
1

Philipp Kindermann Chair for Computer Science I

Advanced Algorithms
Winter term 2019/20

Lecture 8. Optimal binary search trees



2 - 1

How good is a binary search tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree:



2 - 2

How good is a binary search tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree:



2 - 3

How good is a binary search tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree:



2 - 4

How good is a binary search tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree: w.c. query time Θ(n)



2 - 5

How good is a binary search tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)



2 - 6

How good is a binary search tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)



2 - 7

How good is a binary search tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)



2 - 8

How good is a binary search tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal



2 - 9

How good is a binary search tree?

What if we know the query before?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal



2 - 10

How good is a binary search tree?

What if we know the query before?

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

6

3

5

2 13

19

129

14 24

8

11

17 21 27



2 - 11

How good is a binary search tree?

What if we know the query before?

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

6

3

5

2 13

19

129

14 24

8

11

17 21 27



2 - 12

How good is a binary search tree?

What if we know the query before? w.c. query time 1

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

6

3

5

2 13

19

129

14 24

8

11

17 21 27



2 - 13

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

Sequence of queries?



2 - 14

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?



2 - 15

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?



2 - 16

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?



2 - 17

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?



2 - 18

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
or 2—13—2—13—2. . .

Sequence of queries?



2 - 19

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

or 2—13—2—13—2. . .

Sequence of queries?



2 - 20

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?
or 2—13—2—13—2. . .

Sequence of queries?



2 - 21

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?

6

1912

3

9 14 24

2

5

8 11

13

17 21 27

or 2—13—2—13—2. . .

Sequence of queries?



2 - 22

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?

6

1912

3

9 14 24

2

5

8 11

13

17 21 27

or 2—13—2—13—2. . .

Sequence of queries?



2 - 23

How good is a binary search tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree: w.c. query time Θ(n)

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?
not always!or 2—13—2—13—2. . .

Sequence of queries?

The performance
of a BST depends
on the model!



3 - 1

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?



3 - 2

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12



3 - 3

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Lemma. The worst-case malicious query cost in any BST
with n nodes is at least Ω(log n) per query.



3 - 4

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Lemma. The worst-case malicious query cost in any BST
with n nodes is at least Ω(log n) per query.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



4 - 1

Model 2: Known Probability Distribution



4 - 2

Model 2: Known Probability Distribution

2 5 8 11

3 9

6



4 - 3

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

Access Probabilities: 2 3 5 6 8 9 11
2% 20% 30% 8% 20% 15% 5%



4 - 4

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

Access Probabilities: 2 3 5 6 8 9 11
2% 20% 30% 8% 20% 15% 5%

Idea: Place nodes with higher propability higher in the tree.



4 - 5

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

Access Probabilities: 2 3 5 6 8 9 11
2% 20% 30% 8% 20% 15% 5%

Idea: Place nodes with higher propability higher in the tree.



4 - 6

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

Access Probabilities: 2 3 5 6 8 9 11
2% 20% 30% 8% 20% 15% 5%

Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2



4 - 7

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

Access Probabilities: 2 3 5 6 8 9 11
2% 20% 30% 8% 20% 15% 5%

Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`



4 - 8

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

5

3

2

8

6 9

11



4 - 9

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.



4 - 10

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



4 - 11

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

pi = 1/n⇒ H =
n

∑
i=1
−1/n · log(1/n) =

n

∑
i=1

log(n)/n = log n

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



4 - 12

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

pi = 1/n⇒ H =
n

∑
i=1
−1/n · log(1/n) =

n

∑
i=1

log(n)/n = log n

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



4 - 13

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

pi = 1/n⇒ H =
n

∑
i=1
−1/n · log(1/n) =

n

∑
i=1

log(n)/n = log n

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



4 - 14

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

pi = 1/n⇒ H =
n

∑
i=1
−1/n · log(1/n) =

n

∑
i=1

log(n)/n = log n

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



4 - 15

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

pi = 1/n⇒ H =
n

∑
i=1
−1/n · log(1/n) =

n

∑
i=1

log(n)/n = log n

p1 = 1, pi = 0⇒ H = − log 1 = 0

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



4 - 16

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

pi = 1/n⇒ H =
n

∑
i=1
−1/n · log(1/n) =

n

∑
i=1

log(n)/n = log n

p1 = 1, pi = 0⇒ H = − log 1 = 0

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



4 - 17

Model 2: Known Probability Distribution
Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`

pi = 1/n⇒ H =
n

∑
i=1
−1/n · log(1/n) =

n

∑
i=1

log(n)/n = log n

p1 = 1, pi = 0⇒ H = − log 1 = 0

Lemma. The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

Definition. A BST has the entropy property if it reaches
this bound.



5 - 1

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.



