

Lehrstuhl für INFORMATIK I Effiziente Algorithmen und wissensbasierte Systeme

Advanced Algorithms

Winter term 2019/20

Lecture 9. Exact Algorithms for Geometric Intersection Graphs

Slides by Paweł Rzążewski, Warsaw University of Technology

Steven Chaplick & Alexander Wolff

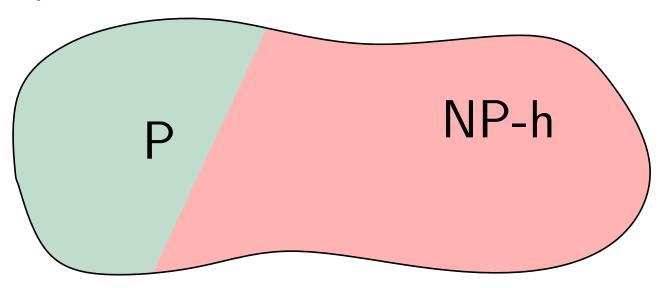
Chair for Computer Science I

Fine-Grained Complexity and the Exponential-Time Hypothesis

Classical Approach to Complexity Theory

Assuming $P \neq NP$, we partition problems into two sets:

- P (solvable in polynomial time) proven by presenting an algorithm worth attention, how fast can be solve them?
- NP-hard (no polynomial algorithm) proven by polynomial reductions hopeless, unsolvable



How Hard Are Hard Problems?

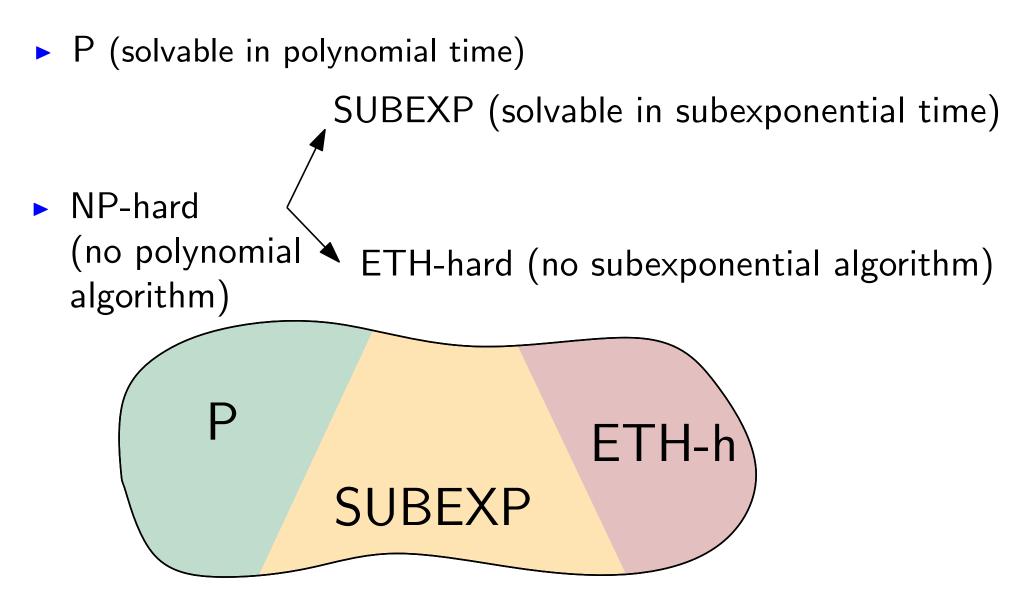
- Hard problems are quite common (even in practice).
- Many new algorithmic techniques
- ► NP-hardness → no polynomial algorithm

but maybe $2^{\mathcal{O}(\sqrt{n})}$? or even $2^{\mathcal{O}(\log^2 n)}$?

polynomial time: $n^{c} = 2^{c \log n} = 2^{\mathcal{O}(\log n)}$

A Closer Look

Being a stronger assumption than P \neq NP, ETH allows for a finer analysis:



Lower Bounds

- Hardness is proven via reductions.
- Start from 3-SAT with *n* variables and m = O(n) clauses.
- Construct an instance \mathcal{I} with $N = \mathcal{O}(n^{\alpha})$ vertices.

Algorithm solving
$$\mathcal{I}$$
 in time $2^{o(N^{1/\alpha})}$

Algorithm solving 3-SAT in time $2^{o(n)}$

 $\begin{array}{ll} \alpha = 1 & (\text{linear reduction}) & \rightarrow & \text{no } 2^{o(n)} \text{ algorithm} \\ \alpha = 2 & (\text{quadratic reduction}) & \rightarrow & \text{no } 2^{o(\sqrt{n})} \text{ algorithm} \end{array}$

What Can We Hope for?

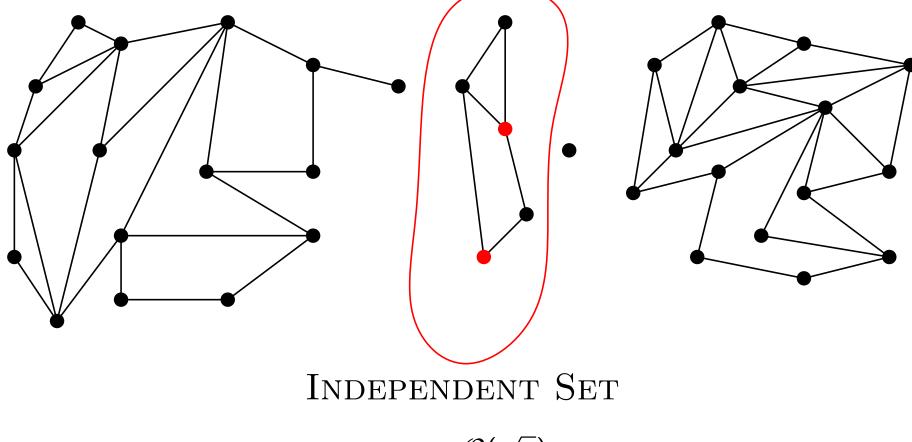
- Bad news: Assuming the ETH, there are no subexponential algorithms for canonical graph problems.
 - 3-Coloring, Independent Set, Clique, Dominating Set, Vertex Cover, Hamiltonian Cycle, Max Cut etc.
 - Boring!
- What about restricted classes of graphs? Planar graphs?
- Square-root phenomenon: For planar graphs, most canonical problems can be solved in time $2^{\mathcal{O}(\sqrt{n})}$.

Assuming the ETH, this cannot be improved to $2^{o(\sqrt{n})}$. Still boring!

