

Computational Geometry

Delaunay Triangulations or Height Interpolation Lecture #8

Thomas van Dijk

Winter Semester 2019/20

[opentopomap.org]

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe:

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles

• outer face is complement of a convex polygon

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles

• outer face is complement of a convex polygon

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles• outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of *n* sites, not all collinear, and let *h* be the number of sites on $\partial CH(P)$.

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles• outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of *n* sites, not all collinear, and let *h* be the number of sites on $\partial CH(P)$. Then *any* triangulation of *P* has t(n,h) triangles and e(n,h) edges.

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of *P* is a maximal planar subdivision with vtx set *P*, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles• outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of *n* sites, not all collinear, and let *h* be the number of sites on $\partial CH(P)$. Then *any* triangulation of *P* has t(n,h) triangles and e(n,h) edges. **Task:** Compute *t* and *e*!

Intuition: Avoid "skinny" triangles!

Intuition: Avoid "skinny" triangles! In other words: avoid small angles!

Definition: Given a set $P \subset \mathbb{R}^2$

0

0

0

0

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P,

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let *m* be the number of triangles in \mathcal{T}

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$

 $\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$ $\mathcal{T} \land A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

if $\exists i \in \{1, ..., 3m\}$:

$$\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$\mathcal{T} \land A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$

$$\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$\mathcal{T} \land A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and

$$\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$\mathcal{T} \land A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

$$\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$\mathcal{T}' \land A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

 \mathcal{T} is angle-optimal if

$$\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$\mathcal{A}(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

 \mathcal{T} is *angle-optimal* if $A(\mathcal{T}) \ge A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

$$\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$
$$A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

 \mathcal{T} is *angle-optimal* if $A(\mathcal{T}) \ge A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

$$\mathcal{T} \land A(\mathcal{T}) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$\mathcal{T} \land A(\mathcal{T}') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Definition: \mathcal{T} a triangulation. An edge *e* of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to *e* increases when flipping.

Observe: Let *e* be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \operatorname{flip}(\mathcal{T}, e)$.

Definition: \mathcal{T} a triangulation. An edge *e* of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to *e* increases when flipping.

Observe: Let *e* be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \operatorname{flip}(\mathcal{T}, e)$.

Definition: \mathcal{T} a triangulation. An edge *e* of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to *e* increases when flipping.

Observe: Let *e* be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \operatorname{flip}(\mathcal{T}, e)$. Then $A(\mathcal{T}') > A(\mathcal{T})$.

Theorem:

Theorem: (Thales)

Theorem: (Thales)

Theorem: (Thales)

Theorem: (Thales)

Theorem: (Thales)

Theorem: (Thales)

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$
$$p,q \in \partial D$$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$
$$p,q \in \partial D$$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

 $\angle apb = \angle aqb$

$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$
$$p,q \in \partial D$$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

 $\{a, b\} := \ell \cap \partial D \ (a \neq b)$ $p, q \in \partial D$ $r \in int(D)$

 $\angle apb = \angle aqb$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

 $\{a, b\} := \ell \cap \partial D \ (a \neq b)$ $p, q \in \partial D$ $r \in int(D)$

 $\angle apb = \angle aqb < \angle arb$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

 $\{a, b\} := \ell \cap \partial D \ (a \neq b)$ $p, q \in \partial D$ $r \in int(D)$ $s \notin D$

 $\angle apb = \angle aqb < \angle arb$

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

$$\{a, b\} := \ell \cap \partial D \ (a \neq b)$$
$$p, q \in \partial D$$
$$r \in int(D)$$
$$s \notin D$$

 $\angle asb < \angle apb = \angle aqb < \angle arb$

Lemma:

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

Lemma:

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D

Proof:

9 - 14 Legal Triangulations Lemma: Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** Show: α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note:

9 - 15 Legal Triangulations Lemma: Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** Show: α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal.

Legal Triangulations		
Lemma:	Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.	
	If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal. ∂D	5′
Proof:	Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ (" \Rightarrow ") Use Thales++ w.r.t. qs' .	
Note:	Criterion symmetric in <i>r</i> and <i>s</i> \Rightarrow if $s \in \partial D$, both <i>pq and rs</i> legal.	Pq
Definition:	A triangulation is <i>legal</i> if it has no illegal edge	, •

⁹⁻ Legal Triangulations		
Lemma:	Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.	
	If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal.	
Proof:	Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ ("=>") Use Thales++ w.r.t. qs' .	
Note:	Criterion symmetric in <i>r</i> and <i>s</i> \Rightarrow if $s \in \partial D$, both <i>pq and rs</i> legal.	
Definition:	A triangulation is <i>legal</i> if it has no illegal edge.	
Existence?		