5 - 2

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.



5 - 3

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12



5 - 4

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12



5 - 5

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12



5 - 6

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12



5 - 7

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2



5 - 8

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).



5 - 9

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-(

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).



5 - 10

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-(

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).



5 - 11

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-)

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).



5 - 12

Model 3: Spacial Locality
If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-)

Lemma. A level-linked Red-Black-Tree has the dynamic
finger property.

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).



6 - 1

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.



6 - 2

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...



6 - 3

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?



6 - 4

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees



6 - 5

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees



6 - 6

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees



6 - 7

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees



6 - 8

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees

. . .



6 - 9

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees

. . .



6 - 10

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees

. . .

Move queried key to first tree, then kick out oldest key.



6 - 11

Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees

. . .

Move queried key to first tree, then kick out oldest key.

Definition. A BST has the working set property if the
(amortized) cost of a query for key x is
O(log t), where t is the number of keys queried
more recently than x.



7 - 1

All these properties...

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amort.) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)



7 - 2

All these properties...

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amort.) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?



7 - 3

All these properties...

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amort.) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Yes! Splay Tree



8 - 1

Splay Trees
Daniel D. Sleator Robert E. Tarjan

J. ACM 1985



8 - 2

Splay Trees

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 3

Splay Trees

ADS:

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 4

Splay Trees

ADS: y
x

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 5

Splay Trees

ADS: y
x y

xRight(x)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 6

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 7

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 8

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 9

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 10

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

2

3

5

6

8

Query(8)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 11

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

2

3

5

6

8

Query(8)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 12

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 13

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 14

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 15

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 16

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Query(6)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 17

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) 2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 18

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) 2

3

5

6

8Query(5)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 19

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) Query(5) 2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 20

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) Query(5) 2

3

5

6

8Query(3)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 21

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 22

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)

2

3

5

6

8
Query(2)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 23

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)
Query(2)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 24

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)
Query(2)

2

3

5

6

8

We’re back at the start...

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



8 - 25

Splay Trees

ADS: y
x y

xRight(x)

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)
Query(2)

2

3

5

6

8

We’re back at the start...
and we did Θ(n2) rotations

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



9 - 1

Rotations II
y

x y
xRight(x)

Left(y)



9 - 2

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x



9 - 3

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z



9 - 4

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)



9 - 5

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z



9 - 6

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)



9 - 7

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)



9 - 8

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left
(y
)



9 - 9

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left
(y
)Left(z)



9 - 10

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 11

Rotations II

z

y
x

x

y
z

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 12

Rotations II

z

y
x

x

y
z

Le
ft
(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 13

Rotations II

z

y
x

Left-Right(y)

x

y
z

Le
ft
(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 14

Rotations II

z

y
x

Left-Right(y)

x

y
z

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 15

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 16

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)

Le
ft

-R
ig

ht
(z
)



9 - 17

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)

Le
ft

-R
ig

ht
(z
) R

ight-Left(x
)



9 - 18

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right-Right(x)

Left-Left(z)

Left
(y
)Right(x

)

Left(z)

R
ight(y

)

Le
ft

-R
ig

ht
(z
) R

ight-Left(x
)

Le
ft
(y
)



10 - 1

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)



10 - 2

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)



10 - 3

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)



10 - 4

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)



10 - 5

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x



10 - 6

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x

y
x

Right(x)



10 - 7

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

x
y

x
y

Left(x)



10 - 8

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)



10 - 9

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

z
y

x



10 - 10

Splay

x
y

z

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Right-Right(x)

z
y

x

x



10 - 11

Splay

z
y

x

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Left-Left(x)

x
y

z



10 - 12

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

z

x
y



10 - 13

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x

z

z

x
y

Left-Right(x)



10 - 14

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x

z

Right-Left(x)

z

x
y



10 - 15

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)



10 - 16

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

6

7

5

4

3

2

1

Splay(3):



10 - 17

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

6

7

5

4

3

2

1

Splay(3):



10 - 18

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

6

7

5

4

3

2

1

Splay(3):



10 - 19

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Splay(3):

6

7

5

4

3

2

1



10 - 20

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Splay(3):

6

7

5

4

3

2

1



10 - 21

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):



10 - 22

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):



10 - 23

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):
• after Search(x)



10 - 24

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):
• after Search(x)
• after Insert(x)



10 - 25

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):
• after Search(x)
• after Insert(x)
• before Delete(x)



11 - 1

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27



11 - 2

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)



11 - 3

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1



11 - 4

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1



11 - 5

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1



11 - 6

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3



11 - 7

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4



11 - 8

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6



11 - 9

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7



11 - 10

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6



11 - 11

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15



11 - 12

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:



11 - 13

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2



11 - 14

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 15

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 16

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 17

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 18

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 19

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 20

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 21

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 22

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2



11 - 23

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:



11 - 24

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi: O(#blue + #red)



11 - 25

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi: O(#blue + #red)
Idea: blue edges halve the weight



11 - 26

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi: O(#blue + #red)
Idea: blue edges halve the weight

⇒ #blue ∈ O(log W)



11 - 27

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:
Idea: blue edges halve the weight

⇒ #blue ∈ O(log W)

O(log W + #red)



11 - 28

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:
Idea: blue edges halve the weight

⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?



