Julius-Maximilians- Lehrstuhl fiir . .
I UNIVERSITAT INFORMATIK | I'l'l | fl
WU RZ B U RG Effiziente Algorithmen und

wissensbasierte Systeme Institut fuir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 8. Optimal binary search trees

Philipp Kindermann Chair for Computer Science |

How good is a binary search tree?

Binary search tree:

13

12

19

14

11

17| 21

24

27

How good is a binary search tree?

Binary search tree:

13

12

19

14

11

17| 21

24

27

How good is a binary search tree?

Binary search tree:

13

12

19

14

11

17 121

24

27

How good is a binary search tree?

Binary search tree:

w.C. query time ©O(n)

13

12

19

14

11

17| 21

24

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.C. query time ©O(n)

12

11

13

19

14

17] |21

24

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:

(e.g. Red-Black-Tree)

w.C. query time ©O(n)

12

11

13

19

14

17] |21

24

27

How good is a binary search tree?

Binary search tree: w.C. query time ©O(n)

Balanced binary search tree: w.c. query time O(logn)
(e.g. Red-Black-Tree)

12

2 |5 |8 (11} 13 [17] 21} |27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

12

13

19

14

17] |21

24

2-8

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before?

12

13

19

14

17] |21

24

2-9

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:

(e.g. Red-Black-Tree)

What if we know the query before?

3

11

13

19

w.C. query time ©O(n)

14

12

17] |21

24

2-10

optimal

w.c. query time O(logn)

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before?
3

13

19

w.C. query time ©O(n)

14

12

17] |21

24

2-11

optimal

w.c. query time O(logn)

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

3

13

19

w.C. query time ©O(n)

14

12

17] |21

24

2-12

optimal

w.c. query time O(logn)

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?

12

13

19

14

17] |21

24

2-13

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

13

19

14

17] |21

24

2-14

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27

How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

13

19

14

17] |21

24

2-15

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27

2-16

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

21 |5 |8 (11} {134 17 21} |27

2-17

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

21 15 |8 (11} {134 17 21} |27

2-18

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1
Sequence of queries?

e.g. 2—13—5

or 2—13—2—13—2...

12

21 |5 |8 (11} {134 17 21} |27

2-19

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries? O(logn) per query
e.g. 2—13—5
2—13—2—13—2. ..
or >
6 19
3 9 14 24

21 |5 |8 (11} {134 17 21} |27

2-20

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries? O(logn) per query
or 2—13—2—13—2...
12
6 19
3 9 14 24

21 |5 |8 (11} {134 17 21} |27

How good is a binary search tree?

Binary search tree:

Balanced binary se¢ [5
(e.g. Red-Black-T

What if we know th
Sequence of queries?

e.g. 2—13—5

or 2—13—2—13—2...

2-21

optimal

w.C. query time @(n))

13

12

11

14

19

17 |21

24

)

27

2-22

How good is a binary search tree? .
optimal

Binary search tree: w.C. query time @(n))

Balanced binary se: [5)
(e.g. Red-Black-T

What if we know th 13
Sequence of queries?

e.g. 2—13—5

or 2—13—2—13—2...

12 19

8 (11 17 (21} |27

2-23

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries? O(logn) per query
or 2—13—2—13—2... 17 not always!
6 19

The performance 3 9 14 24

of a BST depends
on the model! 2| |5 |8 (A1 (131 |17} 21| |27

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

12

13

14

19

17] |21

24

27

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

Lemma. The worst-case malicious query cost in any BST
with 7 nodes is at least ()(logn) per query.

12

21 |5 |8 (11} {134 17 21} |27

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

Lemma. The worst-case malicious query cost in any BST
with 7 nodes is at least ()(logn) per query.

Definition. A BST is balanced if the (amortized) cost of any
query is O(logn).

12

21 |5 |8 (11} {134 17 21} |27

Model 2: Known Probability Distribution

Model 2: Known Probability Distribution

Model 2: Known Probability Distribution

Access Probabilities:

2

3

2%

5

6

8

4-3

20% 30% 8%

20% 15%

9

11

5%

11

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

Access Probabilities:

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

Tn AR

Access Probabilities:

4-6

Model 2: Known Probability Distribution

2| |3

Access Probabilities:

5

6

8

2% 20% 30%

8%

9

11

20% 15%

5%

Idea: Place nodes with higher propability higher in the tree.