Subexponential Algorithms for Planar Graphs

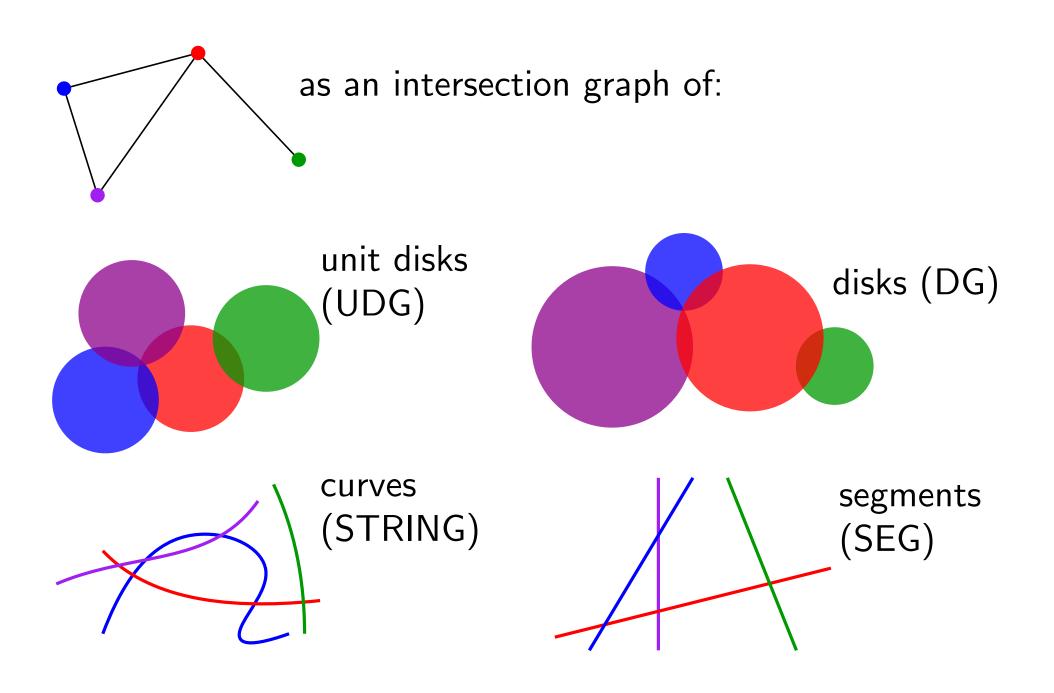
Planar separator theorem [Lipton & Tarjan 1979] Every planar graph has a balanced separator of size $O(\sqrt{n})$.

also specialized versions, e.g. the separator is a cycle

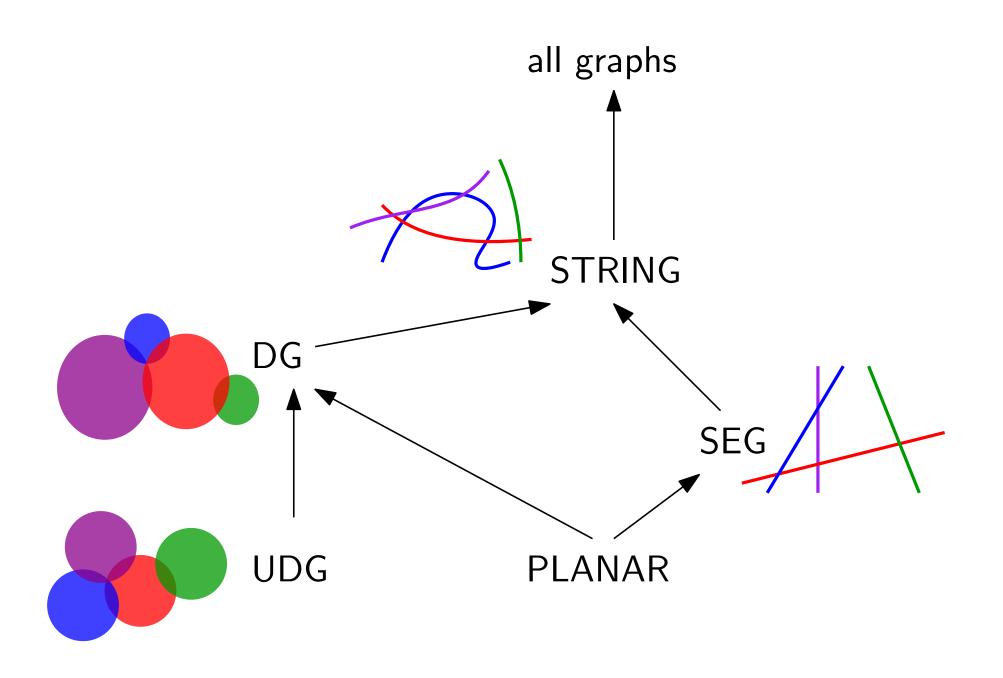


• Divide & conquer yields a $2^{\mathcal{O}(\sqrt{n})}$ -time algorithm.

Geometric Intersection Graphs



Relations Between Classes



Separator-Based Algorithms for Disk Intersection Graphs

k-COLORING Disk Graphs

Disk separator theorem[Miller et al. 1997]A disk intersection graph of with ply $\leq k$ has a balancedseparator of size $\mathcal{O}(\sqrt{nk})$.ply = max number

of disks covering a

single point

k-COLORING of disk graphs

- **1**. ply $> k \Rightarrow$ clique of size $> k \rightarrow$ return NO
- 2. ply $\leq k \Rightarrow$ balanced separator S of size $\mathcal{O}(\sqrt{nk})$
- 3. guess the coloring of S (one of $k^{|S|} = k^{O(\sqrt{nk})}$ possibilities) 4. recurse using divide & conquer

Theorem: For any fixed k, k-COLORING can be solved in time $2^{\mathcal{O}(\sqrt{n})}$ for disk graphs.

Key observation:

Yes-instances of *k*-COLORING do not have large cliques.

INDEPENDENT SET in Disk Graphs

- Existence of a large clique does not trivialize the instance...
- but not too much can happen in a clique.
- Let Q be a clique in G, $|Q| = \tau$.
 - ► At most one vertex of *Q* belongs to the optimal solution.
 - We can branch into $\tau + 1$ instances, each of size $n \tau$.

$$F(n) \leq (\tau+1) \cdot F(n-\tau) \leq (\tau+1)^2 \cdot F(n-2\tau)$$

$$\leq \dots \leq (\tau+1)^{n/\tau} \cdot \mathcal{O}(1) = 2^{\mathcal{O}(n/\tau \cdot \log \tau)} = 2^{\widetilde{\mathcal{O}}(n/\tau)}$$

$$\widetilde{\mathcal{O}}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$$

Algorithm.

- 1. ply > $\tau \Rightarrow$ clique of size > τ , branch $(2^{\mathcal{O}(n/\tau)})$
- 2. ply $\leq \tau \Rightarrow$ balanced separator S of size $\mathcal{O}(\sqrt{n\tau})$
- 3. guess the solution on S (one of $2^{|S|} = 2^{\mathcal{O}(\sqrt{n\tau})}$ possibilities) 4. recurse using divide & conquer $(2^{\mathcal{O}(\sqrt{n\tau})})$

INDEPENDENT SET in Disk Graphs (cont'd)

- We have two basic steps:
 - branching with complexity $2^{\widetilde{\mathcal{O}}(n/\tau)}$,
 - divide & conquer with complexity $2^{\mathcal{O}(\sqrt{n\tau})}$.
- How to choose the threshold τ ?

$$n/\tau = \sqrt{n\tau}$$
$$\tau = n^{1/3}$$

Theorem. INDEPENDENT SET can be solved in time $2^{\mathcal{O}(n^{2/3})}$ for disk graphs. We can do better;

more on this later.

