Advanced Algorithms

Winter term 2019/20

Lecture 9. Succinct data structures
(Based on lectures from Simon Gog and from Erik Demaine)

Succinct data structures

Goal
■ use space "close" to information-theoretical minimum
■ but still support time-efficient operations

Succinct data structures

Goal

■ use space "close" to information-theoretical minimum
■ but still support time-efficient operations
Let L be the information-theoretical lower bound to represent a class of objects. Then a data structure which still supports time-efficient operations is called

■ implicit, if it takes $L+O(1)$ bits of space;

Succinct data structures

Goal
■ use space "close" to information-theoretical minimum
■ but still support time-efficient operations
Let L be the information-theoretical lower bound to represent a class of objects. Then a data structure which still supports time-efficient operations is called

■ implicit, if it takes $L+O(1)$ bits of space;
■ succinct, if it takes $L+o(L)$ bits of space;

Succinct data structures

Goal
■ use space "close" to information-theoretical minimum
■ but still support time-efficient operations
Let L be the information-theoretical lower bound to represent a class of objects. Then a data structure which still supports time-efficient operations is called

■ implicit, if it takes $L+O(1)$ bits of space;
■ succinct, if it takes $L+o(L)$ bits of space;

- compact, if it takes $O(L)$ bits of space.

Examples for implicit data structures

Examples for implicit data structures

■ array to represent list; but why not linked list?

Examples for implicit data structures

■ array to represent list; but why not linked list?
■ 1-dim array to represent multi-dimensional array

Examples for implicit data structures

■ array to represent list; but why not linked list?
■ 1-dim array to represent multi-dimensional array
■ sorted array to represent sorted list; but why not binary search tree?

Examples for implicit data structures

■ array to represent list; but why not linked list?
■ 1-dim array to represent multi-dimensional array

- sorted array to represent sorted list; but why not binary search tree?

■ array to represent complete binary tree or heap

$\operatorname{leftChild}(i)=$
rightChild $(i)=$

Examples for implicit data structures

■ array to represent list; but why not linked list?
■ 1-dim array to represent multi-dimensional array

- sorted array to represent sorted list; but why not binary search tree?

■ array to represent complete binary tree or heap

$\operatorname{leftChild}(i)=2 i$
$\operatorname{rightChild}(i)=2 i+1$

$$
\operatorname{parent}(i)=\left\lfloor\frac{i}{2}\right\rfloor
$$

Examples for implicit data structures

■ array to represent list; but why not linked list?
■ 1-dim array to represent multi-dimensional array
■ sorted array to represent sorted list; but why not binary search tree?

- array to represent complete binary tree or heap

And unbalanced trees?

$$
\begin{aligned}
& \operatorname{leftChild}(i)=2 i \\
& \operatorname{rightChild}(i)=2 i+1
\end{aligned} \quad \text { parent }(i)=\left\lfloor\frac{i}{2}\right\rfloor
$$

Succinct indexable dictionary

Represent a subset $S \subset[n]$ and support $O(1)$ operations:

- member (i) returns if $i \in S$
- $\operatorname{rank}(i)=\# 1$'s at or before position i

■ select $(j)=$ position of j th 1 bit

- predecessor and successor can be answered using rank and select

Succinct indexable dictionary

Represent a subset $S \subset[n]$ and support $O(1)$ operations:

- member (i) returns if $i \in S$
- $\operatorname{rank}(i)=\# 1$'s at or before position i

■ select $(j)=$ position of j th 1 bit

- predecessor and successor can be answered using rank and select

How many different subsets of $[n]$ are there?
How many bits of space do we need to distinguish them?

Succinct indexable dictionary

Represent a subset $S \subset[n]$ and support $O(1)$ operations:

- member (i) returns if $i \in S$
- $\operatorname{rank}(i)=\# 1$'s at or before position i

■ select $(j)=$ position of j th 1 bit

- predecessor and successor can be answered using rank and select

How many different subsets of $[n]$ are there? $\quad 2^{n}$
How many bits of space do we need to distinguish them?