Legal Triangulations Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. Algorithm: Let \mathcal{T} be any triangulation of P. **Existence**? While \mathcal{T} has an illegal edge *e*, flip *e*. Return \mathcal{T} .

9 - 18

9 - 19 Legal Triangulations Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. Algorithm: Let \mathcal{T} be any triangulation of P. **Existence**?

While \mathcal{T} has an illegal edge e_{f} flip e. Return \mathcal{T} .

9 - 20 Legal Triangulations Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Lemma: Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. Algorithm: Let \mathcal{T} be any triangulation of P. **Existence**?

While \mathcal{T} has an illegal edge e_{f} flip e. Return \mathcal{T} .

 $A(\mathcal{T})$ goes up!

9 - 21 Legal Triangulations Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Lemma: Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. **Existence**?

tence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

 $A(\mathcal{T})$ goes up! &

9 - 22 Legal Triangulations Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. Algorithm: Let \mathcal{T} be any triangulation of P. **Existence**?

While \mathcal{T} has an illegal edge e_{f} flip e. Return \mathcal{T} .

 $A(\mathcal{T})$ goes up! & #(triangulations of $P) < \infty$

9 - 23 Legal Triangulations Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. qs'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. Algorithm: Let \mathcal{T} be any triangulation of P. **Existence**? While \mathcal{T} has an illegal edge e_{ℓ} flip e. Return \mathcal{T} .

 $----- A(\mathcal{T}) \text{ goes up! } & #(triangulations of P) < \infty$

Legal Triangulations Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. *qs*'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. **Existence**? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e_i flip e. Return \mathcal{T} . algorithm terminates goes up! & #(triangulations of P) $< \infty$

9 - 24

9 - 25 Legal Triangulations Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$. If *p*,*q*,*r*,*s* in convex position and $s \notin \partial D$, then either *pq* or *rs* is illegal. ∂D Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ **Proof:** α $('' \Rightarrow '')$ Use Thales++ w.r.t. *qs*'. α Criterion symmetric in *r* and *s* Note: \Rightarrow if $s \in \partial D$, both *pq* and *rs* legal. **Definition:** A triangulation is *legal* if it has no illegal edge. **Existence**? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e_i flip e. Return \mathcal{T} . algorithm terminates) goes up! & #(triangulations of P) $< \infty$

Clearly... Every angle-optimal triangulation is legal.

Clearly... Every angle-optimal triangulation is legal. *But is every legal triangulation angle-optimal??*

Clearly... Every angle-optimal triangulation is legal. *But is every legal triangulation angle-optimal??*

Let's see.

Clearly... Every angle-optimal triangulation is legal. *But is every legal triangulation angle-optimal??*

Let's see.

To clarify things, we'll introduce yet another type of triangulation...

Recall: Given a set *P* of *n* points in the plane...

Recall:

Given a set P of n points in the plane... Vor(P) = subdivision of the plane into Voronoi cells, edges, and vertices

Recall:

Given a set *P* of *n* points in the plane... Vor(P) = subdivision of the plane intoVoronoi cells, edges, and vertices $<math display="block">\mathcal{V}(p) = \{x \in \mathbb{R}^2 \colon |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ Voronoi cell of $p \in P$

Recall:

Given a set *P* of *n* points in the plane...

$$Vor(P) = subdivision of the plane into
Voronoi cells, edges, and vertices
$$\mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$$
Voronoi cell of $p \in P$$$

Definition: The graph $\mathcal{G} = (P, E)$ with $\{p,q\} \in E \Leftrightarrow \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ share an edge}$ is the *dual graph* of Vor(*P*)

Recall:

Given a set *P* of *n* points in the plane...

$$Vor(P) = subdivision of the plane into
Voronoi cells, edges, and vertices
$$\mathcal{V}(p) = \{x \in \mathbb{R}^2 \colon |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$$
Voronoi cell of $p \in P$$$

Definition: The graph $\mathcal{G} = (P, E)$ with $\{p,q\} \in E \Leftrightarrow \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ share an edge}$ is the *dual graph* of Vor(*P*)

Definition: The *Delaunay graph* DG(P) is the straight-line drawing of G.