Also, still quite boring!

Optimality for Segment and String Graphs

INDEPENDENT SET in String Graphs

String separator theorem[Matoušek 2014, Lee 2016]String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.

Theorem. [Fox & Pach 2011] INDEPEND. SET in string graphs can be solved in time $2^{\widetilde{O}(n^{2/3})}$.

There is a vertex v of degree at least τ = n^{1/3} ⇒ branch!
 ► Either discard v or put it into the solution.

$$\begin{aligned} F(n) &\leq F(n-1) + F(n-n^{1/3}) \leq F(n-2) + 2 \cdot F(n-n^{1/3}) \\ &\leq \dots \leq (n^{1/3}+1) \cdot F(n-n^{1/3}) \leq (n^{1/3}+1)^{n^{2/3}} = 2^{\widetilde{\mathcal{O}}(n^{2/3})} \\ & \text{time complexity } 2^{\widetilde{\mathcal{O}}(n^{2/3})} \end{aligned}$$

2. $m \le n^{4/3} \Rightarrow$ balanced separator of size $\mathcal{O}(n^{2/3})$

• Guess the solution on S and recurse $\Rightarrow 2^{\widetilde{\mathcal{O}}(n^{2/3})}$ time

3-Coloring

1. There is a vertex v of degree at least $\tau = n^{1/3}$

- ► Consider LIST 3-COLORING: lists are subsets of {1, 2, 3}.
- We can get rid of vertices with one-element lists.
- Possible lists are $\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$.
- At least $n^{1/3}/4$ neighbors of v have the same list L.
- There is a color c shared by L and L(v).
- Branch: either v gets color c or not.
- $N = \text{total size of all lists} \Rightarrow N \leq 3n$.

 $F(N) \leq F(N-1) + F(N-n^{1/3}/4) \leq 2^{\widetilde{O}(N^{2/3})} = 2^{\widetilde{O}(n^{2/3})}$

2. m ≤ n^{4/3} ⇒ balanced separator of size O(n^{2/3})
▶ Guess the solution on S and recurse ⇒ 2^{Õ(n^{2/3})} time.

What about 4-COLORING?

- The second step (divide & conquer) works.
- ▶ In LIST 4-COLORING lists are subsets of {1, 2, 3, 4}.
- We can get rid of vertices with one-element lists.
- Possible lists are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, ..., {1,2,3,4}.
- If a large-degree vertex v has list {1,2} and almost all of its neighbors have lists {3,4}, we don't know what to do!
- These edges are meaningless for coloring, why not just remove them?

The resulting graph might not be a string graph :-(\Rightarrow We cannot use the separator theorem!

k-COLORING of String Graphs

Theorem [Bonnet & Rz. 2018] k-COLORING for string graphs: 1. for k = 3, can be solved in time $2^{\tilde{O}(n^{2/3})}$, 2. for $k \ge 4$, cannot be solved in time $2^{o(n)}$ (under the ETH).

► Let's try to show hardness for LIST 4-COLORING.

What do we know about the constructed instance G?

• Must have $\Theta(n^2)$ edges –

otherwise we get a sublinear separator.

For (almost) every large-degree vertex v, (almost) each of its neighbors has a totally disjoint list of colors – otherwise we can branch effectively.

Even though G is dense, almost all its edges are meaningless!

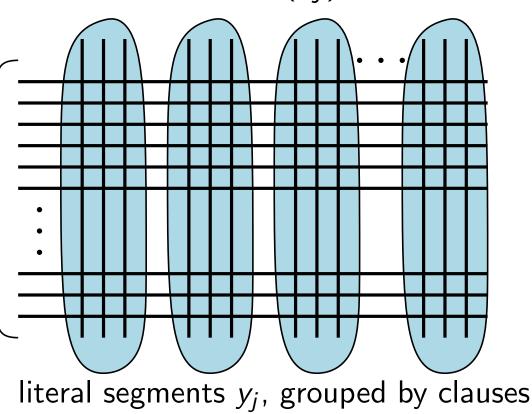
Hardness of LIST 4-COLORING

- Reduce from 3-SAT with *n* variables and m = O(n) clauses.
- Variables: v_1, v_2, \ldots, v_n , clauses: C_1, C_2, \ldots, C_m
- We show hardness even for segment graphs.
- We introduce a grid-like structure of variable segments (x_i) and literal segments (y_j)

variable segments: x_i represents v_i

Intended meaning:

1 and 3 correspond to true 2 and 4 correspond to false



Hardness of LIST 4-COLORING (cont'd)

Consistency of colorings:

Segments x_i and y_j that correspond to the same variable...

- positive occurrence: x_i gets color 1 iff y_j gets color 3
- negative occurrence: x_i gets color 1 iff y_j gets color 4

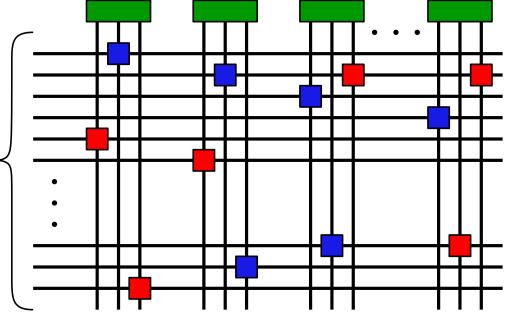
Satisfiability

at least one of y's must be colored 3

> variable segments: x_i represents v_i

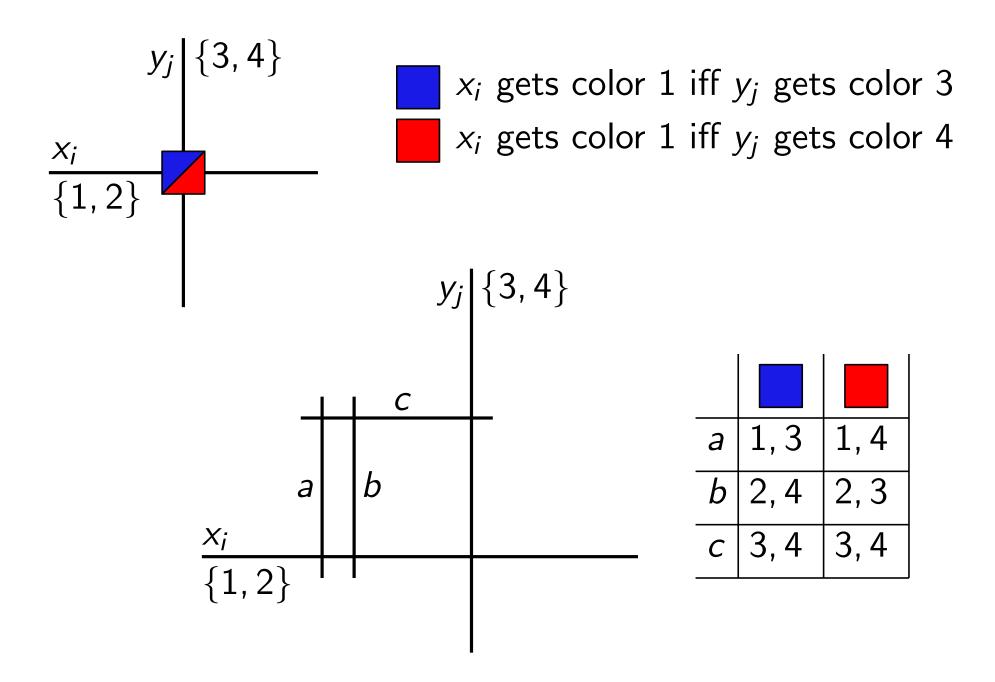
Intended meaning:

