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Triangulation of Planar Point Sets

Definition: Given P C IR?, a triangulation of P is a maximal
planar subdivision with vtx set P, that is, no
edge can be added without crossing.

==

Observe: e all inner faces are triangles

e outer face is complement of a convex polygon

Theorem: Let P C IR? be a set of n sites, not all collinear,
and let /1 be the number of sites on JCH(P).

Then any triangulation of P has t(n, h) triangles
and e(n,h) edges. Task: Compute t and e!
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Back to Height Interpolation

height = 985 height = 23

Intuition: Avoid “skinny” triangles!

In other words: avoid small angles!
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Angle-Optimal Triangulations

Definition: Given a set P C R?and a triangulation 7 of P,
let m be the number of triangles in 7 and let
A(T) = (a1, ...,a3) be the angle vector of T,
where a1 < --- < ag,, are the angles in the
triangles of T .

We say A(T) > A(T")
if 3i€{1,...3m}:a; >a; and Vj <i: a;= oc;-.

T is angle-optimal if
A(T) > A(T') for all triangulations 7' of P.

T A(T) = (60°,60°,60°,60°,60°,60°) T’
?
———————

A(T") = (30°,30°,30°,30°,120°, 120°)
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Edge Flips

Definition: 7 a triangulation. An edge e of T is illegal
if the minimum angle in the two triangles
adjacent to e increases when flipping.

Observe:  Let e be an illegal edge of 7, and 7' = flip(T,e).
Then A(T") > A(T).

min; &; = 60° min; &; = 30°

/
T fip T
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Proof:

Note:

Definition:

Existence?

4
algorithm

terminates

[}
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Clearly... Every angle-optimal triangulation is legal.
But 1s every legal triangulation angle-optimal??

Let’s see.
To clarity things, we’ll introduce yet another
type of triangulation. ..
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Recall: Given a set P of n points in the plane. ..

Vor(P) = subdivision of the plane into
Voronoi cells, edges, and vertices

V(p) = {x € R?: |xp| < |xg| forallg € P\ {p}}
Voronoi cell of p € P

Definition: The graph G = (P, E) with
{p,q} € E & V(p) and V(g) share an edge
is the dual graph of Vor(P)

Definition: The Delaunay graph DG (P) is the straight-line
drawing of G.
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From Voronoi to Delaunay

Boris Nikolaevich Delone
(St. Petersburg 1890-1980 Moscow)

Georgy Feodosevich
Voronoy

(1868-1908 Zhuravki,
now Ukraine)
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Recall property of Voronoi edges:

Edge pg is in DG(P) < dDy, closed disk s.t.
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¢ = center(Dy,) lies on edge betw. V(p) & V(g).

Suppose Juv # pg in DG(P) that crosses pq.
u, 0 & Dpg = 1,0 & tp; =
uv crosses another edge of £,
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Planarity

Theorem.

Proof.

P C R? finite = DG(P) plane.

Recall property of Voronoi edges:
Edge pg is in DG(P) < dDy, closed disk s.t.
® p,q € dDy; and
° {p,q} = Dpg N P.
¢ = center(Dy,) lies on edge betw. V(p) & V(g).

Suppose Juv # pg in DG(P) that crosses pq.
u, 0 & Dpg = 1,0 & tp; =

uv crosses another edge of £,
P,4 & Dup = p,q & tuo =

pq crosses another edge of ¢,
= one of sy, Or s5, crosses one of sy, Or Sy

% spg CV(P), sqp CV(q), suo C V(u), Sou C V(0).
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Proof of Main Result (cont’d)
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