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Succinct data structures
Goal
� use space “close” to information-theoretical minimum
� but still support time-efficient operations

Let L be the information-theoretical lower bound to
represent a class of objects. Then a data structure which
still supports time-efficient operations is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.
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Examples for implicit data structures
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� sorted array to represent sorted list;
but why not binary search tree?

� array to represent complete binary tree or heap

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i
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� 1-dim array to represent multi-dimensional array



3 - 6

Examples for implicit data structures
� array to represent list; but why not linked list?

� sorted array to represent sorted list;
but why not binary search tree?

� array to represent complete binary tree or heap

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .7

� 1-dim array to represent multi-dimensional array



3 - 7

Examples for implicit data structures
� array to represent list; but why not linked list?

� sorted array to represent sorted list;
but why not binary search tree?

� array to represent complete binary tree or heap

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .
And un-
balanced
trees?

7

� 1-dim array to represent multi-dimensional array
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Represent a subset S ⊂ [n] and support O(1) operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using
rank and select
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Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1) operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using
rank and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there? 2n

log 2n = n bits
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Represent S with a bit vector b of length n where

b[i] =

{
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0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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b

select(5) = 9
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Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n) space structures to answer in O(1) time

b

select(5) = 9

rank(9) = 5

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit
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b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

{

# chunks rank
{ {



6 - 4

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 1
2 log n)-bit subchunks

1
2 log n

and store cummulative rank within chunk:

{{



6 - 5

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 1
2 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk: 2 log log n bits

{{



6 - 6

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 1
2 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

{{
# subch. rel. rank

{ {
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 1
2 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length ( 1
2 log n)

⇒ O(
√

n log n log log n) ⊆ o(n) bits
bitstring query i answer

{{

{ { {
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b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits
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2 log n
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+ relative rank of element within subchunk
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 1
2 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length ( 1
2 log n)

⇒ O(
√

n log n log log n) ⊆ o(n) bits
4. rank = rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

{{

⇒ O(1) time
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log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O( n

log n log log n log n) = O( n
log log n ) = o(n) bits

# groups index

log n log log n 1’s{
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log log n ) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

log n log log n 1’s{



7 - 5

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O( n

log n log log n log n) = O( n
log log n ) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O( n

(log n log log n)2 (log n log log n) log n) = O( n
log log n )

# groups index# 1 bits

log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O( n

log n log log n log n) = O( n
log log n ) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O( n

(log n log log n)2 (log n log log n) log n) = O( n
log log n )

else reduced to bitstrings of length r < (log n log log n)2

log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array
⇒ O( n

log n log log n log n) = O( n
log log n ) = o(n) bits

2. Within group of (log n log log n) 1 bits, say r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O( n

(log n log log n)2 (log n log log n) log n) = O( n
log log n )

else reduced to bitstrings of length r < (log n log log n)2

3. Repeat 1. and 2. on reduced bitstrings

log n log log n 1’s{
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

log n log log n 1’s{
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

log n log log n 1’s{
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

log n log log n 1’s{
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

# subgroups rel. index

log n log log n 1’s{
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:

log n log log n 1’s{ {(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

log n log log n 1’s{ {(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O( n

(log log n)4 (log log n)2 log log n) = O( n
log log n ) bits

log n log log n 1’s{ {(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O( n

(log log n)4 (log log n)2 log log n) = O( n
log log n ) bits

# subgroups # 1 bits rel. index

log n log log n 1’s{ {(log log n)2 1’s
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Select in o(n) bits
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3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
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log n log log n 1’s{ {(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O( n

(log log n)4 (log log n)2 log log n) = O( n
log log n ) bits

else reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{ {(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits, say r′ bits:
if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array
⇒ O( n

(log log n)4 (log log n)2 log log n) = O( n
log log n ) bits

else reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{ {(log log n)2 1’s
and O(1) time
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Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n )

log Cn = 2n + o(n) (by Stirling’s approximation)

Operations we want to support:
parent(v), leftChild(v), rightChild(v)
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Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n )

log Cn = 2n + o(n) (by Stirling’s approximation)

Operations we want to support:
parent(v), leftChild(v), rightChild(v)

Idea:
� add external nodes
� read internal nodes as 1
� read external nodes as 0
� use rank and select
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� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
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Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
� parent(i) = select(b i

2c)

rank(7) = 6

rank(10) = 7
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Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
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rank(7) = 6
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Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
� parent(i) = select(b i

2c)

rank(7) = 6

rank(10) = 7

use rank(i) for
index in array
storing actual values
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Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

� leftChild(i) = 2 rank(i)
� rightChild(i) = 2 rank(i) +1
� parent(i) = select(b i

2c)
� Size: 2n +1 bits for b, plus o(n) for rank and select

rank(7) = 6

rank(10) = 7

use rank(i) for
index in array
storing actual values
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110
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0

0

� gives LOUDS sequence
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� each node represented twice
� use index of its corresponding 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

⇒ 2n + o(n) bits
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

⇒ 2n + o(n) bits
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

⇒ 2n + o(n) bits
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10
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110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

⇒ 2n + o(n) bits
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

⇒ 2n + o(n) bits

1
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1

⇒ 2n + o(n) bits

1
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1
Exercise: child(i, j)
with validity check

⇒ 2n + o(n) bits

1
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1
Exercise: child(i, j)
with validity check

� parent(i) = select1(rank0(i))

⇒ 2n + o(n) bits

1
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Succinct representation of trees - LOUDS
Level order unary degree sequence
� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 1

� each node represented twice
� use index of its corresponding 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 10 + 1 = 11

11
except
root

� nextSibling(i) = i + 1
Exercise: child(i, j)
with validity check

� parent(i) = select1(rank0(i))
parent(8) = select1(rank0(8)) = select1(2) = 3

⇒ 2n + o(n) bits

1

1
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Discussion
� Succinct data structures are

� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations are limited,
� complex→ harder to implement
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Discussion
� Succinct data structures are

� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations are limited,
� complex→ harder to implement

� Rank and select form basis for many succinct
representations
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� also contains how to store planar graphs in linear space