1 and 3 correspond to true 2 and 4 correspond to false

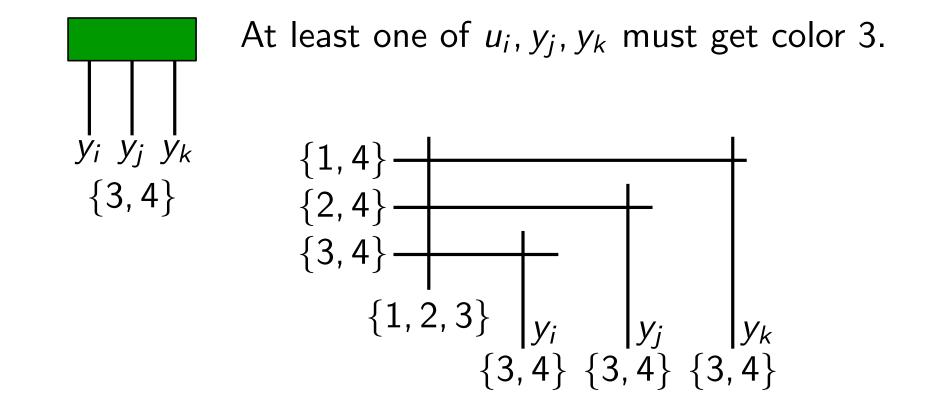


literal segments y_j , grouped by clauses

Consistency Gadgets



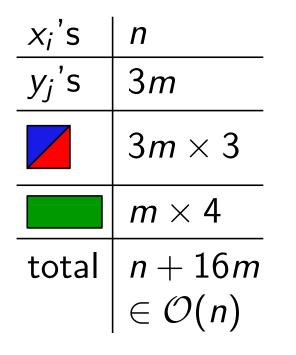
Satisfiability Gadget

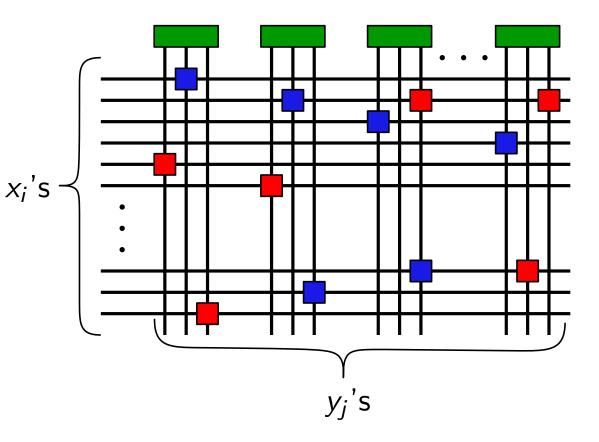


Note that there are segments with 3-element lists – if all lists have ≤ 2 elements, then the problem is in P!

Wrap-Up

- We've reduced from 3-SAT with *n* variables and *m* = O(*n*) clauses.
- How many segments do we have?





- Assume we could LIST 4-COLOR segment graphs with N vertices in time 2^{o(N)}.
 - ⇒ Could solve 3-SAT in time $2^{o(n)}$. ⇒ ETH would fail.

– End of Lecture –

FEEDBACK VERTEX SET in string graphs

- remove the minimum number vertices to destroy all cycles
- if we have a small separator, the divide & conquer works
- what if we have a vertex of large degree?

Theorem [Lee, 2016].

String graphs with no subgraph $K_{t,t}$ have $\mathcal{O}(n \cdot t \log t)$ edges.

• combining with the separator of size $\mathcal{O}(\sqrt{m})$, we get

Corollary. Every string graph either has a biclique $K_{t,t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.

FEEDBACK VERTEX SET in string graphs Corollary. Every string graph either has a biclique $K_{t,t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$. • set $t = n^{1/3}$

- 1. if there are at least $\widetilde{\Omega}(n^{4/3})$ edges
- there is a biclique $K_{n^{1/3},n^{1/3}}$ for $t = n^{1/3}$, classes A and B

cycle!

- we must remove all but one vertex from A or B
- ▶ branch: we select a class (2 ways) and a vertex ($n^{1/3}$ ways) that might survive $F(n) \le 2n^{1/3} \cdot F(n n^{1/3}) \le 2^{\widetilde{O}(n^{2/3})}$
- 2. otherwise there is a balanced separator of size $\widetilde{\mathcal{O}}(n^{2/3}) \rightarrow$ divide & conquer works in time $2^{\widetilde{\mathcal{O}}(n^{2/3})}$ total running time is $2^{\widetilde{\mathcal{O}}(n^{2/3})}$
 - ▶ But no 2^{o(n)} algorithm for ODD CYCLE TRANSVERSAL

A detour: the need of representation and robust algorithms

Finding geometric representations

- ► How fast can we find representations?
- Bad news: it is NP-hard to recognize string graphs, segment graphs [Kratochvíl, Matoušek, early 90s], (U) DGs [Breu, Kirkpatrick, '98, Kratochvíl, Hliněný, '01]
- ► NP-complete? Given a representation, you can verify it.
- Bad news: there are *n*-vertex string graphs, whose every representation requires 2^{Ω(n)} crossing points [KM]
- Bad news: there are *n*-vertex segment graphs, whose every representation requires coordinates with 2^{Ω(n)} digits [KM]
- ▶ is it even decidable? (yes, a non-trivial argument by Tarski)

Theorem [Schaefer, Sedgewick, Štefankovič, '03]. Recognizing string graphs is in NP.

Recognizing segment graphs

What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, '17]. Recognizing segment graphs is in $\exists \mathbb{R}$ -complete.

NP = class of problemspolynomially equivalent to SAT.

SAT: decide if a formula is **true** $\exists x_1 \exists x_2 \dots \exists x_n \ \Phi(x_1, \dots, x_n)$

 x_i 's are **boolean**, Φ is quantifier-free and uses $\land, \lor, \neg, =, \rightarrow$ $\exists \mathbb{R} - \text{class of problems}$ polynomially equivalent to ETR.