11 - 29

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:
Idea: blue edges halve the weight

⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?
Use sum-of-logs potential
Φ = ∑ log s(x)



11 - 30

Why is Splay fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)
s(x): sum of all w(x) in subtree of xi

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:
Idea: blue edges halve the weight

⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?
Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)



12 - 1

Potential after Rotation
Consider any rotation; s(x) before rotation, s+(x) afterwards



12 - 2

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Consider any rotation; s(x) before rotation, s+(x) afterwards



12 - 3

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x)



12 - 4

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x



12 - 5

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:



12 - 6

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

=



12 - 7

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y))

=



12 - 8

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

=



12 - 9

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x))

=



12 - 10

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x))

=



12 - 11

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x)) X

=



12 - 12

Potential after Rotation

Lemma. After a single rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x)).

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x)) X
Left(x) analogue X

=



13 - 1

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Consider any rotation; s(x) before rotation, s+(x) afterwards



13 - 2

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards



13 - 3

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)



13 - 4

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)
z

y
x

x
y

z



13 - 5

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z



13 - 6

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))



13 - 7

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=



13 - 8

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y))

log s+(y) + log s+(z)− log s(x)− log s(y)=



13 - 9

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=



13 - 10

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x))



13 - 11

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)



13 - 12

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)



13 - 13

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)



13 - 14

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)



13 - 15

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)



13 - 16

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)⇒ log s(x) + log s+(z)



13 - 17

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)⇒ log s(x) + log s+(z) = log s(x)s+(z)



13 - 18

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2



13 - 19

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2



13 - 20

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2



13 - 21

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2



13 - 22

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2



13 - 23

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

/ Left-Left(x)



14 - 1

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y



14 - 2

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=



14 - 3

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=



14 - 4

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)



14 - 5

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)



14 - 6

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)



14 - 7

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x)

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)



14 - 8

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)



14 - 9

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)



14 - 10

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2



14 - 11

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x))



14 - 12

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2



14 - 13

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X



14 - 14

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X

/ Left-Right(x)



15 - 1

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.



15 - 2

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 3

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 4

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 5

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 6

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 7

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 8

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 9

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 10

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 11

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 12

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x))



15 - 13

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x)) ≤ 3 (log W − log w(x))− 2k



15 - 14

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x)) ≤ 3 (log W − log w(x))− 2k = 3 log(W/w(x))− 2k



15 - 15

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

2k + 1 rotations⇒ (amort.) cost

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x)) ≤ 3 (log W − log w(x))− 2k = 3 log(W/w(x))− 2k



15 - 16

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

2k + 1 rotations⇒ (amort.) cost ≤ 1 + 3 log(W/w(x))

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x)) ≤ 3 (log W − log w(x))− 2k = 3 log(W/w(x))− 2k



15 - 17

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

2k + 1 rotations⇒ (amort.) cost ≤ 1 + 3 log(W/w(x))

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x)) ≤ 3 (log W − log w(x))− 2k = 3 log(W/w(x))− 2k



16 - 1

Balance

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



16 - 2

Balance

Theorem. Splay Trees are balanced.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



16 - 3

Balance

Proof.

Theorem. Splay Trees are balanced.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



16 - 4

Balance

Proof. Choose w(x) = 1 for each x

Theorem. Splay Trees are balanced.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



16 - 5

Balance

Proof. Choose w(x) = 1 for each x ⇒W = n

Theorem. Splay Trees are balanced.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



16 - 6

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

⇒W = n

Theorem. Splay Trees are balanced.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



16 - 7

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x
⇒ Queries take (amort.) O(log n) time.

⇒W = n

Theorem. Splay Trees are balanced.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



16 - 8

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x
⇒ Queries take (amort.) O(log n) time.

⇒W = n

Theorem. Splay Trees are balanced.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).



17 - 1

Entropy

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 2

Entropy

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 3

Entropy

Theorem. Splay Trees have the entropy property.

Proof.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 4

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 5

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 6

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 7

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

≤ 1 + 3 log(W/w(xi))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 8

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 9

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 10

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 11

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:
O(∑n

i=1 pi(1− 3 log pi))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 12

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:
O(∑n

i=1 pi(1− 3 log pi))
= O(1 + ∑n

i=1−pi log pi)

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



17 - 13

Entropy

Theorem. Splay Trees have the entropy property.