P T

ARARARLR

prob. < 1/2

11

4-7

Model 2: Known Probability Distribution

2| |3

Access Probabilities:

5

6

8

2% 20% 30%

8%

9

11

20% 15%

5%

Idea: Place nodes with higher propability higher in the tree.

P T

prob. < 1/2

L6006 N

6

11

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

5

Access Probabilities:

11

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

4-10

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r~—- - ... i -— = = T Y/
Definition. A BST has the entropy property if it reaches
this bound.

. J

4-11

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r~—- - ... i -— = = T Y/
Definition. A BST has the entropy property if it reaches
this bound.

. J

pi=1/n

4-12

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r~—- - ... i -— = = T Y/
Definition. A BST has the entropy property if it reaches
this bound.

. J

pi=1/n=H = i—l/n-log(l/n)
=1

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r~—- - ... i -— = = T Y/
Definition. A BST has the entropy property if it reaches
this bound

. J

pi=1/n= H = Z —1/n-log(1/n) = Zlog
=1

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r~—- - ... i -— = = T Y/
Definition. A BST has the entropy property if it reaches
this bound

. J

pi=1/n= H = Z —1/n-log(1/n) = Zlog n)/n = logn
=1

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r— - ... i - Y/
Definition. A BST has the entropy property if it reaches
this bound

. J

pi=1/n= H = Z —1/n-log(1/n) = Zlog n)/n = logn
=1

P1—1P1—0

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r— - ... i - Y/
Definition. A BST has the entropy property if it reaches
this bound

. J

pi=1/n= H = Z —1/n-log(1/n) = Zlog n)/n = logn
=1
pir=1,p;i=0=H=—logl

Model 2: Known Probability Distribution

21 (3] |5| |6 8 |9] |11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher propability higher in the tree.

ST b < 112
L6 06N

‘Lemma. The expected query cost in any BST is at least
(1 + H) per query with H =)' ; —p;log p;.

Access Probabilities:

r— - ... i - Y/
Definition. A BST has the entropy property if it reaches
this bound

. J

pi=1/n= H = Z —1/n-log(1/n) = Zlog n)/n = logn
=1
ri=1pi=0=H=—1logl =0

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more
likely to be queried.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key x; and want to query key x; next.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more

likely to be queried.

Suppose we queried key x; and want to query key x; next.

12

13

19

14

171 21

24

27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more

likely to be queried.

Suppose we queried key x; and want to query key x; next.

12

13

19

14

171 21

24

27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more

likely to be queried.

Suppose we queried key x; and want to query key x; next.

12

13

19

14

171 21

24

27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more

likely to be queried.

Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.

12

11

13

19

14

171 21

24

27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more

likely to be queried.

Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.

19

14

171 21

24

27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more

likely to be queried.

Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.

(amortized) cost of queries are O(log J;;).

[Deﬁnition. A BST has the dynamic finger property if the

|

19

171 21

24

27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.
[Deﬁnition. A BST has the dynamic finger property if the]

(amortized) cost of queries are O(log J;;).

19

24

171 (21} |27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.
[Definition. A BST has the dynamic finger property if the]

(amortized) cost of queries are O(log J;;).

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.
[Deﬁnition. A BST has the dynamic finger property if the]

(amortized) cost of queries are O(log J;;).

2 [5 prmmt 8 e] ey] S 1 7 e 21 27

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.
‘Definition. A BST has the dynamic finger property if the]

(amortized) cost of queries are O(log J;;).

‘Lemma. A level-linked Red-Black-Tree has the dynamic
finger property.
b 125

3 9 14 24

2 [5 prmmt 8 e] ey] S 1 7 e 21 27

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees

LA

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees

L A

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees

-

L A

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees

-

L A

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees
Move queried key to first tree, then kick out oldest key.

-

Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees
Move queried key to first tree, then kick out oldest key.

\

‘Definition. A BST has the working set property if the
(amortized) cost of a query for key x is
O(logt), where ¢ is the number of keys queried
more recently than x.

. J

(

All these properties...

Balanced: Queries take (amort.) O(logn) time
Entropy: Queries take expected O(1 + H) time
Dynamic Finger: Queries take O(logJ;) time (J;: rank diff.)
Working Set: Queries take O(logt) time (t: recency)

All these properties...

Balanced: Queries take (amort.) O(logn) time
Entropy: Queries take expected O(1 + H) time
Dynamic Finger: Queries take O(logd;) time (J;: rank diff.)
Working Set: Queries take O(logt) time (t: recency)

... 1s there one BST to rule them all?

All these properties...