ETR: decide is a formula is **true** $\exists x_1 \exists x_2 \dots \exists x_n \ \phi(x_1, \dots, x_n)$

 x_i 's are **reals**, Φ is quantifier-free and uses $\land, \lor, \neg, =, \rightarrow, >, +, -, \times$ (in \mathbb{R})

- a strong indication that the problem is not in NP!
- similar for unit disk graphs [Kang, Müller, '12]

What about our algorithms?

$\label{eq:independent} {\rm Independent} \ {\rm Set} \ in \ disk \ graphs$

- 1. if we find a clique of size $> n^{1/3}$, branch
- 2. otherwise, find a balanced separator S of size $\mathcal{O}(n^{2/3})$
- 3. guess the solution on S
- 4. recurse using divide & conquer

Total running time: $2^{\widetilde{\mathcal{O}}(n^{2/3})} + 2^{\widetilde{\mathcal{O}}(n^{2/3})} = 2^{\widetilde{\mathcal{O}}(n^{2/3})}$.

- where do we need a representation?
- enumerating all possibilities takes time $n^{n^{2/3}} = 2^{\widetilde{O}(n^{2/3})}$

we do not really need a representation!

Robust algorithms

- An algorithm is robust, if it either
 - computes the correct solution, or
 - correctly concludes that the input does not belong to the right class (here: disk graphs)
- notion introduced by Spinrad
- it's not really an algorithm for disk graphs, but for the class *X* =graphs with balanced separators of size *O*(√*n* · ω(*G*))

 disk graphs ⊆ *X*

on the other hand, our hardness results hold even if a geometric representation is given

When large cliques do not help

$C \ensuremath{\text{LIQUE}}$ in disk graphs

- CLIQUE is polynomially solvable in UDG [Clark et al., 1990]
- the complexity for DG is open
- the existence of a large clique does not make the problem any easier!
- we need to make our hands dirty and look at the properties of geometric representations
- by some epsilon-perturbation we can assume that no three centers are aligned

Notation: vertex v_i is represented by a disk with the center c_i

C₄'s in disk graphs

Simple observation.

In any disk representation of of C_4 with vertices v_1 , v_2 , v_3 , v_4 : the line $\ell(c_2c_4)$ crosses the segment c_1c_3 , or the line $\ell(c_1c_3)$ crosses the segment c_2c_4 .

 C_1

 C_{2}

 C_4

Proof by picture (follows from the Δ inequality)

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G = \overline{C_p + C_q}$ is not a disk graph. Proof by contradiction.

- suppose there is a representation
- let S_1, \ldots, S_p and S'_1, \ldots, S'_q be segments of the co-cycles
- (*): for every *i*, *j* either $\ell(S_i)$ crosses S_j or $\ell(S_j)$ crosses S_j
- define: a_i = number of S'_i 's intersected by $\ell(S_i)$
 - b_i = number of $\ell(S'_i)$'s intersected by S_i

 c_i = number of S'_i 's intersected by S_i

 $\sum_{i=1}^{p} (a_i + b_i - c_i) = \text{number of pairs } i, j \text{ satisfying } (\star) = pq$

- *a_i* = # of points where a line crosses a closed curve: even
 ∑^p_{i=1} b_i = ∑^q_{i=i} a'_i: also even
- $c_i = \#$ of intersection points of two closed curves: even
- $\sum_{i=1}^{p} (a_i + b_i c_i) = pq$ is even \rightarrow contradiction

$C \ensuremath{\text{LIQUE}}$ for disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G = \overline{C_p + C_q}$ is not a disk graph.

Theorem [Györi, Kostochka, Łuczak, '97]. If odd girth is at least δn , then there is X, such that $|X| = \widetilde{O}(1/\delta)$ and G - X is bipartite.

CLIQUE in $G \equiv$ INDEPENDENT SET in \overline{G}

INDEPENDENT SET in a co-disk graph:

- 2. no odd cycle of length $< n^{1/3} \rightarrow$ there is $|X| = O(n^{2/3})$ and G - X bipartite
- 3. odd *C* of length $\leq n^{1/3}$ and $\Delta \leq n^{1/3} \rightarrow |N[C]| \leq n^{2/3}$ and G N[C] is bipartite Theorem [BGKRzS '18].

guess the solution on X or N[C] and finish in poly time

CLIQUE in disk graphs can be solved in time $2^{\widetilde{O}(n^{2/3})}$.

Open problem: ${\rm MAX}\ {\rm Cut}$ in disk graphs

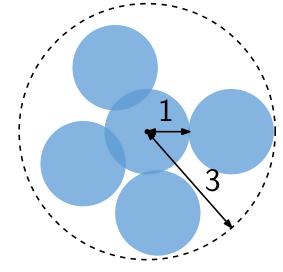
- partition vertices into two sets, to maximize the number of crossing edges
- ▶ NP-hard on unit disk graphs, reduction is quadratic \rightarrow no $2^{o(\sqrt{n})}$ algorithm
- is there a subexponential algorithm?
- Warning: edge-weighted version has no subexponential algorithm on complete graphs!
- complexity even unclear for (unit) interval graphs

Episode 2: parameterized algorithms

Geometric separators

k-INDEPENDENT SET in unit disk graphs

- ▶ is there an independent set of size at least k?
- are there k disjoint disks?
- a solution should take some space: if total area is $< k \cdot \pi$, then NO
- ► large area implies that a greedy algorithm works: if total area is $\geq k \cdot 9 \cdot \pi$, then YES



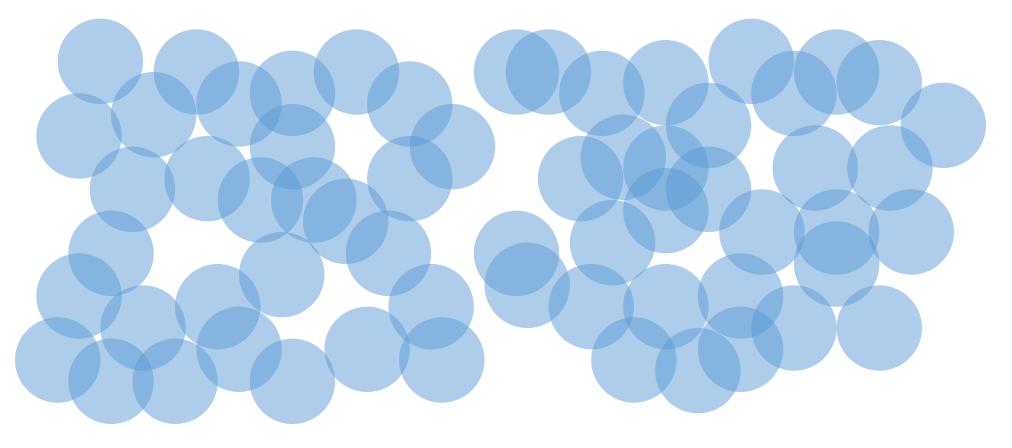
all disks intersecting the given one are contained in a disk of radius 3

• assume that $\pi \cdot k \leq \text{total area} \leq 9\pi \cdot k$

Geometric separator theorem for unit disks

Geometric separator theorem [Alber, Fiala, '04]. Given a collection of unit disks with total area A, there exists a set S of disks, such that:

- total area of disks in S is $\mathcal{O}(\sqrt{A})$,
- removing S gives connected parts of roughly equal area.



