
““““
1

POR

1
l
'
’
'
’
'
’
]
[
]
- [
’
- .
’
'
l
'
l
'
’
'
’
L
L




Minkowski Sums: Computation

Task:
Idea:

Problem:

12 -
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P®R=CH({p+r|peP,reR})
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Definition: A pair of planar objects 01 and 05 is a pair of
pseudodisks if:
® Jo; Nint(0y) is connected, and
® Jo, Nint(o7) is connected.

p € doq M doy is a boundary crossing if do1 crosses at p from
the interior to the exterior of 0.

Observation: A pair of polygonal pseudodisks defines at
most two boundary crossings.
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CP1 CP»
Proof. It suffices to show: CPq \ CP; is connected.

Suppose CPq \ CP; is not connected...

4 to previous observation!

since
—dg and d; are also extreme for P; and
—dy and d, are also extreme for Ps.

(and P; and P, are convex and
interior-disjoint).
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