Balanced: Queries take (amort.) O(logn) time
Entropy: Queries take expected O(1 + H) time
Dynamic Finger: Queries take O(logd;) time (J;: rank diff.)
Working Set: Queries take O(logt) time (t: recency)

... 1s there one BST to rule them all?

Yes!

Splay Trees

Splay Trees

'R . & Daniel D. Sleator Robert E. Tarjan
(LT J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

Splay Trees

e b ; A Daniel D. Sleator Robert E. Tarjan
" Iz J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

Splay Trees

Danie

1 D. Sleator Robert E. Tarjan

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

\l : Righ’c(x)> : /

Splay Trees

Danie

1 D. Sleator Robert E. Tarjan

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

Z Right(x)> /(

Left(y)

Splay Trees

Daniel D. Sleator Robert E. Tarjan

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

e s

Left(y)

Splay(x): Rotate x to the root

Splay Trees

Daniel D. Sleator Robert E. Tarjan

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

e s

Left(y)

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Splay Trees

Daniel D. Sleator Robert E. Tarjan

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

AR

Left(y)

2

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Splay Trees

Daniel D. Sleator

> T
/<:t;/\ “Left(y)

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

ALK

W

: S

otate x to the root

play(x), then return root

Robert E. Tarjan

2

Splay Trees

Daniel D. Sleator

> T
/<:t;/\ “Left(y)

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

ALK

W

: S

otate x to the root

play(x), then return root

Robert E. Tarjan

2

Splay Trees

Daniel D. Sleator

> T
/<:t;/\ “Left(y)

J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

ALK

W

: S

otate x to the root

play(x), then return root

Robert E. Tarjan

2

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

= \ , Right(x) /(X ;
AK TLeft(y) /\\j 7\
Splay(x): Rotate x to the root -
Query(x): Splay(x), then return root 2
Query(8) é

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

= \ , Right(x) /(X ;
AK TLeft(y) /\\j 7\
Splay(x): Rotate x to the root -
Query(x): Splay(x), then return root s
Query(8) :

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

= \ , Right(x) /(X ;
AK TLeft(y) /\\j 7\
Splay(x): Rotate x to the root :
Query(x): Splay(x), then return root Z
Query(8) :

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

: - X
ZE;/\ \‘ : ngh’c(x)> /(T
/< “Left(y) 7\
8
Splay(x): Rotate x to the root
Query(x): Splay(x), then return root Z
3
(

Query(8) Query(6)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

3 x Right(x)>
A e
KK “Left(y) /(7\

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root
(

8) Query(6)

Query

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

3 x Right(x)>
A e
AK “Left(y) /(7\

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root
(

8) Query(6)

Query

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

3 x Right(x)>
A e
KK “Left(y) /(7\

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root
Query(8) Query(6) :
8

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

3 x Right(x)>
A e
KK “Left(y) /(7\

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root
Query(8) Query(6) :
Query(3) 3 8

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

3 x Right(x)>
A e
KK “Left(y) /(7\

Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

‘ x Right(x)>
A e
KK “Left(y) /(7\

Query(x) Splay(x), then return root

Query(8) Query(6) 5
Query(3) =
Query(2) .

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985
e . Idea:Whenever we query a key,
'y rotate it to the root.
ADS: Yy : X
- \‘ : ngh’c(x)> /(7
A ~Left(y) A\

Query(x) Splay(x), then return root

Query(8) Query(6) 2
Query(3) 6
Query(2) =

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985
e . Idea:Whenever we query a key,
il rotate it to the root.
ADS: Yy : X
- \‘ : ngh’c(x)> /(7
A ~Left(y) A\

Query(x) Splay(x), then return root

Query(8) Query(6) 2

Query (3) We’re back at the start [
Query(2) =

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985
e . Idea:Whenever we query a key,
il rotate it to the root.
ADS: Yy : X
- \‘ : ngh’c(x)> /(7
A ~Left(y) A\

Query(x) Splay(x), then return root

Query(8) Query(6) 2

Query (3) We’re back at the start... 6
Query (2) and we did ®(n?) rotations 3]

Rotations 1l

Y

AN

Z Right(x)> /(

“Left(y)

Rotations 1l

“Left(y)

An D8

Z

Rotations 11

: J \ , Right(x)_ X ;
Ag “Left(y) /(? 7\
Z X

PO V- Y.y S

Rotations 11

X

A AN

G S
2 =
&bl g
~

y

AN D

=/

2.
%{

O V- Sy SN

Rotations 11

: J \ , Right(x) X ;
Ag “Left(y) /(} 7\
Z X

SN K e
Aﬁi% A 75

AREN

K7

pe

2, 2
)

n
A5

Rotations 11

: J Z Right(x) X ;
Ag “Left(y) /(} 7\

AR

Rotations 11

AN K Rfﬁf

Rotations 11

Rotations 11

AN

Y

Y

AN

ALE S

Z

A2

“Left(y)

ight—Right(ic) : :

Rotations 11

9-10

AN DL

< : Right—Right(ic) :
“/A <Lef’c—Lef’c(z)
.