Divide & conquer using geometric separators

Algorithm [Alber, Fiala, '04].

- 1. A =total area
- 2. if $A < \pi \cdot k$, return NO
- **3**. if $A > 9\pi \cdot k$, return YES
- 4. find the geometric separator S of area $\mathcal{O}(\sqrt{A})$
- 5. guess the solution on S
- 6. remove *S* and recurse
- what is the largest possible independent set in S? ${\rm area}(S)/\pi = \mathcal{O}(\sqrt{k})$
- ▶ what is the maximum number of independent sets in S? $\sum_{i=0}^{\mathcal{O}(\sqrt{k})} \binom{n}{i} = n^{\mathcal{O}(\sqrt{k})}$
- overall complexity is $n^{\mathcal{O}(\sqrt{k})}$

Evaluation

Strengths

- simple
- parameterized
- Faster than what we had in the classical setting:
 ∑ⁿ_{k=1} n^{O(√k)} = 2^{Õ(√n)}, compared to 2^{Õ(n^{2/3})}
- optimal (under ETH)
- works also for disks and other shapes with bounded area

Weaknesses

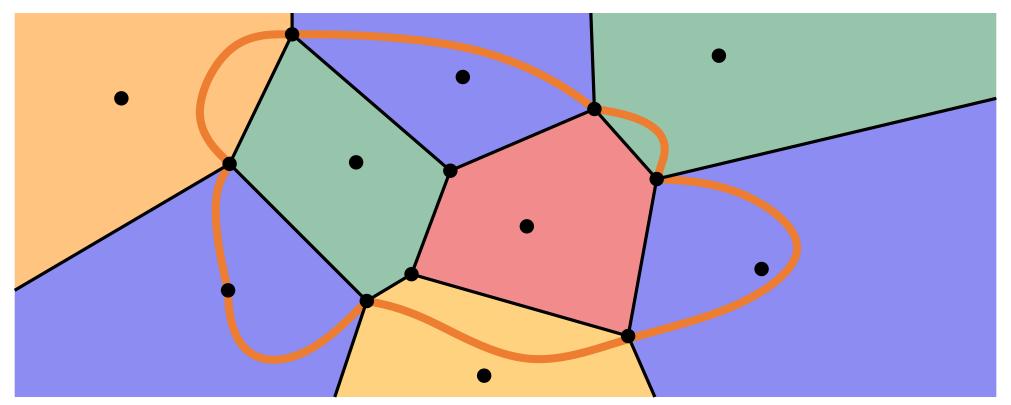
- doesn't work for general disk graphs, not to say about segment/string graphs
- necessarily requires a representation given

in the remainder of this part we will learn how to address the first weakness, using a different approach

Voronoi-diagram approach

Voronoi diagrams

- we are given n points in the plane (objects)
- each point of the plane is assigned to the closest object



it is (almost) a 3-regular 2-connected planar graph

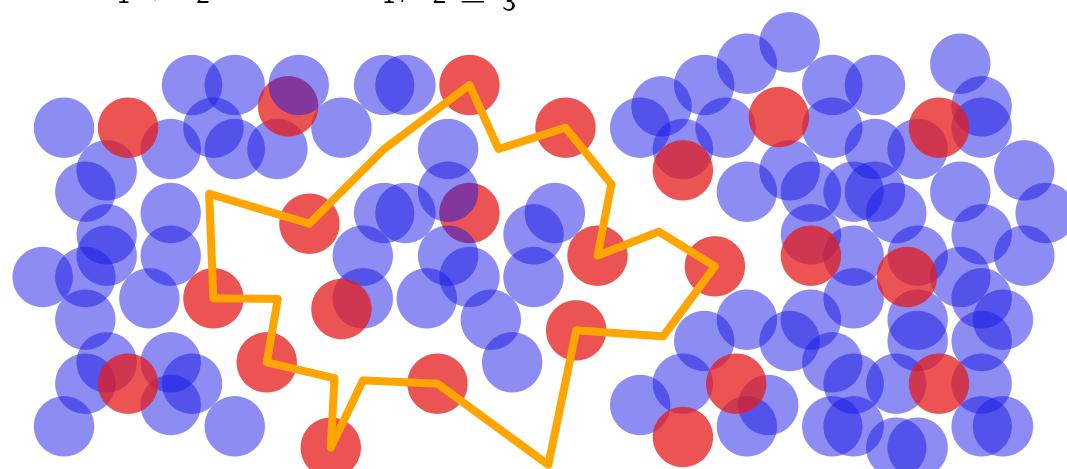
Theorem [Marx, Pilipczuk '15]. Each graph like this has a balanced noose separator of size $\mathcal{O}(\sqrt{n})$.

Solution Voronoi diagram

- consider a solution to the problem -k disjoint disks
- build the solution Voronoi diagram, where objects are centers of the disks in the solution
- there is a balanced noose separator, alternatingly visiting $\mathcal{O}(\sqrt{k})$ vertices and faces of the diagram
- turn the noose separator to a polygon Γ

Separators in a solution Voronoi diagram

- every disk touching the outline of the polygon or any of the disks on its vertices can be discarded
- ▶ apply recursion to disks inside and outside the polygon, we look for a solutions of size k_1 , k_2 , where $k_1 + k_2 = k$ and k_1 , $k_2 \le \frac{2}{3}k$



How to get a solution Voronoi diagram?

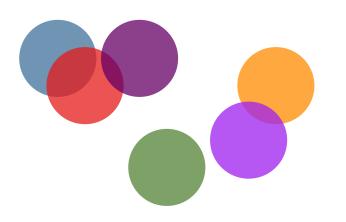
- but how can we know the solution Voronoi diagram?
- ► we can't, but we can still guess the polygon separator *Γ*
- vertices of Γ are:
 - $\mathcal{O}(\sqrt{k})$ centers of disks
 - $\mathcal{O}(\sqrt{k})$ vertices the Voronoi diagram \rightarrow each of them is uniquely defined by 3 centers
- ▶ so in order to guess Γ we need to guess $\mathcal{O}(\sqrt{k})$ disks

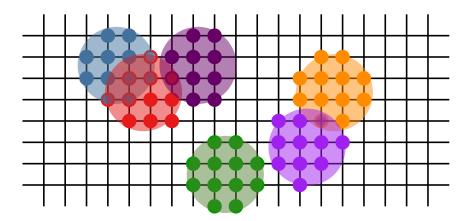
this requires time $n^{\mathcal{O}(\sqrt{k})}$

$$T(n,k) \leq n^{\mathcal{O}(\sqrt{k})} \cdot k^2 \cdot 2T(n,\frac{2}{3}k) = n^{\mathcal{O}(\sqrt{k})}$$

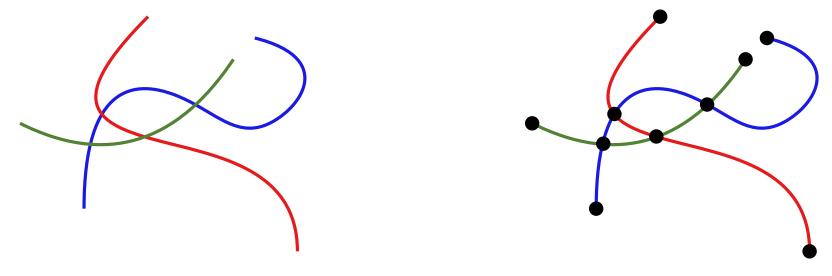
From disks to other geometric objects

disks can be seen as connected subgraphs of a fine grid





 string graphs = intersection graphs of connected subgraphs of planar graphs



General statement

the whole approach can be re-interpreted in terms of packing disjoint subgraphs of planar graphs

Theorem [Marx, Pilipczuk '15].

