
1

Jonathan Klawitter Chair for Computer Science I

Advanced Algorithms
Winter term 2019/20

Lecture 9. Succinct data structures
(Based on lectures from Simon Gog and from Erik Demaine)

2 - 1

Succinct data structures
Goal
� use space “close” to information-theoretical minimum
� but still support time-efficient operations

2 - 2

Succinct data structures
Goal
� use space “close” to information-theoretical minimum
� but still support time-efficient operations

Let L be the information-theoretical lower bound to
represent a class of objects. Then a data structure which
still supports time-efficient operations is called

� implicit, if it takes L + O(1) bits of space;

2 - 3

Succinct data structures
Goal
� use space “close” to information-theoretical minimum
� but still support time-efficient operations

Let L be the information-theoretical lower bound to
represent a class of objects. Then a data structure which
still supports time-efficient operations is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

2 - 4

Succinct data structures
Goal
� use space “close” to information-theoretical minimum
� but still support time-efficient operations

Let L be the information-theoretical lower bound to
represent a class of objects. Then a data structure which
still supports time-efficient operations is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.

3 - 1

Examples for implicit data structures

3 - 2

Examples for implicit data structures
� array to represent list; but why not linked list?

3 - 3

Examples for implicit data structures
� array to represent list; but why not linked list?

� 1-dim array to represent multi-dimensional array

3 - 4

Examples for implicit data structures
� array to represent list; but why not linked list?

� sorted array to represent sorted list;
but why not binary search tree?

� 1-dim array to represent multi-dimensional array

3 - 5

Examples for implicit data structures
� array to represent list; but why not linked list?

� sorted array to represent sorted list;
but why not binary search tree?

� array to represent complete binary tree or heap

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .7

� 1-dim array to represent multi-dimensional array

3 - 6

Examples for implicit data structures
� array to represent list; but why not linked list?

� sorted array to represent sorted list;
but why not binary search tree?

� array to represent complete binary tree or heap

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .7

� 1-dim array to represent multi-dimensional array

3 - 7

Examples for implicit data structures
� array to represent list; but why not linked list?

� sorted array to represent sorted list;
but why not binary search tree?

� array to represent complete binary tree or heap

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .
And un-
balanced
trees?

7

� 1-dim array to represent multi-dimensional array

4 - 1

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1) operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using
rank and select

4 - 2

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1) operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using
rank and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there?

4 - 3

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1) operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using
rank and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there? 2n

4 - 4

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1) operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using
rank and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there? 2n

log 2n = n bits

5 - 1

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

5 - 2

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b

5 - 3

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n) space structures to answer in O(1) time

b

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

5 - 4

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n) space structures to answer in O(1) time

b

select(5) =

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

5 - 5

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n) space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

5 - 6

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n) space structures to answer in O(1) time

b

select(5) = 9

rank(9) =

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

5 - 7

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n) space structures to answer in O(1) time

b

select(5) = 9

rank(9) = 5

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

6 - 1

Rank in o(n) bits

b

6 - 2

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

{

6 - 3

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

{

chunks rank
{ {

6 - 4

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (1
2 log n)-bit subchunks

1
2 log n

and store cummulative rank within chunk:

{{

6 - 5

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (1
2 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk: 2 log log n bits

{{

6 - 6

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (1
2 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

{{
subch. rel. rank

{ {

6 - 7

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (1
2 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length (1
2 log n)

⇒ O(
√

n log n log log n) ⊆ o(n) bits
bitstring query i answer

{{

{ { {

6 - 8

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (1
2 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length (1
2 log n)

⇒ O(
√

n log n log log n) ⊆ o(n) bits
4. rank = rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

{{

6 - 9

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (1
2 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length (1
2 log n)

⇒ O(
√

n log n log log n) ⊆ o(n) bits
4. rank = rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

