

Advanced Algorithms

Winter term 2019/20

Lecture 9. Succinct data structures

(Based on lectures from Simon Gog and from Erik Demaine)

Succinct data structures

Goal

- use space "close" to information-theoretical minimum
- but still support time-efficient operations

Let *L* be the information-theoretical lower bound to represent a class of objects. Then a data structure which still supports time-efficient operations is called

- implicit, if it takes L + O(1) bits of space;
- succinct, if it takes L + o(L) bits of space;
- lacktriangle compact, if it takes O(L) bits of space.

Examples for implicit data structures

- array to represent list; but why not linked list?
- 1-dim array to represent multi-dimensional array
- sorted array to represent sorted list; but why not binary search tree?

leftChild(i) = 2i

rightChild(i) = 2i + 1

array to represent complete binary tree or heap

 $parent(i) = \lfloor \frac{i}{2} \rfloor$

And unbalanced trees?

Succinct indexable dictionary

Represent a subset $S \subset [n]$ and support O(1) operations:

- lacksquare member(i) returns if $i \in S$
- ightharpoonup rank(i) = # 1's at or before position i
- \blacksquare select(j) = position of jth 1 bit
- predecessor and successor can be answered using rank and select

How many different subsets of [n] are there? 2^n

How many bits of space do we need to distinguish them?

$$\log 2^n = n$$
 bits

Succinct indexable dictionary

Represent *S* with a bit vector *b* of length *n* where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n) space structures to answer in O(1) time

- \blacksquare rank(i) = # 1's at or before position i
- \blacksquare select(j) = position of jth 1 bit

Rank in o(n) bits

b

1. Split into $(\log^2 n)$ -bit chunks

and store cummulative rank: each log *n* bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

2. Split chunks into $(\frac{1}{2} \log n)$ -bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

 $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits

3. Use lookup table for bitstrings of length
$$(\frac{1}{2} \log n)$$

 $\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n)$ bits

- 4. rank = rank of chunk
 - + relative rank of subchunk within chunk
 - + relative rank of element within subchunk

Select in o(n) bits

 $\log n \log \log n$ 1's

- 1. Store indices of every $(\log n \log \log n)$ th 1 bit in array $\Rightarrow O(\frac{n}{\log n \log \log n} \log n) = O(\frac{n}{\log \log n}) = o(n)$ bits
- 2. Within group of $(\log n \log \log n)$ 1 bits, say r bits:

if
$$r \ge (\log n \log \log n)^2$$

then store indices of 1 bits in group in array

$$\Rightarrow O(\frac{n}{(\log n \log \log n)^2}(\log n \log \log n) \log n) = O(\frac{n}{\log \log n})$$

else reduced to bitstrings of length $r < (\log n \log \log n)^2$

3. Repeat 1. and 2. on reduced bitstrings

Select in o(n) bits

$$(\log \log n)^2$$
 1's

- 3. Repeat 1. and 2. on reduced bitstrings ($r < (\log n \log \log n)^2$):
 - 1' Store relative indices of every $(\log \log n)^2$ th 1 bit in array $\Rightarrow O(\frac{n}{(\log \log n)^2} \log \log n) = O(\frac{n}{\log \log n})$ bits
 - 2' Within group of $(\log \log n)^2$ th 1 bits, say r' bits:

if
$$r' \ge (\log \log n)^4$$

then store relative indices of 1 bits in subgroup in array

$$\Rightarrow O(\frac{n}{(\log \log n)^4}(\log \log n)^2 \log \log n) = O(\frac{n}{\log \log n})$$
 bits

else reduced to bitstrings of length $r' < (\log \log n)^4$

4. Use lookup table for bitstrings of length $r' \le \frac{1}{2} \log n$ $\Rightarrow O(\sqrt{n} \log n \log \log n) = o(n)$ bits bitstring query j answer

Succinct representation of binary trees

Number of binary trees on *n* vertices: $C_n = \frac{1}{n+1} {2n \choose n}$

 $\log C_n = 2n + o(n)$ (by Stirling's approximation)

Operations we want to support:

parent(v), leftChild(v), rightChild(v)

Idea:

- add external nodes
- read internal nodes as 1
- read external nodes as 0
- use rank and select

Succinct representation of binary trees

- \blacksquare leftChild $(i) = 2 \operatorname{rank}(i)$
- \blacksquare rightChild $(i) = 2 \operatorname{rank}(i) + 1$
- lacksquare parent $(i) = \mathtt{select}(\lfloor rac{i}{2}
 floor)$

use rank(i) for index in array storing actual values

Size: 2n + 1 bits for b, plus o(n) for rank and select

Succinct representation of trees - LOUDS

Level order unary degree sequence

- unary decoding of outdegree
- gives LOUDS sequence

except

- each node represented twice root
- use index of its corresponding 1 $\Rightarrow 2n + o(n)$ bits
- firstChild(i) = select $_0(\operatorname{rank}_1(i)) + 1$ firstChild(8) = select $_0(\operatorname{rank}_1(8)) + 1$ = select $_0(6) + 1 = 10 + 1 = 11$
- lacksquare nextSibling(i)=i+1
- parent(i) = select₁(rank₀(i)) parent(8) = select₁(rank₀(8)) = select₁(2) = 3

Exercise: child(i, j) with validity check

Discussion

- Succinct data structures are
 - space efficient
 - support fast operations but
 - are mostly static (dynamic at extra cost),
 - number of operations are limited,
 - \blacksquare complex \rightarrow harder to implement
- Rank and select form basis for many succinct representations

References

- Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine
- see also Lecture 18 on compact & succinct suffix arrays & trees
- Guy Jacobson "Space efficient Static Trees and Graphs", FOCS'89
- also contains how to store planar graphs in linear space