Rotations 1l

Z

%

Right-Right(x)
b VA —"4
Li
A ¢
%, V
e > \
{W < '@

<Left—Left(z)
©

ANAN

Z

A2 &

Rotations 1l
y < Right—Right(ic) ;

X ; \ = / ; Z
AIA /A B 5\ E JaN
% b
4 {%‘/ V D

A :«x o 7
S N
g A /\
o
-

Z X

a9 AP

Rotations 11

Z Right-Right(x

T 2 ght-Rig (>) g T
X < Z
&J/A S E N\
% b

<, {%‘/ 37 4
A :’N o 7

S, Nz

Y
. X Z

> Left-Right(y) /< 7\
dq:)’ >

-

Z X

a9 AP

Rotations 11
z Right-Right(x
7 ght-Rig (>) ;
X 2 \ < f ; =
Left-Left(z) N E:
/ g i \ % & 2>
<, {%‘/ 37 4
\ :,x 2 S & R
@ 2

Yy N
P X z -
S| Left-Right(y) /< 7\ Z
X > =
0) N
— <
Z X

A A TRAEE N

Rotations I

2 Right-Right(x
T 2 ght-Rig (>) g T
X < Z
AIA e E \
®, 3

X 4

. :{% 2, & &@s A
<) N

Y
g X Z =3
>| Left-Right(y) /< 7\ Right-Left(y) |og’
e > <7 =
Q //~
— NS
Z X

Ax yAA &Ay ZA

Rotations I

2 Right-Right(x

T 2 ght-Rig (>) g T
X < Z
AIA e E AN
®, 3

y 6%5[/ @y’ S

A g <) 5&@5 A

S, Y v

g X Z =3
>| Left-Right(y) /< 7\ Right-Left(y) |og’
& > <] =
Q /™~
— =
/A Z
AN

=
<
Left-Right(z)

Rotations I
Z Right-Right(x A
T 2 ght-Rig (>) g T
X < Z
AIA e E \
®, 3
2 % &4
4 "% I I
<) N

Y

g X Z =3
>| Left-Right(y) /< 7\ Right-Left(y) |og’
& > <] =
Q /™~
— =
/A Z
AN

=
<
Left-Right(z)

(x)139T1 43y

Rotations 1l

< Right-Right(x
Yy >
X A -
S AZ ‘/A Left-Left(z)

) X

K

Splay

Splay

Splay

Splay

Splay

Splay

Splay
Algorithm: Splay(x) 7

if x = root then X A
y = parent of x

if y = root then /<
if x < y then Right(x)

if y < x then Left(x)
else lRight—Right(x)

z = parent of y X

if x < y < z then Right-Right(x) S y
Z

Splay
Algorithm: Splay(x)
if x # root then = Z A

y = parent of x
if y = root then /<

if x < y then Right(x)
if y < x then Left(x) A
else Left-Left(x)
z = parent of y ~
if x < y < z then Right-Right(x) S Y
if z < y < x then Left-Left(x) X

/\

Splay

Algorithm: Splay(x)

if x = root then

y = parent of x

if y = root then A
if x < y then Right(x)

if y < x then Left(x)

else

z = parent of y

if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)

Y

if y < x < z then Left-Right(x) /<

Splay

Algorithm: Splay(x)

if x = root then 1

y = parent of x & X

if y = root then A
if x < y then Right(x) A

if y < x then Left(x)

else lRight—Left(x)

z = parent of y
if x < y < z then Right-Right(x) Y
if z < y < x then Left-Left(x) 1 -

if y < x < z then Left-Right(x)
| if z < x <y then Right-Left(x)

Splay

10 - 16

Splay

Splay(3):

10 - 17

Splay

Splay(3):

10 - 18

Splay

Splay(3):

10 - 19

Splay

Splay(3):

10 - 20

Splay

Splay(3):

10 - 21

Splay

Splay(3):

