

Computational Geometry

Motion Planning

Lecture #10

Thomas van Dijk

Winter Semester 2018/19

current situation, desired situation

current situation, desired situation

current situation, desired situation

sequence of steps to reach the one from the other

Path Planning

current location, desired location

Path Planning

current location, desired location

Path Planning

current location, desired location

path to reach the one from the other

• Create trapezoidal map of obstacle edges.

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$

O(n)

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$ O(n)O(n)

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$ O(n)O(n)O(n)

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$ O(n)O(n)O(n) $O(\log n)$

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$ O(n)O(n)O(n) $O(\log n)$

O(n)

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$ O(n) O(n) O(n) $O(\log n)$ O(n)

 $O(n \log n)$

O(n)

O(n)

O(n)

O(n)

 $O(\log n)$

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

 $O(n \log n)$

O(n)

O(n)

O(n)

O(n)

 $O(\log n)$

- Create trapezoidal map of obstacle edges.
- Remove vertical extensions inside obstacles.
- Vertices at centers of trapez. and vertical ext.
- Connect "neighboring" vertices by line segm.
- Locate $p_{\text{start}}, p_{\text{goal}}$ in map $\rightarrow \Delta_{\text{start}}, \Delta_{\text{goal}}$.
- Do breadth-first search in the *roadmap* to find a path π from Δ_{start} to Δ_{goal} .
- Connect p_{start} , p_{goal} to π by line segments.

preprocessing

guerying

A First Result

Theorem: We can preprocess a set of polygonal obstacles with a total of *n* edges in $O(n \log n)$ expected time such that, given a start and a goal position, we can find a collision-free path for a point robot in O(n) time if it exists.

A First Result

Theorem: We can preprocess a set of polygonal obstacles with a total of *n* edges in $O(n \log n)$ expected time such that, given a start and a goal position, we can find a collision-free path for a point robot in O(n) time if it exists.

A First Result

Theorem: We can preprocess a set of polygonal obstacles with a total of *n* edges in $O(n \log n)$ expected time such that, given a start and a goal position, we can find a collision-free path for a point robot in O(n) time if it exists.

What about, say, *polygonal* robots?

Every robot has some number *d* of *degrees of freedom*, meaning that its *configuration* with respect to the world can be specified by *d* parameters.

Every robot has some number *d* of *degrees of freedom*, meaning that its *configuration* with respect to the world can be specified by *d* parameters.

Every robot has some number *d* of *degrees of freedom*, meaning that its *configuration* with respect to the world can be specified by *d* parameters.

Every robot has some number *d* of *degrees of freedom*, meaning that its *configuration* with respect to the world can be specified by *d* parameters.

2D translating, rotating robot

Every robot has some number *d* of *degrees of freedom*, meaning that its *configuration* with respect to the world can be specified by *d* parameters.

3D translating robot

3D translating, rotating robot

Configuration Space

robotic arm

Configuration Space

robotic arm

The *configuration space* is the *d*-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

robotic arm

work space

The *configuration space* is the *d*-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Path for a *point* through configuration space

The *configuration space* is the *d*-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Path for a *point* through configuration space

The *configuration space* is the *d*-dimensional space of all possible (i.e., obstacle avoiding) parameter value combinations.

Path for a *point* through configuration space

path for the *robot* in the original space.

work space

configuration space

8 - 1

• Compute $CP_i = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P}_i \neq \emptyset\}$ for each \mathcal{P}_i .

8 - 2

• Compute $CP_i = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P}_i \neq \emptyset\}$ for each \mathcal{P}_i .

8 - 3

8 - 4

Compute CP_i = {(x,y) : R(x,y) ∩ P_i ≠ Ø} for each P_i.
Compute their union C_{forb} = ∪_i CP_i.

8 - 5

Compute CP_i = {(x,y) : R(x,y) ∩ P_i ≠ Ø} for each P_i.
Compute their union C_{forb} = U_i CP_i.

- Compute $CP_i = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P}_i \neq \emptyset\}$ for each \mathcal{P}_i .
- Compute their union $C_{\text{forb}} = \bigcup_i C \mathcal{P}_i$.
- Find a path for a point in the complement C_{free} of C_{forb} .