Given a planar graph G with r vertices and n connected subgraphs of G, in time $n^{\mathcal{O}(\sqrt{k})} \cdot \text{poly}(r)$ we can decide if there is a collection of k disjoint subgraphs.

- no assumptions on area
- works for weighted variants
- to some extent works also for covering variant (domination)

- necessarily requires geometric represention
- r is the number of geometric
 vertices: for string graphs it
 might be exponential in n
- for disks and segments r = poly(n)
- ► Open question: For disk graphs, is there a robust algorithm for INDEPENDENT SET with complexity 2^{o(k)} or 2^{Õ(√n)}?

Lower bounds for parameterized algorithms

Parameterized lower bounds

- ▶ we know that k-INDEPENDENT SET can be solved in time n^{O(√k)} in disk graphs
- we aim to show that this is asymptotically optimal

we will need the following

Theorem.

Assuming the ETH, k-CLIQUE cannot be solved in time $n^{o(k)}$.

► proof by a textbook reduction from 3-SAT

GRID TILING

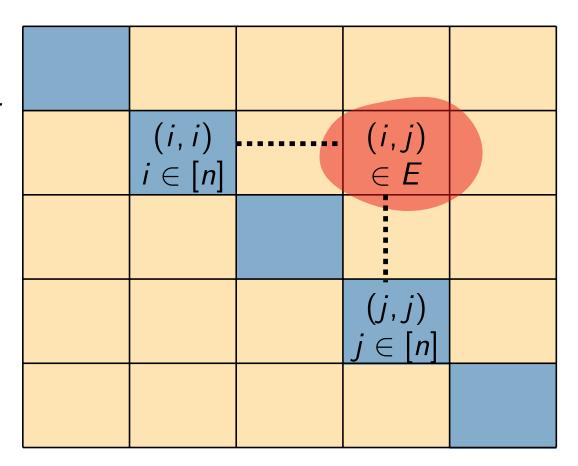
- we are given a square $t \times t$ grid
- ▶ in each cell (i, j) we have $S_{i,j} \subseteq [n] \times [n]$
- for each cell choose one pair, such that:
 - the first coordinates in each row are equal
 - the second coordinates in each column are equal
- how fast can we solve it?
- guess everything: $(n^2)^{t^2} = n^{\mathcal{O}(t^2)}$
- guess the diagonal: $(n^2)^t = n^{\mathcal{O}(t)}$
- we will show that this is optimal

(1,1) <mark>(1,2)</mark> (2,2)(2,3)	(1,1)(1,3) (1,4)(2,4) (3,1)	<mark>(1,4)</mark> (2,3) (2,4)(4,1)	(1,1) <mark>(1,4)</mark> (2,2)(2,3)	(1,1) (1,2) (2,2)(2,3)
(1,2)(1,3)	(2,1)(2,2)	(2,1)(2,3)	(2,5) <mark>(3,4)</mark>	(1,1)(1,2)
(3,2)(4,1)	(3,3)(3,5)	(3,4)(3,5)	(4,1)(4,2)	(3,2)
(1,1) <mark>(1,2)</mark>	(1,1) <mark>(1,3)</mark>	<mark>(1,4)</mark> (2,1)	(1,2) <mark>(1,4)</mark>	(1,1) (1,2)
(1,3)(1,4)	(2,4)(3,4)	(2,2)(2,3)	(3,1)(3,3)	(1,3)(2,2)
(1,2)(1,3)	(1,3)(2,1)	(2,1) <mark>(2,4)</mark>	(1,3)(2,3)	(1,4)(2,1)
(2,2)(2,3)	(2,3)(2,4)	(3,1)(3,2)	(2,4)(4,1)	(2,2)(3,1)
(2,1)(3,1)	(2,2)(2,4)	(2,3)(3,2)	(1,3)(3,2)	(1,3)(3,3)
(3,3) (4,2)	(4,3)(4,4)	(4,4)(4,5)	(3,4) (4,4)	(4,2)(4,3)

Hardness of $G \ensuremath{\mathsf{RID}}$ TILING

▶ $t \times t$ grid, each cell with some pairs from $[n] \times [n]$ Theorem. GRID TILING cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- ▶ reduction from k-CLIQUE with vertices 1, 2, ..., n, t = k
- Sets for the cell (*i*, *j*):
 (*x*, *y*) ∈ S_{*i*,*i*} if *x* = *y*(*x*, *y*) ∈ S_{*i*,*j*} if *xy* ∈ *E*
- Selected pairs on the diagonal correspond to a clique
- ► solving GRID TILING in time n^{o(t)} → solving k-CLIQUE in time n^{o(k)}



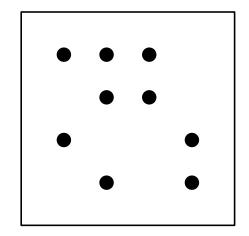
Grid Tiling with \leq

- we are given a square $t \times t$ grid
- ▶ in each cell (i, j) we have $S_{i,j} \subseteq [n] \times [n]$
- for each cell choose one pair, such that:
 - the first coordinates in each row are non-decreasing
 - the second coodrinates in each column are non-decreasing

Theorem. Assuming the ETH, there is no algorithm solving GRID TILING WITH \leq in time $n^{o(t)}$.