10 - 22

Splay

Splay(3):

Call Splay(x):

10 - 23

Splay

Splay(3):

Call Splay(x):
® after Search(x)

10-24

Splay

Splay(3):

Call Splay(x):
® after Search(x)
e after Insert(x)

Splay

Algorithm: Splay(x)

Splay(3):
if x = root then play (3
y = parent of x 3
if y = root then
if x < y then Right(x) 5 6
if y < x then Left(x)
else 1 A 7
z = parent of y
if x < y < z then Right-Right(x) 5
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x) ' Call Splay(x):
L ifz<x< Yy then nght—Left(x) ® after Search(x)
| Splay(x) e after Insert(x)

® before Delete(x)

Why is Splay fast?

13

12

19

14

11

17] |21

24

11 -

27

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

2

13

12

19

14

11

17] |21

24

11 -

27

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

1|2

17| 121

24

11 -

27

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

1|2

13

17| 121

24

11 -

27

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

1|2

11f 1

17)1 121

24

11

11-5

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

1|2

11f 1

17)1 121

24

11

11-6

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

1|2

11f 1

17)1 121

24

11

11-7

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

1|2

o 1114

11f 1

17)1 121

24

11

11-8

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

1|2

17)1 121

24

11

11-9

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

1|2

17)1 121

24

11

11 - 10

11-11

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

1| 2 |15

81+ 11110 11170 1211 11271

11-12

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 200

81+ 11110 11170 1211 11271

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 200
— 5(child) < s(parent)/2
111314
11127 119
119 |6 1114/ 1
11 81+ 1T 1f17]r 121

11-13

245

11277

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-14

mark edges: 112 |
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 1113)
1127 19|
119 |6 1114/ 1
81+ 1111 171 121

245

11277

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-15

mark edges: 112 |
— 5(child) < s(parent)/2
— 5(child) > s(parent) /2 1113)
1127 19|
119 |6 1114/ 1
81+ 1111 171 121

245

11277

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-16

mark edges: 112 |
— 5(child) < s(parent)/2
— 5(child) > s(parent) /2 1113)
1127 19|
119 |6 1114/ 1
81+ 1111 171 121

245

11277

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6

119 |6 1114/ 1

18 111 117} 121

1|15z

1131 1161

24

11

11-17

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6

119 |6 1114/ 1

18 111 117} 121

1|15z

1131 1161

24

11

11-18

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6

119 |6 1114/ 1

18 111 117} 121

1|15z

1131 1161

24

11-19

11

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6

119 |6 1114/ 1

18 111 117} 121

1|15z

1131 1161

24

11 - 20

11

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6

119 |6 1114/ 1

18 111 117} 121

1|15z

1131 1161

24

11-21

11

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6

119 |6 1114/ 1

18 111 117} 121

1|15z

1131 1161

24

11-22

11

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-23

mark edges: {2
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 13
Cost to query x;: Mol 9l
119 |6 1114/ 11243
81+ 11110 11170 1211 11271
1|15z

1131 116

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-24

mark edges: {2
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 13
Cost to query x;: O(#blue + #red) Mol 19l
119 |6 1114/ 11243
81+ 11110 11170 1211 11271
1|15z

1131 116

11-25

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: {2

— 5(child) < s(parent)/2

— 5(child) > s(parent)/2 13
Cost to query x;: O(#blue + #red) Mol 19l

Idea: blue edges halve the weight

119 |6 1114/ 11243

81+ 11110 11170 1211 11271

1|15z

1131 116

11 - 26

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
—= 5(child) > s(parent)/2 13[4
Cost to query x;: O(#blue + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ 1124

81+ 11110 11170 1211 11271

1|15z

1131 116

11 -27

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
—= 5(child) > s(parent)/2 13[4
Cost to query x;: O(log W + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ 1124

81+ 11110 11170 1211 11271

1|15z

1131 116

11 -28

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
—= 5(child) > s(parent)/2 13|
Cost to query x;: O(log W + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ 1124

How can we amortize red edges?

81+ 11110 11170 1211 11271

1|15z

1131 116

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 13|
Cost to query x;: O(log W + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ |

How can we amortize red edges?

Use sum-of-logs potential 8 1) 1f17) 21

24

11-29

® =Y logs(x) :

1131 116

11

27)

Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges:
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

Cost to query x;: O(log W + #red)

Idea: blue edges halve the weight
= #blue € O(log W)

How can we amortize red edges?