- Compute $CP_i = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P}_i \neq \emptyset\}$ for each \mathcal{P}_i .
- Compute their union $C_{\text{forb}} = \bigcup_i C \mathcal{P}_i$.
- Find a path for a point in the complement C_{free} of C_{forb} .

- Compute $CP_i = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P}_i \neq \emptyset\}$ for each \mathcal{P}_i .
- Compute their union $C_{\text{forb}} = \bigcup_i C \mathcal{P}_i$.
- Find a path for a point in the complement C_{free} of C_{forb} . \Rightarrow collision-free path for the robot in work space

- Compute $CP_i = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P}_i \neq \emptyset\}$ for each \mathcal{P}_i .
- Compute their union $C_{\text{forb}} = \bigcup_i C \mathcal{P}_i$.
- Find a path for a point in the complement C_{free} of C_{forb} . \Rightarrow collision-free path for the robot in work space

Vector sums

Vector sums

Vector sums Algebra: $(p_x, p_y) + (q_x, q_y) = (p_x + q_x, p_y + q_y)$

Vector sums

Algebra: $(p_x, p_y) + (q_x, q_y) = (p_x + q_x, p_y + q_y)$ Geometry: place vectors head to tail

Vector sums Algebra: $(p_x, p_y) + (q_x, q_y) = (p_x + q_x, p_y + q_y)$ Geometry: place vectors head to tail

Minkowski sums

Vector sums Algebra: $(p_x, p_y) + (q_x, q_y) = (p_x + q_x, p_y + q_y)$ Geometry: place vectors head to tail

Minkowski sums

Vector sums

Algebra: $(p_x, p_y) + (q_x, q_y) = (p_x + q_x, p_y + q_y)$ Geometry: place vectors head to tail

$$p \xrightarrow{q} p + q$$

Minkowski sums

Algebra: $S_1 \oplus S_2 = \{ p + q \mid p \in S_1, q \in S_2 \}$

Vector sums $(p_x, p_y) + (q_x, q_y) = (p_x + q_x, p_y + q_y)$ Algebra: Geometry: place vectors head to tail Minkowski sums Algebra: $S_1 \oplus S_2 = \{ p + q \mid p \in S_1, q \in S_2 \}$ Geometry: place copy of one shape at every point of the other

Vector sums $(p_x, p_y) + (q_x, q_y) = (p_x + q_x, p_y + q_y)$ Algebra: Geometry: place vectors head to tail Minkowski sums Algebra: $S_1 \oplus S_2 = \{ p + q \mid p \in S_1, q \in S_2 \}$ Geometry: place copy of one shape at every point of the other Inversion

Recall that $CP = \{(x, y) : \mathcal{R}(x, y) \cap P \neq \emptyset\}$ for an obstacle P.

Recall that $C\mathcal{P} = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad (x, y) \in C\mathcal{P}$.

Recall that $C\mathcal{P} = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad (x, y) \in C\mathcal{P}$.

Theorem. $CP = P \oplus (-\mathcal{R}(0,0))$

Recall that $C\mathcal{P} = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \quad \Leftrightarrow \quad (x, y) \in C\mathcal{P}$.

Theorem. $CP = P \oplus (-\mathcal{R}(0,0))$

Proof.

Recall that $C\mathcal{P} = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \iff (x, y) \in C\mathcal{P}$. **Theorem.** $C\mathcal{P} = \mathcal{P} \oplus (-\mathcal{R}(0, 0))$ *Proof.* Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow (x, y) \in \mathcal{P} \oplus (-\mathcal{R}(0, 0))$.

Recall that $C\mathcal{P} = \{(x,y) : \mathcal{R}(x,y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x,y)$ intersects $\mathcal{P} \Leftrightarrow (x,y) \in C\mathcal{P}$. **Theorem.** $C\mathcal{P} = \mathcal{P} \oplus (-\mathcal{R}(0,0))$ *Proof.* Show: $\mathcal{R}(x,y)$ intersects $\mathcal{P} \Leftrightarrow (x,y) \in \mathcal{P} \oplus (-\mathcal{R}(0,0))$. " \Rightarrow "

"⇐"

Recall that $C\mathcal{P} = \{(x,y) : \mathcal{R}(x,y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x,y)$ intersects $\mathcal{P} \Leftrightarrow (x,y) \in C\mathcal{P}$. **Theorem.** $C\mathcal{P} = \mathcal{P} \oplus (-\mathcal{R}(0,0))$ *Proof.* Show: $\mathcal{R}(x,y)$ intersects $\mathcal{P} \Leftrightarrow (x,y) \in \mathcal{P} \oplus (-\mathcal{R}(0,0))$. " \Rightarrow " Suppose $\mathcal{R}(x,y)$ intersects \mathcal{P} .