 $P \subset \mathbb{R}^2$

0

12 - 1

Planarity

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.*Proof.*Recall property of Voronoi edges:

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow$

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Begin Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Bedge *pq* is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P$.

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P$.

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P$.

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P$. $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P$. $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

 $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P$. $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

 $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P.$ $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq. $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$ *uv* crosses another edge of t_{pq}

$$p,q \notin D_{uv} \Rightarrow$$

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P.$ $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq. $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$ *uv* crosses another edge of t_{pq} $p,q \notin D_{uv} \Rightarrow p,q \notin t_{uv} \Rightarrow$

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P.$ $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq. $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$ *uv* crosses another edge of t_{pq} $p,q \notin D_{uv} \Rightarrow p,q \notin t_{uv} \Rightarrow$ *pq* crosses another edge of t_{uv}

13 - 15

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P.$ $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq. $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$ *uv* crosses another edge of t_{pq} $p,q \notin D_{uv} \Rightarrow p,q \notin t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}

 \Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P.$ $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq. $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$ *uv* crosses another edge of t_{pq} $p,q \notin D_{uv} \Rightarrow p,q \notin t_{uv} \Rightarrow$ *pq* crosses another edge of t_{uv}

 \Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P.$ $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq. $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$ uv crosses another edge of t_{pq} $p,q \notin D_{uv} \Rightarrow p,q \notin t_{uv} \Rightarrow$ *pq* crosses another edge of t_{uv}

 $\Rightarrow \text{ one of } s_{pq} \text{ or } s_{qp} \text{ crosses one of } s_{uv} \text{ or } s_{vu}$ $s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v).$

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges: Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t. • $p,q \in \partial D_{pq}$ and • $\{p,q\} = D_{pq} \cap P.$ $c = \operatorname{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$. Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq. $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$ uv crosses another edge of t_{va} $p,q \notin D_{uv} \Rightarrow p,q \notin t_{uv} \Rightarrow$ *pq* crosses another edge of t_{uv} \Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}

 $s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v).$

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Characterization of Voronoi vertices and Voronoi edges \Rightarrow **Theorem.** $P \subset \mathbb{R}^2$ finite. Then

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$

(ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$

14 - 8

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p,q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P = \{p,q\}$ and

•
$$\operatorname{int}(D) \cap P = \emptyset$$
.

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p,q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P = \{p,q\}$ and $\bullet \operatorname{int}(D) \cap P = \emptyset$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p,q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P = \{p,q\}$ and $\bullet \operatorname{int}(D) \cap P = \emptyset$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p,q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P = \{p,q\}$ and $\bullet \operatorname{int}(D) \cap P = \emptyset$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : $\operatorname{int}(C(\Delta)) \cap P = \emptyset$.

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts *p*, *q* ∈ *P* form an edge of DG(*P*) ⇔ there is a disk *D* with ∂*D* ∩ *P* = {*p*, *q*} and
 int(*D*) ∩ *P* = Ø.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then $\mathcal{C}(\Delta)$ \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : $\operatorname{int}(C(\Delta)) \cap P = \emptyset$.

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Theorem. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p,q,r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p,q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with $\bullet \partial D \cap P = \{p,q\}$ and $\bullet \operatorname{int}(D) \cap P = \emptyset$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then $\mathcal{C}(\Delta)$ \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : $\operatorname{int}(C(\Delta)) \cap P = \emptyset$.

("empty-circumcircle property")

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \Leftrightarrow

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "⇐"

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "*\equiv*" implied by empty-circumcircle prop. & Thales++

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow "

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction: Assume \mathcal{T} is legal triang. of *P*, but *not* Delaunay.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "⇐" implied by empty-circumcircle prop. & Thales++ "⇒" by contradiction: Assume *T* is legal triang. of *P*, but *not* Delaunay. ⇒ ∃∆*pqr* such that int(*C*(∆*pqr*)) contains *s* ∈ *P*.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "⇐" implied by empty-circumcircle prop. & Thales++ "⇒" by contradiction: Assume *T* is legal triang. of *P*, but *not* Delaunay. ⇒ $\exists \Delta pqr$ such that int($C(\Delta pqr)$) contains $s \in P$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "⇐" implied by empty-circumcircle prop. & Thales++ "⇒" by contradiction: Assume \mathcal{T} is legal triang. of P, but *not* Delaunay. ⇒ $\exists \Delta pqr$ such that $int(C(\Delta pqr))$ contains $s \in P$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "⇐" implied by empty-circumcircle prop. & Thales++ "⇒" by contradiction: Assume *T* is legal triang. of *P*, but *not* Delaunay. ⇒ ∃∆pqr such that int($C(\Delta pqr)$) contains *s* ∈ *P*.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "⇐" implied by empty-circumcircle prop. & Thales++ "⇒" by contradiction: Assume \mathcal{T} is legal triang. of P, but *not* Delaunay. ⇒ $\exists \Delta pqr$ such that int($C(\Delta pqr)$) contains $s \in P$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction: Assume \mathcal{T} is legal triang. of *P*, but *not* Delaunay. $\Rightarrow \exists \Delta pqr$ such that $int(C(\Delta pqr))$ contains $s \in P$. Wlog. let e = pq be the edge of Δpqr such that *s* "sees" *pq* before the other edges of Δpqr .

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "*\equiv*" implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction: Assume \mathcal{T} is legal triang. of *P*, but *not* Delaunay. $\Rightarrow \exists \Delta pqr$ such that $int(C(\Delta pqr))$ contains $s \in P$. Wlog. let e = pq be the edge of Δpqr such that *s* "sees" *pq* before the other edges of Δpqr .

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "*\equiv*" implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction: Assume \mathcal{T} is legal triang. of *P*, but *not* Delaunay. $\Rightarrow \exists \Delta pqr$ such that $int(C(\Delta pqr))$ contains $s \in P$. Wlog. let e = pq be the edge of Δpqr such that *s* "sees" *pq* before the other edges of Δpqr . Among all such pairs ($\Delta pqr, s$) in \mathcal{T} choose one that maximizes $\alpha = \angle psq$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "*\equiv*" implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction: Assume \mathcal{T} is legal triang. of *P*, but *not* Delaunay. $\Rightarrow \exists \Delta pqr$ such that $int(C(\Delta pqr))$ contains $s \in P$. Wlog. let e = pq be the edge of Δpqr such that *s* "sees" *pq* before the other edges of Δpqr . Among all such pairs ($\Delta pqr, s$) in \mathcal{T} choose one that maximizes $\alpha = \angle psq$.

Consider the triangle Δpqt adjacent to *e* in \mathcal{T} .

Consider the triangle Δpqt adjacent to *e* in \mathcal{T} .

Consider the triangle Δpqt adjacent to *e* in \mathcal{T} . \mathcal{T} legal \Rightarrow

Consider the triangle Δpqt adjacent to *e* in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal \Rightarrow

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} {}^{halfplane} {}^{supported by e} {}^{that contains s} \\ {}^{halfplane} {}^{supported by e} {}^{that contains s} \\ {}^{halfplane} {}^{supported by e} {}^{that contains s} \end{cases}$

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$

 $\Rightarrow C(\Delta pqt) \text{ contains } C(\Delta pqr) \cap e^+.$

halfplane supported by *e* that contains *s*

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} {}^{halfplane} {}^{supported by e} {}^{that contains s} \\ \Rightarrow s \in C(\Delta pqt) \end{cases}$

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} {}^{halfplane} \\ {}^{supported by e} \\ {}^{that contains s} \end{cases}$ $\Rightarrow s \in C(\Delta pqt)$ Wlog. let e' = qt be the edge of Δpqt that s sees.

16 - 11

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} {}^{halfplane} {}^{supported by e} {}^{that contains s} \end{cases}$ $\Rightarrow s \in C(\Delta pqt)$ Wlog. let e' = qt be the edge of Δpqt that s sees.

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} {}^{halfplane}_{supported by e}_{that contains s} \end{cases}$ $\Rightarrow s \in C(\Delta pqt)$ Wlog. let e' = qt be the edge of Δpqt that s sees. $\Rightarrow \beta = \angle tsq > \alpha = \angle psq$

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} halfplane \\ supported by e \\ that contains s \end{cases}$ $\Rightarrow s \in C(\Delta pqt)$ Wlog. let e' = qt be the edge of Δpqt that s sees. $\Rightarrow \beta = \angle tsq \qquad > \qquad \alpha = \angle psq$

16 - 14

Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin int(C(\Delta pqr))$ $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} halfplane \\ supported by e \\ that contains s \end{cases}$ $\Rightarrow s \in C(\Delta pqt)$ Wlog. let e' = qt be the edge of Δpqt that s sees. $\Rightarrow \beta = \angle tsq \qquad > \qquad \alpha = \angle psq$

Contradiction to choice of the pair $(\Delta pqr, s)$.