Use sum-of-logs potential
® =Y logs(x)
Amortized cost:

real cost + &, — P
\ (potential after splay)

1|2

15

1113

111217

14

1119]6

1910 114

81+ 1111 1

1|5 |3

1131 116

17)1 121

24

11 -30

11

12 -1

Potential after Rotation

Consider any rotation; betore rotation, afterwards

12 -2

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a single rotation, the potential increases
by < 3 (log —log -1)).

12-3

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a single rotation, the potential increases
by < 3 (log —log -1)).

Proof. Right(x)

Potential after Rotation

Consider any rotation;

before rotation,

12 -4

afterwards

Lemma.

by < 3 (log

—log (1)).

After a single rotation, the potential increases

Proof. Right(x)

Yy

X

o

/N

2\

A\

\

Yy

A

2\

Potential after Rotation

Consider any rotation;

before rotation,

12-5

afterwards

Lemma.

by < 3 (log

—log (1)).

After a single rotation, the potential increases

Yy

X

o

Proof. Right(x)

2\

Observe: Only and

A\

change.

\

Yy

A

2\

Potential after Rotation

Consider any rotation;

before rotation,

12-6

afterwards

Lemma.

by < 3 (log

—log (1)).

After a single rotation, the potential increases

Proof. Right(x)

Yy

o

N\

Observe: Only and

pot. change = log
—log

A\

change.

+ log
— log

\

Yy

A

2\

12-7

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a single rotation, the potential increases

by < 3 (log —log (1)).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log

(<s(y))

12 -8

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a single rotation, the potential increases

by < 3 (log —log (1)).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log

(<s(y)) <log — log

Potential after Rotation

Consider any rotation;

before rotation,

12-9

afterwards

Lemma. After a single rotation, the potential increases

by < 3 (log —log (1)).

Proof. Right(x)

Yy

o

N\

A\

Observe: Only and change.

pot. change = log + log

—log — log

(<s(y)) <log — log

(> 5(x))

\

Yy

A

2\

12 - 10

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a single rotation, the potential increases

by < 3 (log —log (1)).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log
(<s(y)) <log — log
(>s(x) < 3(log —logs(x))

12 -11

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a single rotation, the potential increases

by < 3 (log —log (1)).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log
(<s(y)) <log — log
(>s(x) < 3(log —logs(x)) v

12 -12

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a single rotation, the potential increases

by < 3 (log —log (1)).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log
(<s(y)) <log — log
(>s(x) < 3(log —logs(x))

NN

Left(x) analogue

13-1

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

13-2

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof.

13-3

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof.
Case 1. Right-Right(x)

Potential after Rotation

Consider any rotation;

before rotation,

13-4

afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. 2z Xl
BN

Case 1. Right-Right(

‘/

P

2\

2\

ay

A

Z

A

7\

Potential after Rotation

Consider any rotation;

before rotation,

13-5

afterwards

Lemma. After a double rotation, the potential increases

by < 3 (log —log () —2.
Proof. z X
=% =kl
Case 1. Right-Right(x) JIx#” AA—’ﬁ P GE
AN VAQAN
pot. change = log + log + log
—log — log — log

Potential after Rotation

Consider any rotation;

before rotation,

13-6

afterwards

Lemma.

—log (1)) —2.

After a double rotation, the potential increases
by < 3 (log

Proof.

Case 1. Right-Right(

pot. change

(—

Z

yA/

X

2\

pas
= log

—log

+ log
— log

X
.

SVAA

+ log
— log

ay

AN

Z

A

7\

13-7

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. 2z Xl
Case 1. Right—Right(xk X ;\y AA —{ Pl y/\< z 5
pot. change = log + log + log
—log —log —log

(=s(z)) = log + log —log —log

13-8

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. 2z Xl
Case 1. Right—Right(xk X ;\y AA —{ Pl y/\< z 5
pot. change = log + log + log
—log —log —log

(=s(z)) = log + log —log —log
(s(x) < s(y))

13-9

Potential after Rotation

Consider any rotation; betore rotation, afterwards
Lemma. After a double rotation, the potential increases

by < 3 (log —log () —2.
Proof. 2z Xl
Case 1. Right—Right(xk X ;\y AA —{ Pl y/\< z 5
pot. change = log + log + log

—log —log —log

(=s5(z)) = log + log — log — log

(s(x) <s(y) <log + log — 2log

Potential after Rotation

Consider any rotation;

before rotation,

13-10

afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log — log) — 2.
Proof. 2z Xl
Case 1. