Computational Geometry

Delaunay Triangulations

or
Height Interpolation
Lecture \#8

[opentopomap.org]

Height Interpolation

Height Interpolation

$$
p=\left(x_{p}, y_{p}, z_{p}\right)
$$

Height Interpolation

$$
p=\left(x_{p}, y_{p}, z_{p}\right)
$$

$$
\pi(p)=\left(x_{p}, y_{p}, 0\right)
$$

Height Interpolation

$$
p=\left(x_{p}, y_{p}, z_{p}\right)
$$

$$
\pi(p)=\left(x_{p}, y_{p}, 0\right)
$$

Height Interpolation

$$
p=\left(x_{p}, y_{p}, z_{p}\right)
$$

$$
\pi(p)=\left(x_{p}, y_{p}, 0\right)
$$

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

0	0	0	0		0

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: - all inner faces are triangles

- outer face is complement of a convex polygon

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

- outer face is complement of a convex polygon

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^{2}$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \mathrm{CH}(P)$.

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: - all inner faces are triangles

- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^{2}$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \mathrm{CH}(P)$.
Then any triangulation of P has $t(n, h)$ triangles and $e(n, h)$ edges.

Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^{2}$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: - all inner faces are triangles

- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^{2}$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \mathrm{CH}(P)$.
Then any triangulation of P has $t(n, h)$ triangles and $e(n, h)$ edges. Task: Compute t and e !

Back to Height Interpolation

Back to Height Interpolation

height $=985$

height $=23$

Back to Height Interpolation

height $=985$

height $=23$

Intuition: Avoid "skinny" triangles!

Back to Height Interpolation

height $=985$

height $=23$

Intuition: Avoid "skinny" triangles!
In other words: avoid small angles!

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$

Angle-Optimal Triangulations
Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P,

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T}

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.
We say $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.
We say $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.
We say $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$

$$
\begin{aligned}
& A(\mathcal{T})=\left(60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}\right) \\
& A\left(\mathcal{T}^{\prime}\right)=\left(30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ}\right)
\end{aligned}
$$

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.
We say $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$
if $\exists i \in\{1, \ldots, 3 m\}$:

P

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.

```
We say }A(\mathcal{T})>A(\mp@subsup{\mathcal{T}}{}{\prime}
if }\existsi\in{1,\ldots,3m}:\mp@subsup{\alpha}{i}{}>\mp@subsup{\alpha}{i}{\prime
```


Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.
We say $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$
if $\exists i \in\{1, \ldots, 3 m\}: \alpha_{i}>\alpha_{i}^{\prime}$ and

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.

```
We say }A(\mathcal{T})>A(\mp@subsup{\mathcal{T}}{}{\prime}
if \existsi\in{1,\ldots,3m}:\alpha
```


Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.

```
We say \(A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)\) if \(\exists i \in\{1, \ldots, 3 m\}: \alpha_{i}>\alpha_{i}^{\prime}\) and \(\forall j<i: \alpha_{j}=\alpha_{j}^{\prime}\).
```

\mathcal{T} is angle-optimal if

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.
We say $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$
if $\exists i \in\{1, \ldots, 3 m\}: \alpha_{i}>\alpha_{i}^{\prime}$ and $\forall j<i: \alpha_{j}=\alpha_{j}^{\prime}$.
\mathcal{T} is angle-optimal if
$A(\mathcal{T}) \geq A\left(\mathcal{T}^{\prime}\right)$ for all triangulations \mathcal{T}^{\prime} of P.

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^{2}$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T})=\left(\alpha_{1}, \ldots, \alpha_{3 m}\right)$ be the angle vector of \mathcal{T}, where $\alpha_{1} \leq \cdots \leq \alpha_{3 m}$ are the angles in the triangles of \mathcal{T}.
We say $A(\mathcal{T})>A\left(\mathcal{T}^{\prime}\right)$
if $\exists i \in\{1, \ldots, 3 m\}: \alpha_{i}>\alpha_{i}^{\prime}$ and $\forall j<i: \alpha_{j}=\alpha_{j}^{\prime}$.
\mathcal{T} is angle-optimal if
$A(\mathcal{T}) \geq A\left(\mathcal{T}^{\prime}\right)$ for all triangulations \mathcal{T}^{\prime} of P.