Succinct indexable dictionary

Represent a subset $S \subset[n]$ and support $O(1)$ operations:

- member (i) returns if $i \in S$
- $\operatorname{rank}(i)=\# 1$'s at or before position i

■ select $(j)=$ position of j th 1 bit

- predecessor and successor can be answered using rank and select

How many different subsets of $[n]$ are there? $\quad 2^{n}$
How many bits of space do we need to distinguish them?

$$
\log 2^{n}=n \text { bits }
$$

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

	0	1	1	0	0	0 1	1	0	0	0	01	10

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$ space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1$'s at or before position i
\square select $(j)=$ position of j th 1 bit

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

	0	1	10	1	10	$0 \mid 1$	11	10	0	0	01	1

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$ space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1$'s at or before position i
- select $(j)=$ position of j th 1 bit

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

$$
\operatorname{select}(5)=
$$

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$ space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1$'s at or before position i
\square select $(j)=$ position of j th 1 bit

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

$$
\operatorname{select}(5)=9
$$

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$ space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1$'s at or before position i
\square select $(j)=$ position of j th 1 bit

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

$$
\operatorname{select}(5)=9
$$ $\operatorname{rank}(9)=$

Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$ space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1$'s at or before position i
\square select $(j)=$ position of j th 1 bit

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

$$
\operatorname{select}(5)=9
$$

| b | 0 | 1 | 0 | 01 | 10 | 1 | | 0 | 0\|0 | 0 | 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\operatorname{rank}(9)=5$

Rank in $o(n)$ bits
\square

Rank in $o(n)$ bits
b

and store cumulative rank: each $\log n$ bits

Rank in $o(n)$ bits

b
 and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O(\underbrace{\frac{n}{\log ^{2} n}}_{\# \text { chunks rank }} \underbrace{\log n})=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$ and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cummulative rank within chunk:

Rank in $o(n)$ bits

b | | | | |
| :--- | :--- | :--- | :--- |
| Split into $\left(\log ^{2} n\right)$-bit chunks | | | | and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

 and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log _{n} n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right)$

$$
\Rightarrow O(\underbrace{\sqrt{n}} \underbrace{\log n} \log \log n) \subseteq o(n) \text { bits }
$$

 and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log _{n} n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right)$

$$
\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n) \text { bits }
$$

4. $r a n k=r a n k$ of chunk

+ relative rank of subchunk within chunk
+ relative rank of element within subchunk
 and store cumulative rank: each $\log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log _{n} n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right)$

$$
\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n) \text { bits }
$$

4. $r a n k=r a n k$ of chunk
$\Rightarrow O(1)$ time

+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

Select in $o(n)$ bits

\square

Select in $o(n)$ bits $\log n \log \log n 1$ 1's

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

Select in $o(n)$ bits $\log n \log \log n 1$'s

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right)=o(n) \text { bits }
$$

\# groups index

Select in $o(n)$ bits $\log n \log \log n 1$'s

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right)=o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits, say r bits:

Select in $o(n)$ bits $\quad \log n \log \log n 1^{\prime} s$

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right)=o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits, say r bits:
if $r \geq(\log n \log \log n)^{2}$
then store indices of 1 bits in group in array

$$
\Rightarrow O\left(\frac{n}{(\log n \log \log n)^{2}}(\log n \log \log n) \log n\right)=O\left(\frac{n}{\log \log n}\right)
$$