Proof. Choose w(xi) = pi ⇒W = 1
Time to query xi:

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:
O(∑n

i=1 pi(1− 3 log pi))
= O(1 + ∑n

i=1−pi log pi)

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.



18 - 1

Querying a sequence

Let S be a sequence of queries.



18 - 2

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?



18 - 3

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let Φk be the potential after query k.



18 - 4

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.



18 - 5

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?



18 - 6

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)



18 - 7

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x)



18 - 8

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x log w(x)



18 - 9

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x log w(x)

s(root) = log W



18 - 10

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x log W



18 - 11

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x log W
⇒ Φ0 −Φ|S| ≤ ∑x(log W − log w(x))



18 - 12

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x log W
⇒ Φ0 −Φ|S| ≤ ∑x(log W − log w(x)) ≤ ∑x Splay(x)



18 - 13

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

⇒ total cost O
(

∑s∈S Splay(s) + Φ0 −Φ|S|
)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x log W
⇒ Φ0 −Φ|S| ≤ ∑x(log W − log w(x)) ≤ ∑x Splay(x)

⇒ as long as every key is queried at least once, it doesn’t
change the running time.



19 - 1

Static Optimality

Given a sequence S of queries.



19 - 2

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.



19 - 3

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

e.g. S = 2, 5, 2, 5, 2, . . . , 5



19 - 4

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5



19 - 5

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|



19 - 6

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.



19 - 7

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.



19 - 8

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof.



19 - 9

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the number of queries for key xi in S.



19 - 10

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the number of queries for key xi in S.
Let pi := fi/|S|.



19 - 11

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the number of queries for key xi in S.
Let pi := fi/|S|.
Choose pi as probability distribution.



19 - 12

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the number of queries for key xi in S.
Let pi := fi/|S|.
Choose pi as probability distribution.
Static optimality follows from entropy property.



19 - 13

Static Optimality

Given a sequence S of queries.
Let T∗S be the optimal static tree with
the shortest query time OPTS for S.

84

3 7 9

2
e.g. S = 2, 5, 2, 5, 2, . . . , 5
T∗:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the number of queries for key xi in S.
Let pi := fi/|S|.
Choose pi as probability distribution.
Static optimality follows from entropy property.



20 - 1

Dynamic Optimality

Given a sequence S of queries.



20 - 2

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.



20 - 3

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.
(That is, modifications are allowed, e.g. rotations)



20 - 4

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT∗S) time for every S.

(That is, modifications are allowed, e.g. rotations)



20 - 5

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT∗S) time for every S.

(That is, modifications are allowed, e.g. rotations)

Splay Trees: Queries take O(OPT∗S · log n) time.



20 - 6

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT∗S) time for every S.

(That is, modifications are allowed, e.g. rotations)

Splay Trees: Queries take O(OPT∗S · log n) time.
Tango Trees: Queries take O(OPT∗S · log log n) time.

[Demaine, Harmon, Iacono, Pătras, cu ’04]



20 - 7

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT∗S) time for every S.

(That is, modifications are allowed, e.g. rotations)

Splay Trees: Queries take O(OPT∗S · log n) time.
Tango Trees: Queries take O(OPT∗S · log log n) time.

[Demaine, Harmon, Iacono, Pătras, cu ’04]

Open Problem. Does a dynamically optimal BST exist?



20 - 8

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT∗S) time for every S.

(That is, modifications are allowed, e.g. rotations)

This is one of the biggest open problems in algorithms.

Splay Trees: Queries take O(OPT∗S · log n) time.
Tango Trees: Queries take O(OPT∗S · log log n) time.

[Demaine, Harmon, Iacono, Pătras, cu ’04]

Open Problem. Does a dynamically optimal BST exist?



20 - 9

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT∗S) time for every S.

(That is, modifications are allowed, e.g. rotations)

Conjecture. Splay Trees are dynamically optimal.

This is one of the biggest open problems in algorithms.

Splay Trees: Queries take O(OPT∗S · log n) time.
Tango Trees: Queries take O(OPT∗S · log log n) time.

[Demaine, Harmon, Iacono, Pătras, cu ’04]

Open Problem. Does a dynamically optimal BST exist?


	How good is a binary search tree?
	Model 1: Malicious Queries
	Model 2: Known Probability Distribution
	Model 3: Spacial Locality
	Model 4: Temporal Locality
	All these properties...

	Splay Trees
	Rotations II
	Splay
	Why is Splay fast?
	Potential after Rotation
	Access Lemma
	Balance

	Entropy
	Static Optimality
	Dynamic Optimality