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

$$
\min _{i} \alpha_{i}=60^{\circ}
$$

$$
\min _{i} \alpha_{i}=30^{\circ}
$$

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe: Let e be an illegal edge of \mathcal{T}, and $\mathcal{T}^{\prime}=\operatorname{flip}(\mathcal{T}, e)$.

$$
\min _{i} \alpha_{i}=60^{\circ}
$$

$$
\min _{i} \alpha_{i}=30^{\circ}
$$

flip

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe: Let e be an illegal edge of \mathcal{T}, and $\mathcal{T}^{\prime}=\operatorname{flip}(\mathcal{T}, e)$.

Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe: Let e be an illegal edge of \mathcal{T}, and $\mathcal{T}^{\prime}=\operatorname{flip}(\mathcal{T}, e)$. Then $A\left(\mathcal{T}^{\prime}\right)>A(\mathcal{T})$.

This is all Greek to me...
Theorem:

This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

$$
\{a, b\}:=\ell \cap \partial D(a \neq b)
$$

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

$$
\angle a p b=\angle a q b
$$

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

$$
\begin{aligned}
& \{a, b\}:=\ell \cap \partial D(a \neq b) \\
& p, q \in \partial D \\
& \quad r \in \operatorname{int}(D)
\end{aligned}
$$

$$
\angle a p b=\angle a q b
$$

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

$$
\begin{aligned}
& \{a, b\}:=\ell \cap \partial D(a \neq b) \\
& p, q \in \partial D \\
& \quad r \in \operatorname{int}(D)
\end{aligned}
$$

$$
\angle a p b=\angle a q b<\angle a r b
$$

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

$$
\begin{aligned}
& \{a, b\}:=\ell \cap \partial D(a \neq b) \\
& p, q \in \partial D \\
& \quad r \in \operatorname{int}(D) \\
& \quad s \notin D
\end{aligned}
$$

$$
\angle a p b=\angle a q b<\angle a r b
$$

This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

$$
\angle a s b<\angle a p b=\angle a q b<\angle a r b
$$

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof:

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.

Definition: A triangulation is legal if it has no illegal edge.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s
\Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge. Existence?

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s \Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s \Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. qs ${ }^{\prime}$.
Criterion symmetric in r and s
\Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.
$A(\mathcal{T})$ goes up!

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s \Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.
$A(\mathcal{T})$ goes up! \&

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s \Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.
$A(\mathcal{T})$ goes up! \& $\#($ triangulations of $P)<\infty$

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s \Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.
$\downarrow \quad A(\mathcal{T})$ goes up! \& \#(triangulations of $P)<\infty$

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s \Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let \mathcal{T} be any triangulation of P.
algorithm terminates While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}. $A(\mathcal{T})$ goes up! \& \#(triangulations of $P)<\infty$

Legal Triangulations

Lemma: \quad Let $\Delta p r q, \Delta p q s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge $p q$ is illegal iff $s \in \operatorname{int}(D)$.
If p, q, r, s in convex position and $s \notin \partial D$, then either $p q$ or $r s$ is illegal.

Proof: \quad Show: $\forall \alpha^{\prime}$ in $\mathcal{T}^{\prime} \exists \alpha$ in \mathcal{T} s.t. $\alpha<\alpha^{\prime}$. Use Thales++ w.r.t. $q s^{\prime}$.
Criterion symmetric in r and s \Rightarrow if $s \in \partial D$, both $p q$ and $r s$ legal.

Definition: A triangulation is legal if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. | $\frac{4}{\text { algorithm }}$ |
| :---: |
| terminates | While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up! \& \#(triangulations of $P)<\infty$

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal. But is every legal triangulation angle-optimal??

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal. But is every legal triangulation angle-optimal??

Let's see.

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal. But is every legal triangulation angle-optimal??

Let's see.
To clarify things, we'll introduce yet another type of triangulation...

Voronoi \& Delaunay

Recall: Given a set P of n points in the plane...

Voronoi \& Delaunay

Recall: Given a set P of n points in the plane...
$\operatorname{Vor}(P)=$ subdivision of the plane into
Voronoi cells, edges, and vertices

Voronoi \& Delaunay

Recall: Given a set P of n points in the plane...
$\operatorname{Vor}(P)=$ subdivision of the plane into
Voronoi cells, edges, and vertices

$$
\begin{aligned}
\mathcal{V}(p)= & \left\{x \in \mathbb{R}^{2}:|x p|<|x q| \text { for all } q \in P \backslash\{p\}\right\} \\
& \text { Voronoi cell of } p \in P
\end{aligned}
$$

Voronoi \& Delaunay

Recall: Given a set P of n points in the plane...
$\operatorname{Vor}(P)=$ subdivision of the plane into
Voronoi cells, edges, and vertices
$\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$
Voronoi cell of $p \in P$

Definition: The graph $\mathcal{G}=(P, E)$ with
$\{p, q\} \in E \Leftrightarrow \mathcal{V}(p)$ and $\mathcal{V}(q)$ share an edge is the dual graph of $\operatorname{Vor}(P)$

Voronoi \& Delaunay

Recall: Given a set P of n points in the plane...
$\operatorname{Vor}(P)=$ subdivision of the plane into Voronoi cells, edges, and vertices
$\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$ Voronoi cell of $p \in P$

Definition: The graph $\mathcal{G}=(P, E)$ with $\{p, q\} \in E \Leftrightarrow \mathcal{V}(p)$ and $\mathcal{V}(q)$ share an edge is the dual graph of $\operatorname{Vor}(P)$

Definition: The Delaunay graph $\mathcal{D} \mathcal{G}(P)$ is the straight-line drawing of \mathcal{G}.

From Voronoi to Delaunay
$P \subset \mathbb{R}^{2}$

From Voronoi to Delaunay
$P \subset \mathbb{R}^{2}$

From Voronoi to Delaunay
$P \subset \mathbb{R}^{2}$

From Voronoi to Delaunay

$P \subset \mathbb{R}^{2}$

Georgy Feodosevich Voronoy
(1868-1908 Zhuravki, now Ukraine)
o

From Voronoi to Delaunay

$$
P \subset \mathbb{R}^{2}
$$

Georgy Feodosevich Voronoy
(1868-1908 Zhuravki, now Ukraine)

From Voronoi to Delaunay

$P \subset \mathbb{R}^{2}$

Georgy Feodosevich Voronoy
(1868-1908 Zhuravki, now Ukraine)

From Voronoi to Delaunay

$P \subset \mathbb{R}^{2}$

Georgy Feodosevich Voronoy (1868-1908 Zhuravki, now Ukraine)

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:
 Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:
 Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t. - $p, q \in \partial D_{p q}$ and

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:
 Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$. Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$.

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$. $u, v \notin D_{p q} \Rightarrow$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$. $u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$.
$u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$.
$u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$
$p, q \notin D_{u v} \Rightarrow$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$.
$u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$
$p, q \notin D_{u v} \Rightarrow p, q \notin t_{u v} \Rightarrow$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$.
$u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$
$p, q \notin D_{u v} \Rightarrow p, q \notin t_{u v} \Rightarrow$
$p q$ crosses another edge of $t_{u v}$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$.
$u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$
$p, q \notin D_{u v} \Rightarrow p, q \notin t_{u v} \Rightarrow$
$p q$ crosses another edge of $t_{u v}$
\Rightarrow one of $s_{p q}$ or $s_{q p}$ crosses one of $s_{u v}$ or $s_{v u}$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$.
$u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$
$p, q \notin D_{u v} \Rightarrow p, q \notin t_{u v} \Rightarrow$
$p q$ crosses another edge of $t_{u v}$
\Rightarrow one of $s_{p q}$ or $s_{q p}$ crosses one of $s_{u v}$ or $s_{v u}$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$. $u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$
$p, q \notin D_{u v} \Rightarrow p, q \notin t_{u v} \Rightarrow$
$p q$ crosses another edge of $t_{u v}$
\Rightarrow one of $s_{p q}$ or $s_{q p}$ crosses one of $s_{u v}$ or $s_{v u}$

$$
s_{p q} \subset \mathcal{V}(p), s_{q p} \subset \mathcal{V}(q), s_{u v} \subset \mathcal{V}(u), s_{v u} \subset \mathcal{V}(v)
$$

Planarity

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite $\Rightarrow \mathcal{D} \mathcal{G}(P)$ plane.
Proof. Recall property of Voronoi edges:

Edge $p q$ is in $\mathcal{D G}(P) \Leftrightarrow \exists D_{p q}$ closed disk s.t.

- $p, q \in \partial D_{p q}$ and
- $\{p, q\}=D_{p q} \cap P$.
$c=\operatorname{center}\left(D_{p q}\right)$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.
Suppose $\exists u v \neq p q$ in $\mathcal{D} \mathcal{G}(P)$ that crosses $p q$. $u, v \notin D_{p q} \Rightarrow u, v \notin t_{p q} \Rightarrow$
$u v$ crosses another edge of $t_{p q}$
$p, q \notin D_{u v} \Rightarrow p, q \notin t_{u v} \Rightarrow$
$p q$ crosses another edge of $t_{u v}$
\Rightarrow one of $s_{p q}$ or $s_{q p}$ crosses one of $s_{u v}$ or $s_{v u}$
$\zeta s_{p q} \subset \mathcal{V}(p), s_{q p} \subset \mathcal{V}(q), s_{u v} \subset \mathcal{V}(u), s_{v u} \subset \mathcal{V}(v)$.