\# 1 bits

Select in $o(n)$ bits $\quad \log n \log \log n 1^{\prime} s$

b

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right)=o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits, say r bits:
if $r \geq(\log n \log \log n)^{2}$
then store indices of 1 bits in group in array

$$
\Rightarrow O\left(\frac{n}{(\log n \log \log n)^{2}}(\log n \log \log n) \log n\right)=O\left(\frac{n}{\log \log n}\right)
$$

else reduced to bitstrings of length $r<(\log n \log \log n)^{2}$

Select in $o(n)$ bits $\quad \log n \log \log n 1^{\prime} s$

1. Store indices of every $(\log n \log \log n)$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right)=o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits, say r bits:
if $r \geq(\log n \log \log n)^{2}$
then store indices of 1 bits in group in array

$$
\Rightarrow O\left(\frac{n}{(\log n \log \log n)^{2}}(\log n \log \log n) \log n\right)=O\left(\frac{n}{\log \log n}\right)
$$

else reduced to bitstrings of length $r<(\log n \log \log n)^{2}$
3. Repeat 1. and 2. on reduced bitstrings

Select in $O(n)$ bits $\quad \log n \log \log n 1^{\prime} s$

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:

Select in $O(n)$ bits $\quad \log n \log \log n 1^{\prime} s$

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

Select in $O(n)$ bits $\quad \log n \log \log n 1^{\prime} s$

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$: 1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

Select in $O(n)$ bits $\quad \log n \log \log n 1^{\prime} s$

b

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$: 1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

Select in $o(n)$ bits

 $\log n \log \log n 1$'s $(\log \log n)^{2} 1^{\prime \prime} s$$b$

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$: 1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits, say r^{\prime} bits:

Select in $o(n)$ bits

 $\log n \log \log n 1$'s $(\log \log n)^{2} 1^{\prime} \mathrm{s}$$b$

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits, say r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array

Select in $o(n)$ bits

 $\log n \log \log n 1$ 1's $(\log \log n)^{2} 1^{\prime \prime} s$
3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits, say r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

Select in $o(n)$ bits

 $\log n \log \log n 1$ 1's $(\log \log n)^{2} 1$'s
3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits, say r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array $\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right)$ bits \# subgroups \# 1 bits rel. index

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits, say r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array $\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right)$ bits
else reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$
3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits, say r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array $\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right)$ bits
else reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$
4. Use lookup table for bitstrings of length $r^{\prime} \leq \frac{1}{2} \log n$
$\Rightarrow O(\sqrt{n} \log n \log \log n)=o(n)$ bits

Select in $o(n)$ bits and $O(1)$ time

 $(\log \log n)^{2} 1^{\prime \prime} s$ b3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$ th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2}$ th 1 bits, say r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array $\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right)$ bits
else reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$
4. Use lookup table for bitstrings of length $r^{\prime} \leq \frac{1}{2} \log n$
$\Rightarrow O(\sqrt{n} \log n \log \log n)=o(n)$ bits

Succinct representation of binary trees

Number of binary trees on n vertices: $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

$$
\log C_{n}=2 n+o(n)(\text { by Stirling's approximation })
$$

Operations we want to support: parent(v), leftChild(v), rightChild(v)

Succinct representation of binary trees

Number of binary trees on n vertices: $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

$$
\log C_{n}=2 n+o(n) \text { (by Stirling's approximation) }
$$

Operations we want to support: parent(v), leftChild(v), rightChild(v)

Idea:
■ add external nodes

- read internal nodes as 1
- read external nodes as 0

■ use rank and select

Succinct representation of binary trees

- leftChild $(i)=$
- rightChild $(i)=$

Succinct representation of binary trees

- leftChild $(i)=$
- rightChild $(i)=$

Succinct representation of binary trees

- leftChild $(i)=$
- rightChild $(i)=$

Succinct representation of binary trees

■ leftChild $(i)=2 \operatorname{rank}(i)$
$\square \operatorname{rightChild}(i)=2 \operatorname{rank}(i)+1$

Succinct representation of binary trees

- leftChild $(i)=2 \operatorname{rank}(i)$

■ rightChild $(i)=2 \operatorname{rank}(i)+1$

- parent $(i)=$

Succinct representation of binary trees

- leftChild $(i)=2 \operatorname{rank}(i)$
- $\operatorname{rightChild}(i)=2 \operatorname{rank}(i)+1$
$\square \operatorname{parent}(i)=\operatorname{select}\left(\left\lfloor\frac{i}{2}\right\rfloor\right)$

