Julius-Maximilians- Lehrstuhl fiir e
UNIVERSITAT INFORMATIK | ||||I | h
WU RZ B U RG Effiziente Algorithmen und

wissensbasierte Systeme Institut fuir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 9. Succinct data structures

(Based on lectures from Simon Gog and from Erik Demaine)

Jonathan Klawitter Chair for Computer Science I

Succinct data structures

Goal
B use space “close” to information-theoretical minimum

B but still support time-etficient operations

Let L be the information-theoretical lower bound to
represent a class of objects. Then a data structure which
still supports time-etficient operations is called

B implicit, if it takes L + O(1) bits of space;
B succinct, if it takes L 4 o(L) bits of space;

B compact, if it takes O(L) bits of space.

Examples for implicit data structures

B array to represent list; but why not linked list?
B 1-dim array to represent multi-dimensional array

B sorted array to represent sorted list;
but why not binary search tree?

B array to represent complete binary tree or heap

And un-

balanced
trees?

~
leftChild(i) = 2i

arent(i) = | &
rightChild(i) = 2i + 1 P (i) = 3]

Succinct indexable dictionary

Represent a subset S C [n| and support O(1) operations:
B member(i) returnsifi € S
B rank(i) = # 1’s at or before position i
B select(j) = position of jth 1 bit

B predecessor and successor can be answered using
rank and select

How many different subsets of || are there? 2"

How many bits of space do we need to distinguish them?

log 2" = n bits

Succinct indexable dictionary

Represent S with a bit vector b of length n where
1 ifies
0 otherwise

bli] = <

plus o(n) space structures to answer in O(1) time

B rank(i) = # 1’s at or before position i

B select(j) = position of jth 1 bit

§=13,4,6,89,14} where n =15 select(5) =9

b(O0]0|1|1]/0[1]0|1]1]|0]/0|0|0|1|0| rank(9)=>5

Rank in o(n) bits 1 log log”

b | |
1. Split into (log? 1)-bit chunks
and store cummulative rank: each logn bits

= O(—5logn) = O(lo’;n) C o(n) bits

log® n
2. Split chunks into (3 logn)-bit subchunks
and store cummulative rank within chunk: 2loglog n bits

= O(1= loglogn) C o(n) bits

log n
3. Use for bitstrings of length (4 logn)

= O(y/nlognloglogn) C o(n) bits
4. rank = rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

Select in O(n) bits lognloglogn 1’s

bl HE | I I1 |
1. Store indices of every (lognloglogn)th 1 bit in array
= O(lognlgglogn lOng) — O(log?ogn) — O(Yl) bits

2. Within group of (lognloglogn) 1 bits, say r bits:
r > (lognloglogn)?
store indices of 1 bits in group in array

= O((lognlonglogn)z (lognloglogn)logn) = O

n
log log n)
reduced to bitstrings of length » < (log nlog log 11)?
3. Repeat 1. and 2. on reduced bitstrings

Select in O(n) bits lognlogiogn 1’s (loglogn)2

p] NI |] Ii'_'ﬂ||

3. Repeat 1. and 2. on reduced bitstrings (r < (lognloglogn)?):

1" Store relative indices of every (log log n)*th 1 bit in array

= O (logIZgn)z loglogn) = O) bits

2’ Within group of (loglogn)?th 1 bits, say 7’ bits:

log log n

store relative indices of 1 bits in subgroup in array

= O((loglzgn)‘l (loglogn)?loglogn) = Of bits

reduced to bitstrings of length ' < (loglog)*

log log n)

4. Use lookup table for bitstrings of length +'< % logn
= O(y/nlognloglogn) = o(n) bits

Succinct representation of binary trees

Number of binary trees on n vertices: C;, = %H (Z,f)

log C,, = 2n+ o(n) (by Stirling’s approximation)

Operations we want to support:
parent (v), leftChild(v), rightChild(v)

Idea:

B add nodes

B read internal nodes as 1
B read nodes as 0

B use rank and select

Succinct representation of binary trees

rank(7) = 6

rank(10) =7

p[1]1]1]1]1]o]1[oJo[1]o]1]1]0 oJoTo]0]0O
)

B leftChild(i) = 2 rank(i use rank(i) for
B rightChild(i) = 2 rank(i) +1 index in array
B parent(i) = select(L%J) storing actual values

B Size: 2n +1 bits for b, plus o(n) for rank and select

-12

10 - 14

Succinct representation of trees - LOUDS
Level order unary degree sequence

B unary decoding of outdegree
B gives LOUDS seq

uence

110]1

1

1

0

1

1

0

0

1

0

1

0

1

1

0

0

0

0

0

B firstChild(i) = selectg(rank(i)) + 1

firstChild(8) = selecto(rank1 (8)) +1

= select((6)

B nextSibling(i) =i+ 1
B parent(i) = selectq(ranky(i))
parent(8) = selectqi(ranky(8)) = selectq(2) =3

1 =10

except
B each node represented twice root

B use index of its corresponding 1

= 2n + o(n) bits

Exercise: child(i, j)

with validity check

Discussion

B Succinct data structures are
B space efficient
m support fast operations
but
m are mostly static (dynamic at extra cost),
B number of operations are limited,
m complex — harder to implement

B Rank and select form basis for many succinct
representations

11 -

12-2

References

B Lecture 17 of Advanced Data Structures (MIT, Fall’17)
by Erik Demaine

B see also Lecture 18 on compact & succinct suffix arrays
& trees

B Guy Jacobson “Space efficient Static Trees and Graphs”,
FOCS’89
B also contains how to store planar graphs in linear space