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

Characterization
Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then
(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$

(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P=\{p, q\}$ and

- $\operatorname{int}(D) \cap P=\varnothing$.

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$ there is a disk D with • $\partial D \cap P=\{p, q\}$ and - $\operatorname{int}(D) \cap P=\varnothing$.

Theorem. $P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P=\{p, q\}$ and - $\operatorname{int}(D) \cap P=\varnothing$.

Theorem. $P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$ there is a disk D with • $\partial D \cap P=\{p, q\}$ and - $\operatorname{int}(D) \cap P=\varnothing$.

Theorem. $P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : $\operatorname{int}(C(\Delta)) \cap P=\varnothing$.

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$ there is a disk D with • $\partial D \cap P=\{p, q\}$ and - $\operatorname{int}(D) \cap P=\varnothing$.

Theorem. $P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then C($($) \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : $\operatorname{int}(C(\Delta)) \cap P=\varnothing$.

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow Theorem. $P \subset \mathbb{R}^{2}$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P=\varnothing$
(ii) Two pts $p, q \in P$ form an edge of $\mathcal{D} \mathcal{G}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P=\{p, q\}$ and - $\operatorname{int}(D) \cap P=\varnothing$.

Theorem. $P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then C(() \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : $\operatorname{int}(C(\Delta)) \cap P=\varnothing$.
("empty-circumcircle property")

Main Result
Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \Leftrightarrow

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow "

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow "

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.
$\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay. $\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.
\square

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.
$\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay. $\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay. $\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ $" \Rightarrow$ " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay. $\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.
 Wlog. let $e=p q$ be the edge of $\Delta p q r$ such that s "sees" $p q$ before the other edges of $\Delta p q r$.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ $" \Rightarrow$ " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay. $\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.
 Wlog. let $e=p q$ be the edge of $\Delta p q r$ such that s "sees" $p q$ before the other edges of $\Delta p q r$.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ $" \Rightarrow$ " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay. $\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.
 Wlog. let $e=p q$ be the edge of $\Delta p q r$ such that s "sees" $p q$ before the other edges of $\Delta p q r$.
Among all such pairs $(\Delta p q r, s)$ in \mathcal{T} choose one that maximizes $\alpha=\angle p s q$.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. \& Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay. $\Rightarrow \exists \Delta p q r$ such that $\operatorname{int}(C(\Delta p q r))$ contains $s \in P$.
 Wlog. let $e=p q$ be the edge of $\Delta p q r$ such that s "sees" $p q$ before the other edges of $\Delta p q r$.
Among all such pairs $(\Delta p q r, s)$ in \mathcal{T} choose one that maximizes $\alpha=\angle p s q$.

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}. \mathcal{T} legal \Rightarrow

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}. \mathcal{T} legal $\Rightarrow e$ legal \Rightarrow

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}. \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$.

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$.

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+} .\left\{\begin{array}{l}\text { halflplane } \\ \text { suppored by } \\ \text { that contains }\end{array}\right.$

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$

$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$. | $\left\{\begin{array}{l}\text { halflplane } \\ \text { suppored by } \\ \text { that contains }\end{array}\right.$ |
| :--- |

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$. $\begin{aligned} & \text { haliflane } \\ & \text { suppored by } \\ & \text { that contains } s\end{aligned}$
$\Rightarrow s \in C(\Delta p q t)$

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$. $\begin{aligned} & \text { haliflane } \\ & \text { suppored by } \\ & \text { that contains } s\end{aligned}$
$\Rightarrow s \in C(\Delta p q t)$
Wlog. let $e^{\prime}=q t$ be the edge of $\Delta p q t$ that s sees.

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$. $\begin{aligned} & \text { haliflane } \\ & \text { suppored by } \\ & \text { that contains } s\end{aligned}$
$\Rightarrow s \in C(\Delta p q t)$
Wlog. let $e^{\prime}=q t$ be the edge of $\Delta p q t$ that s sees.

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$. $\begin{aligned} & \text { haliflane } \\ & \text { suppored by } \\ & \text { that contains } s\end{aligned}$
$\Rightarrow s \in C(\Delta p q t)$
Wlog. let $e^{\prime}=q t$ be the edge of $\Delta p q t$ that s sees.

$$
\Rightarrow \beta=\angle t s q \quad>\quad \alpha=\angle p s q
$$

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$. $\begin{aligned} & \text { halplpane } \\ & \text { supported by } \\ & \text { that contains } s\end{aligned}$
$\Rightarrow s \in C(\Delta p q t)$
Wlog. let $e^{\prime}=q t$ be the edge of $\Delta p q t$ that s sees.

$$
\Rightarrow \beta=\angle t s q \quad>\quad \alpha=\angle p s q
$$

Proof of Main Result (cont'd)

Consider the triangle $\Delta p q t$ adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \operatorname{int}(C(\Delta p q r))$
$\Rightarrow C(\Delta p q t)$ contains $C(\Delta p q r) \cap e^{+}$. $\begin{aligned} & \text { haliflane } \\ & \text { suppored by } \\ & \text { that contains } s\end{aligned}$
$\Rightarrow s \in C(\Delta p q t)$
Wlog. let $e^{\prime}=q t$ be the edge of $\Delta p q t$ that s sees.

$$
\Rightarrow \beta=\angle t s q \quad>\quad \alpha=\angle p s q
$$

\angle Contradiction to choice of the pair $(\Delta p q r, s)$.

Main Result
Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position...

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle!

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$ \Rightarrow legal triangulation unique

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$ \Rightarrow legal triangulation unique

$$
\Downarrow
$$

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$ \Rightarrow legal triangulation unique

$$
\Downarrow \text { angle-optimal } \Rightarrow \text { legal }
$$

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$ \Rightarrow legal triangulation unique
\Downarrow angle-optimal \Rightarrow legal [by def.]

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$
\Rightarrow legal triangulation unique
\Downarrow angle-optimal \Rightarrow legal [by def.]
Delaunay triangulation is angle-optimal!

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle!
\Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$
\Rightarrow legal triangulation unique
\Downarrow angle-optimal \Rightarrow legal [by def.]
Delaunay triangulation is angle-optimal!
Suppose P is not in general position...

Main Result

Theorem. $\quad P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle!
\Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$
\Rightarrow legal triangulation unique
\Downarrow angle-optimal \Rightarrow legal [by def.]
Delaunay triangulation is angle-optimal!
Suppose P is not in general position...
\Rightarrow Delaunay graph has convex "holes" bounded by co-circular pts

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$
\Rightarrow legal triangulation unique
\Downarrow angle-optimal \Rightarrow legal [by def.]
Delaunay triangulation is angle-optimal!
Suppose P is not in general position...
\Rightarrow Delaunay graph has convex "holes" bounded by co-circular pts
\Downarrow Thales++ homework exercise!

Main Result

Theorem.
$P \subset \mathbb{R}^{2}$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.
Observation. Suppose P is in general position. empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{D G}(P)!]$
\Rightarrow legal triangulation unique
\Downarrow angle-optimal \Rightarrow legal [by def.]
Delaunay triangulation is angle-optimal!
Suppose P is not in general position...
\Rightarrow Delaunay graph has convex "holes" bounded by co-circular pts
\Downarrow Thales++ homework exercise!
aunay triang. have same min. angle.

Computation

Fact.
A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

Computation
Fact.
A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of $\operatorname{Vor}(P)$, fill holes.]

Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of $\operatorname{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in
$O(n \log n)$ time.

Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of $\operatorname{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in
$O(n \log n)$ time.

Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of $\operatorname{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of $n \mathrm{pts}$ in general position can be computed in $O(n \log n)$ time.
Given an arbitrary set of $n \mathrm{pts}$, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.

Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of $\operatorname{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of $n \mathrm{pts}$ in general position can be computed in $O(n \log n)$ time.
Given an arbitrary set of $n \mathrm{pts}$, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.

Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of $\operatorname{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of $n \mathrm{pts}$ in general position can be computed in $O(n \log n)$ time.
Given an arbitrary set of $n \mathrm{pts}$, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.

An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O\left(n^{2}\right)$ time.

Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of $\operatorname{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of $n \mathrm{pts}$ in general position can be computed in $O(n \log n)$ time.
Given an arbitrary set of $n \mathrm{pts}$, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.

An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O\left(n^{2}\right)$ time.