Succinct representation of binary trees

■ leftChild $(i)=2 \operatorname{rank}(i)$
■ $\operatorname{rightChild}(i)=2 \operatorname{rank}(i)+1$
$\square \operatorname{parent}(i)=\operatorname{select}\left(\left\lfloor\frac{i}{2}\right\rfloor\right)$
use rank(i) for index in array
storing actual values

Succinct representation of binary trees

- leftChild $(i)=2 \operatorname{rank}(i)$

■ $\operatorname{rightChild}(i)=2 \operatorname{rank}(i)+1$

- parent $(i)=\operatorname{select}\left(\left\lfloor\frac{i}{2}\right\rfloor\right)$
use $\operatorname{rank}(i)$ for index in array
storing actual values
- Size: $2 \mathrm{n}+1$ bits for b, plus $o(n)$ for rank and select

Succinct representation of trees - LOUDS

Level order unary degree sequence

Succinct representation of trees - LOUDS

Level order unary degree sequence

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree
■ gives LOUDS sequence

1	0		1	1	0	1	10	0	1	0	1	0	11	0	0	0	0	0

■ each node represented twice
\square use index of its corresponding 1

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence

1	2	3	4	5	6	7	9	10	11											
1	0	1	1	1	0	1	1	0	0	1	0	1	0	1	1	0	0	0	0	0

■ each node represented twice
\square use index of its corresponding 1 $\Rightarrow 2 n+o(n)$ bits

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence

■ each node represented twice

- use index of its corresponding 1

$$
\Rightarrow 2 n+o(n) \text { bits }
$$

■ firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence
 $\Rightarrow 2 n+o(n)$ bits
\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild $(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence
 $\Rightarrow 2 n+o(n)$ bits
■ firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild $(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1$

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence

- each node represented twice root
\square use index of its corresponding 1

$$
\Rightarrow 2 n+o(n) \text { bits }
$$

■ firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild $(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=10+1=11$

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence

- each node represented twice root \square use index of its corresponding 1 $\Rightarrow 2 n+o(n)$ bits
■ firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild $(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=10+1=11$
■ nextSibling $(i)=i+1$

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence

■ each node represented twice root
\square use index of its corresponding 1

$$
\Rightarrow 2 n+o(n) \text { bits }
$$

\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild $(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=10+1=11$
■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check

Succinct representation of trees - LOUDS

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence
 $\Rightarrow 2 n+o(n)$ bits
\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild $(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=10+1=11$
■ nextSibling $(i)=i+1$
$\square \operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$

Exercise: child (i, j) with validity check

Level order unary degree sequence

■ unary decoding of outdegree

- gives LOUDS sequence
 $\Rightarrow 2 n+o(n)$ bits
■ firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild $(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=10+1=11$
■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check
$\square \operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$
$\operatorname{parent}(8)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(8)\right)=\operatorname{select}_{1}(2)=3$

Discussion

- Succinct data structures are
- space efficient
- support fast operations
but
- are mostly static (dynamic at extra cost),
- number of operations are limited,
- complex \rightarrow harder to implement

Discussion

- Succinct data structures are
- space efficient
- support fast operations
but
■ are mostly static (dynamic at extra cost),
- number of operations are limited,
- complex \rightarrow harder to implement

■ Rank and select form basis for many succinct representations

References

■ Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine

- see also Lecture 18 on compact \& succinct suffix arrays \& trees

References

■ Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine

- see also Lecture 18 on compact \& succinct suffix arrays \& trees

■ Guy Jacobson "Space efficient Static Trees and Graphs", FOCS'89

- also contains how to store planar graphs in linear space