{{

⇒ O(1) time

7 - 1

Select in o(n) bits

b

7 - 2

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

log n log log n 1’s{

7 - 3

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) = o(n) bits

groups index

log n log log n 1’s{

7 - 4

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

log n log log n 1’s{

7 - 5

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) = O(n
log log n)

groups index# 1 bits

log n log log n 1’s{

7 - 6

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) = O(n
log log n)

else reduced to bitstrings of length r < (log n log log n)2

log n log log n 1’s{

7 - 7

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) = O(n
log log n)

else reduced to bitstrings of length r < (log n log log n)2

3. Repeat 1. and 2. on reduced bitstrings

log n log log n 1’s{

7 - 8

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

log n log log n 1’s{

7 - 9

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

log n log log n 1’s{

7 - 10

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

log n log log n 1’s{

7 - 11

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

subgroups rel. index

log n log log n 1’s{

7 - 12

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:

log n log log n 1’s{ {(log log n)2 1’s

7 - 13

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

log n log log n 1’s{ {(log log n)2 1’s

7 - 14

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O(n

(log log n)4 (log log n)2 log log n) = O(n
log log n) bits

log n log log n 1’s{ {(log log n)2 1’s

7 - 15

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O(n

(log log n)4 (log log n)2 log log n) = O(n
log log n) bits

subgroups # 1 bits rel. index

log n log log n 1’s{ {(log log n)2 1’s

7 - 16

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O(n

(log log n)4 (log log n)2 log log n) = O(n
log log n) bits

else reduced to bitstrings of length r′ < (log log n)4

log n log log n 1’s{ {(log log n)2 1’s

7 - 17

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O(n

(log log n)4 (log log n)2 log log n) = O(n
log log n) bits

else reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{ {(log log n)2 1’s

7 - 18

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O(n

(log log n)4 (log log n)2 log log n) = O(n
log log n) bits

else reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{ {(log log n)2 1’s
and O(1) time

8 - 1

Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n)

log Cn = 2n + o(n) (by Stirling’s approximation)

Operations we want to support:
parent(v), leftChild(v), rightChild(v)

8 - 2

Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n)

log Cn = 2n + o(n) (by Stirling’s approximation)

Operations we want to support:
parent(v), leftChild(v), rightChild(v)

Idea:
� add external nodes
� read internal nodes as 1
� read external nodes as 0
� use rank and select

9 - 1

Succinct representation of binary trees

9 - 2

Succinct representation of binary trees

9 - 3

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b

9 - 4

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

9 - 5

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1

9 - 6

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1

rank(7) = 6

9 - 7

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1

rank(7) = 6

rank(10) = 7

9 - 8

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1

rank(7) = 6

rank(10) = 7

9 - 9

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
� parent(i) = select(b i

2c)

rank(7) = 6

rank(10) = 7

9 - 10

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
� parent(i) = select(b i

2c)

rank(7) = 6

rank(10) = 7

9 - 11

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
� parent(i) = select(b i

2c)

rank(7) = 6

rank(10) = 7

use rank(i) for
index in array
storing actual values

9 - 12

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
� parent(i) = select(b i

2c)
� Size: 2n +1 bits for b, plus o(n) for rank and select

rank(7) = 6

rank(10) = 7

use rank(i) for
index in array
storing actual values

10 - 1

Succinct representation of trees - LOUDS
Level order unary degree sequence

10 - 2

Succinct representation of trees - LOUDS
Level order unary degree sequence

10 - 3

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree

10 - 4

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

10 - 5

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

10 - 6

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

⇒ 2n + o(n) bits

10 - 7

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

⇒ 2n + o(n) bits

10 - 8

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

⇒ 2n + o(n) bits

10 - 9

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

⇒ 2n + o(n) bits

10 - 10

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

⇒ 2n + o(n) bits

1

10 - 11

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1

⇒ 2n + o(n) bits

1

10 - 12

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1
Exercise: child(i, j)
with validity check

⇒ 2n + o(n) bits

1

10 - 13

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1
Exercise: child(i, j)
with validity check

� parent(i) = select1(rank0(i))

⇒ 2n + o(n) bits

1

10 - 14

Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1
Exercise: child(i, j)
with validity check

� parent(i) = select1(rank0(i))
parent(8) = select1(rank0(8)) = select1(2) = 3

⇒ 2n + o(n) bits

1

1

11 - 1

Discussion
� Succinct data structures are

� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations are limited,
� complex→ harder to implement

11 - 2

Discussion
� Succinct data structures are

� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations are limited,
� complex→ harder to implement

� Rank and select form basis for many succinct
representations

12 - 1

References
� Lecture 17 of Advanced Data Structures (MIT, Fall’17)

by Erik Demaine
� see also Lecture 18 on compact & succinct suffix arrays

& trees

12 - 2

References
� Lecture 17 of Advanced Data Structures (MIT, Fall’17)

by Erik Demaine
� see also Lecture 18 on compact & succinct suffix arrays

& trees

� Guy Jacobson “Space efficient Static Trees and Graphs”,
FOCS’89

� also contains how to store planar graphs in linear space