• each set $S_{i,j}$ can be seen as points of $n \times n$ grid

$$(1,1)(1,2)(1,3) (2,2)(2,3) (3,1)(3,4) (4,2)(4,4)$$



Hardness of INDEPENDENT SET in UDGs $% \mathcal{T}_{\mathcal{T}}$

Theorem. GRID TILING WITH \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids
- ▶ disks from one cell form a clique:
 we have t² cliques → size of max independent set is ≤ t²
- disks from consecutive cells can be chosen if coordinates are non-decreasing
- so the solution of size k = t² exists if and only if there is a solution for GRID TILING
- ► number of disks $N \le t^2 \cdot n^2$
- ▶ solving INDEPENDENT SET in time $N^{o(\sqrt{k})}$ → solving GRID TILING in time $n^{o(t)}$ → the ETH fails

Other faces of GRID TILING

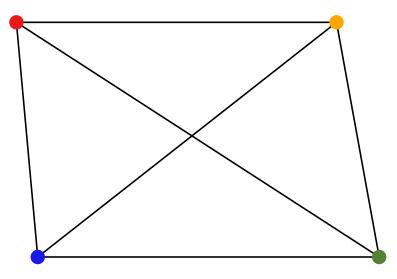
- similar approach can be used to show lower bounds for (CONNECTED) DOMINATING SET [Marx + Kisfaludi-Bak]
- reductions are not specific to disks: in general they can be adjusted for any convex fat shapes
- ▶ there is a variant for *k*-COLORING **Theorem** [Biró, Bonnet, Marx, Miltzow, Rz., '16]. *k*-COLORING of intersection graphs of translates of any convex fat shape cannot be solved in time $2^{o(\sqrt{nk})}$. here *k* is a
- ► there are also versions for any dimension d: for INDEPENDENT SET: $2^{\mathcal{O}(k^{1-1/d})}$ [Marx, Sidiropoulos '15] for *k*-COLORING: $2^{\widetilde{\mathcal{O}}(n^{1/d} \cdot k^{1-1/d})}$ [BBMMRz '16]

... but it's a different story

Bidimensionality in geometric graphs

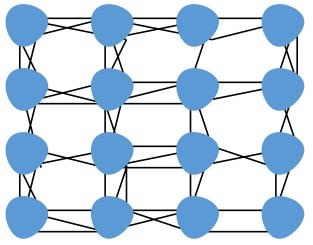
Minors

- minor = a graph obtained by deleting vertices/edges and contracting edges
- find some disjoint connected subgraphs and contract them to single vertices



Grid minor theorem

• the presence of $t \times t$ grid minor forces treewidth $\geq t$



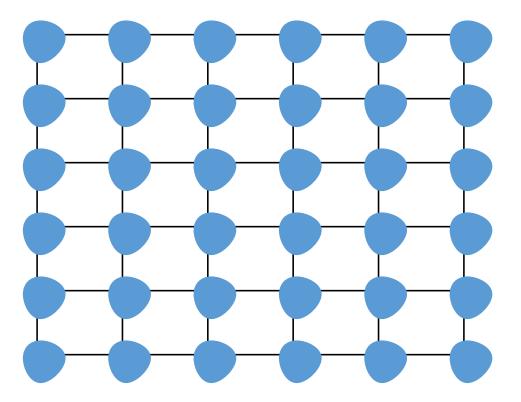
Grid minor theorem [Chuzhoy, Tan '19]. Every graph with treewidth $\widetilde{\Omega}(t^9)$ contains a $t \times t$ grid minor.

Planar grid minor theorem [Robertson, Seymour, Thomas '94, Gu, Tamaki '12].

Every planar graph with treewidth $\geq 9/2 \cdot t$ contains a $t \times t$ grid minor. There is a poly-time algorithm for finding a grid or a tree decomposition.

Bidimensionality for planar graphs

- ▶ if treewidth is O(√k), then many problem can be solved in time 2^{Õ(√k)} · poly(n)
- if not, we have a $100\sqrt{k} \times 100\sqrt{k}$ grid minor

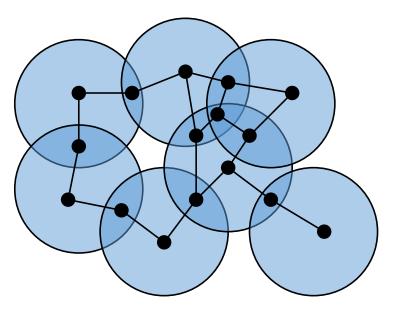


► 2^{Õ(√k)} · poly(n)-algorithms for many parameterized problems

Grid minors in unit disk graphs

we aim to prove a grid minor theorem for unit disk graphs

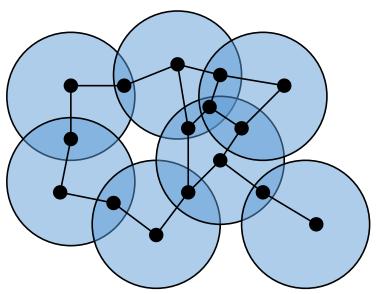
Lemma [Fomin, Lokshtanov, Saurabh '11]. Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.



▶ R(G) - region graph, R(G) is planar

Grid minors in unit disk graphs, continued

R(G) – region graph,
 R(G) is planar



Lemma. tw(G) = O(tw(R(G)))

 construct a tree decomposition of G based on a tree decomposition of R(G)

How to use it?

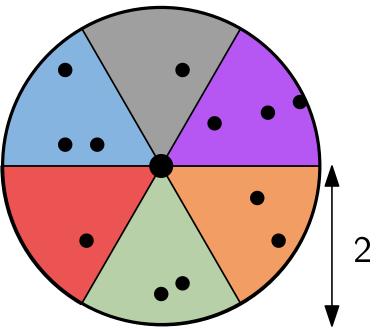
- R(G) contains $t \times t$ grid minor, where t = O(tw(R(G))).
- using this, we construct a $t' \times t'$ grid minor in G, where t' = O(t) = O(tw(G))

Grid minor theorem for unit disk graphs

Lemma[Fomin, Lokshtanov, Saurabh '11]. Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.

- ▶ if G has no clique of size p, then $\Delta \leq 6p$
- \blacktriangleright take a vertex of degree \varDelta
- centers or all neighbors are in the radius-2 disk
- centers in each region correspond to a clique
- add some technical magic

Theorem [FLS '11]. Every unit disk graph with no *p*-clique and treewidth $\Omega(p \cdot t)$ has a $t \times t$ grid minor.



Yet another win-win algorithm

► k-FEEDBACK VERTEX SET in unit disk graphs: is there a feedback vertex set of size ≤ k?

Initialization.

- $C \leftarrow$ a maximum clique in G (polynomial to find) $t \leftarrow 100\sqrt{k}$
- $\varepsilon \leftarrow 0.25$

1. If |C| > k + 2, return NO.

- 2. If $|C| > k^{\varepsilon}$, branch: $\exp\{k^{1-\epsilon} \log k\} \cdot \operatorname{poly}(n)$
- 3. If $|C| < k^{\varepsilon}$, then one of the following occurs:
 - (a) treewidth = $\mathcal{O}(k^{\varepsilon} \cdot t) = k^{\mathcal{O}(1/2 + \varepsilon)}$, divide & conquer

 $\frac{\exp\{k^{1+\epsilon}\} \cdot \operatorname{poly}(n)}{(b) \text{ grid minor of size } t \times t \to \operatorname{return NO}}$

Overall running time is $2^{\mathcal{O}(k^{0.75} \cdot \log k)} \cdot \operatorname{poly}(n)$.

Concluding comments

- this works for k-CYCLE PACKING, k-CYCLE, k-PATH, (CONNECTED) k-VERTEX COVER
- can be used to obtain EPTASes
- does not generalize to non-unit disk graphs
- we know algorithms with running time 2^{O(√k)} · poly(n) e.g. [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi '19]
 no 2^{o(√k)} · poly(n)-algorithms, unless the ETH fails