Recall that $C\mathcal{P} = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow (x, y) \in \mathcal{CP}$. **Theorem.** $C\mathcal{P} = \mathcal{P} \oplus (-\mathcal{R}(0,0))$ *Proof.* Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow (x, y) \in \mathcal{P} \oplus (-\mathcal{R}(0, 0))$. " \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P} . Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then... "⇐"

Recall that $C\mathcal{P} = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow (x, y) \in \mathcal{CP}$. **Theorem.** $C\mathcal{P} = \mathcal{P} \oplus (-\mathcal{R}(0,0))$ *Proof.* Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow (x, y) \in \mathcal{P} \oplus (-\mathcal{R}(0, 0))$. " \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P} . Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then... "⇐"

Recall that $C\mathcal{P} = \{(x, y) : \mathcal{R}(x, y) \cap \mathcal{P} \neq \emptyset\}$ for an obstacle \mathcal{P} . In other words: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow (x, y) \in \mathcal{CP}$. **Theorem.** $C\mathcal{P} = \mathcal{P} \oplus (-\mathcal{R}(0,0))$ *Proof.* Show: $\mathcal{R}(x, y)$ intersects $\mathcal{P} \Leftrightarrow (x, y) \in \mathcal{P} \oplus (-\mathcal{R}(0, 0))$. " \Rightarrow " Suppose $\mathcal{R}(x, y)$ intersects \mathcal{P} . Let $q \in \mathcal{R}(x, y) \cap \mathcal{P}$. Then... "⇐"

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Task:How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?Idea:

Task:How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?Idea: $\mathcal{P} \oplus \mathcal{R} = CH(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\})$ (Proof?)

Task:How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?**Idea:** $\mathcal{P} \oplus \mathcal{R} = CH(\{p + r \mid p \in \mathcal{P}, r \in \mathcal{R}\})$ (Proof?)

Task:How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Idea:

$$\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad (Proof?)$$

Task:How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?Idea: $\mathcal{P} \oplus \mathcal{R} = CH(\{p + r \mid p \in \mathcal{P}, r \in \mathcal{R}\})$ (Proof?)

$$\mathcal{R} = CH(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad (Proof?)$$

complexity $\in \Theta($

Task:How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?**Idea:** $\mathcal{P} \oplus \mathcal{R} = CH(\{p + r \mid p \in \mathcal{P}, r \in \mathcal{R}\})$ (Proof?)

$$\mathcal{L} = CH(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad (Proof?)$$

complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) :-($

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) :-($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

- **Task:** How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?
- Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) := ($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

- **Task:** How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?
- Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) := ($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

- **Task:** How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?
- Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) := ($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

- **Task:** How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?
- Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) := ($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

- **Task:** How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?
- Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) := ($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

- **Task:** How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?
- Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) := ($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

- **Task:** How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?
- Idea:

- $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) :-($
- **Theorem.** The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.:-)

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Idea:

Problem:

 $\mathcal{P} \oplus \mathcal{R} = CH(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) :-($

Theorem. The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Idea:

Problem:

 $\mathcal{P} \oplus \mathcal{R} = CH(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) :-($

Theorem. The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.

Minkowski Sums: Computation

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Idea:

Problem:

 $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) :-($

Theorem. The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.

Minkowski Sums: Computation

Task: How would you compute $\mathcal{P} \oplus \mathcal{R}$ given \mathcal{P} and \mathcal{R} ?