Theorem.

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position...

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.**Observation.**Suppose P is in general position.*no 4 pts on an empty circle!*
 \Rightarrow Delaunay triangulation unique

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.**Observation.**Suppose P is in general position.*no 4 pts on an*
empty circle! \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.**Observation.**Suppose P is in general position.**Delaunay** triangulation unique $\mathcal{DG}(P)$! \Rightarrow legal triangulation unique

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.**Observation.**Suppose P is in general position.no 4 pts on an
empty circle! \Rightarrow Delaunay triangulation unique $\mathcal{DG}(P)$! \Rightarrow legal triangulation unique \downarrow

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.**Observation.**Suppose P is in general position.*no 4 pts on an empty circle!*
 \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
 \Rightarrow legal triangulation unique $\downarrow \downarrow$ angle-optimal \Rightarrow legal

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.**Observation.**Suppose P is in general position.*no 4 pts on an empty circle!*
 \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
 \Rightarrow legal triangulation unique $\downarrow \downarrow$ angle-optimal \Rightarrow legal [by def.]

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.**Observation.**Suppose P is in general position.*no 4 pts on an*
empty circle! \Rightarrow Delaunay triangulation unique
 \downarrow angle-optimal \Rightarrow legal [by def.]
Delaunay triangulation is angle-optimal!

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay. **Observation.** Suppose *P* is in general position. *empty circle!* \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$ \Rightarrow legal triangulation unique \Downarrow angle-optimal \Rightarrow legal [by def.] Delaunay triangulation is angle-optimal!

Suppose *P* is *not* in general position...

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay. **Observation.** Suppose *P* is in general position. *empty circle!* \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$ \Rightarrow legal triangulation unique \Downarrow angle-optimal \Rightarrow legal [by def.] Delaunay triangulation is angle-optimal!

Suppose *P* is *not* in general position...

⇒ Delaunay graph has convex "holes" bounded by co-circular pts

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay. **Observation.** Suppose *P* is in general position. *empty circle!* \Rightarrow Delaunay triangulation unique $[\mathcal{D}\mathcal{G}(P)!]$ \Rightarrow legal triangulation unique \Downarrow angle-optimal \Rightarrow legal [by def.] Delaunay triangulation is angle-optimal! Suppose *P* is *not* in general position... \Rightarrow Delaunay graph has convex "holes"

bounded by co-circular pts \Downarrow Thales++ *homework exercise*!

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay. **Observation.** Suppose *P* is in general position. *empty circle!* \Rightarrow Delaunay triangulation unique $[\mathcal{D}\mathcal{G}(P)!]$ \Rightarrow legal triangulation unique \Downarrow angle-optimal \Rightarrow legal [by def.] Delaunay triangulation is angle-optimal! Suppose *P* is *not* in general position... \Rightarrow Delaunay graph has convex "holes" bounded by co-circular pts \Downarrow Thales++ *homework exercise!*

All Delaunay triang. have same min. angle.

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Fact.A Delaunay triangulation of an arbitrary set of npts in the plane can be computed in $O(n \log n)$ time.[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time.

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time. [\mathcal{DG} !]

Fact.A Delaunay triangulation of an arbitrary set of npts in the plane can be computed in $O(n \log n)$ time.[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time. [\mathcal{DG} !]

Given an arbitrary set of *n* pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.

Fact.A Delaunay triangulation of an arbitrary set of npts in the plane can be computed in $O(n \log n)$ time.[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time. [\mathcal{DG} !]

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use fact.]

Fact.A Delaunay triangulation of an arbitrary set of npts in the plane can be computed in $O(n \log n)$ time.[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time. [\mathcal{DG} !]

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use fact.]

An angle-optimal triangulation of an arbitrary set of *n* pts can be computed in $O(n^2)$ time.

Fact.A Delaunay triangulation of an arbitrary set of npts in the plane can be computed in $O(n \log n)$ time.[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time. [\mathcal{DG} !]

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use fact.]

An angle-optimal triangulation of an arbitrary set of *n* pts can be computed in $O(n^2)$ time. [How?]