Idea:

Problem:

 $\mathcal{P} \oplus \mathcal{R} = \operatorname{CH}\left(\{p+r \mid p \in \mathcal{P}, r \in \mathcal{R}\}\right) \quad (Proof?)$ complexity $\in \Theta(|\mathcal{P}| \cdot |\mathcal{R}|) :-($

Theorem. The Minkowski sum of two convex polygons \mathcal{P} and \mathcal{R} can be computed in $O(|\mathcal{P}| + |\mathcal{R}|)$ time.

Pseudodisks

Definition:

A pair of planar objects o_1 and o_2 is a pair of pseudodisks if:

- $\partial o_1 \cap \operatorname{int}(o_2)$ is connected, and
- $\partial o_2 \cap \operatorname{int}(o_1)$ is connected.

Pseudodisks

Definition:

A pair of planar objects o_1 and o_2 is a pair of pseudodisks if:

13 - 2

- $\partial o_1 \cap \operatorname{int}(o_2)$ is connected, and
- $\partial o_2 \cap \operatorname{int}(o_1)$ is connected.

02

Pseudodisks $o_1 \\ o_2$ o_2 o_1 o_2 o_2 o_1 o_2 o_2 o_2 o_2 o_3 o_4 o_2 o_2 o_3 o_4 o_2 o_2 o_3 o_4 o_2 o_3 o_4 o_2 o_3 o_4 o_2 o_3 o_4 o_4 o_2 o_3 o_4 o_4 o_4 o_2 o_3 o_4 o_4

 $p \in \partial o_1 \cap \partial o_2$ is a *boundary crossing* if ∂o_1 crosses at p from the interior to the exterior of o_2 .

Pseudodisks $o_1 \\ o_2$ O_2 $O_1 \\ O_2$ O_2 $O_1 \\ O_2$ O_2 O_2 O_1 O_2 O_2 O_2

13 - 4

• $\partial o_2 \cap \operatorname{int}(o_1)$ is connected.

 $p \in \partial o_1 \cap \partial o_2$ is a *boundary crossing* if ∂o_1 crosses at p from the interior to the exterior of o_2 .

Observation: A pair of polygonal pseudodisks defines at most two boundary crossings.

Observation: Let \mathcal{P}_1 , \mathcal{P}_2 be interior-disjoint convex polygons

Observation: Let \mathcal{P}_1 , \mathcal{P}_2 be interior-disjoint convex polygons Let d_1 and d_2 be directions in which \mathcal{P}_1 is more extreme than \mathcal{P}_2 .

Observation: Let \mathcal{P}_1 , \mathcal{P}_2 be interior-disjoint convex polygons Let d_1 and d_2 be directions in which \mathcal{P}_1 is more extreme than \mathcal{P}_2 .

Observation: Let \mathcal{P}_1 , \mathcal{P}_2 be interior-disjoint convex polygons Let d_1 and d_2 be directions in which \mathcal{P}_1 is more extreme than \mathcal{P}_2 . Then \mathcal{P}_1 is more extreme than \mathcal{P}_2 either in $[d_1, d_2]$ or in $[d_2, d_1]$.

Observation: Let \mathcal{P}_1 , \mathcal{P}_2 be interior-disjoint convex polygons Let d_1 and d_2 be directions in which \mathcal{P}_1 is more extreme than \mathcal{P}_2 . Then \mathcal{P}_1 is more extreme than \mathcal{P}_2 either in $[d_1, d_2]$ or in $[d_2, d_1]$.

Observation: Let \mathcal{P}_1 , \mathcal{P}_2 be interior-disjoint convex polygons Let d_1 and d_2 be directions in which \mathcal{P}_1 is more extreme than \mathcal{P}_2 . Then \mathcal{P}_1 is more extreme than \mathcal{P}_2 either in $[d_1, d_2]$ or in $[d_2, d_1]$.

Observation: Let \mathcal{P}_1 , \mathcal{P}_2 be interior-disjoint convex polygons Let d_1 and d_2 be directions in which \mathcal{P}_1 is more extreme than \mathcal{P}_2 . Then \mathcal{P}_1 is more extreme than \mathcal{P}_2 either in $[d_1, d_2]$ or in $[d_2, d_1]$. $\bullet d_2 \quad \mathcal{P}_2 \text{ and } \mathcal{P}_1$ equally extreme \mathcal{P}_1 d_1 $\checkmark d_1$ \mathcal{P}_1 more d''extreme d_2 \mathcal{P}_2 $d^{\prime\prime\prime}$ d''' \mathcal{P}_2 more extreme

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

Proof. It suffices to show: $CP_1 \setminus CP_2$ is connected.

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

Proof. It suffices to show: $CP_1 \setminus CP_2$ is connected. Suppose $CP_1 \setminus CP_2$ is not connected...

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

Proof. It suffices to show: $CP_1 \setminus CP_2$ is connected. Suppose $CP_1 \setminus CP_2$ is not connected...

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

Proof. It

It suffices to show: $CP_1 \setminus CP_2$ is connected. Suppose $CP_1 \setminus CP_2$ is not connected...

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

*Proof.*It suffices to show: $CP_1 \setminus CP_2$ is connected.Suppose $CP_1 \setminus CP_2$ is not connected...

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

*Proof.*It suffices to show: $CP_1 \setminus CP_2$ is connected.Suppose $CP_1 \setminus CP_2$ is not connected...

4 to previous observation!

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

*Proof.*It suffices to show: $CP_1 \setminus CP_2$ is connected.Suppose $CP_1 \setminus CP_2$ is not connected...

Theorem: If \mathcal{P}_1 and \mathcal{P}_2 are convex polygons with disjoint interiors, and \mathcal{R} is another convex polygon, then $\mathcal{P}_1 \oplus \mathcal{R}$ and $\mathcal{P}_2 \oplus \mathcal{R}$ is a pair of pseudodisks.

*Proof.*It suffices to show: $CP_1 \setminus CP_2$ is connected.Suppose $CP_1 \setminus CP_2$ is not connected...

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Union Complexity

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Union Complexity

Theorem: A collection *S* of convex polygonal pseudodiscs with *n* vtc in total has a union with $\leq 2n$ vtc.

Proof.

Charge every vtx of the union to a polygon vtx s.t. every polygon vtx is charged at most twice.

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set *S* of disjoint polygonal obstacles with *n* edges in total.

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set *S* of disjoint polygonal obstacles with *n* edges in total. We can preprocess *S* in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

• Triangulate the obstacles if not convex.

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

• Triangulate the obstacles if not convex. Ch.3

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

 $O(n \log n)$ • Triangulate the obstacles if not convex. Ch.3

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

- $O(n\log n)$
- Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

- $O(n \log n)$ O(n)
- $O(n \log n)$ Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof. $O(n \log n)$

- Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .
 - Compute their union $C_{\text{forb}} = \bigcup_i CP_i$ using ...?

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof. $O(n \log n)$ O(n)

- Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .
 - Compute their union $C_{\text{forb}} = \bigcup_i CP_i$ using div. and conq. (merge by sweeping – Ch.2.3)

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

- $O(n \log n)$ Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .
- $O(n \log^2 n)$ Compute their union $C_{\text{forb}} = \bigcup_i CP_i$ using div. and conq. (merge by sweeping – Ch.2.3)

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

- $O(n \log n)$ Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .
- $O(n \log^2 n)$ Compute their union $C_{\text{forb}} = \bigcup_i CP_i$ using div. and conq. (merge by sweeping – Ch.2.3) [Argue carefully about the number of intersection pts!]

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

- $O(n \log n)$ Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .
- $O(n \log^2 n)$ Compute their union $C_{\text{forb}} = \bigcup_i CP_i$ using div. and conq. (merge by sweeping – Ch.2.3) [Argue carefully about the number of intersection pts!]
 - Find a path for a point in the complement C_{free} .

Theorem: Let \mathcal{R} be a constant-complexity convex robot, translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(n \log^2 n)$ time such that, given any start and goal position, we can compute in O(n) time a collision-free path for \mathcal{R} if it exists.

Proof.

- $O(n \log n)$ Triangulate the obstacles if not convex. Ch.3
 - Compute CP_i for every convex obstacle P_i .
- $O(n \log^2 n)$ Compute their union $C_{\text{forb}} = \bigcup_i CP_i$ using div. and conq. (merge by sweeping – Ch.2.3) [Argue carefully about the number of intersection pts!]
 - Find a path for a point in the complement C_{free} .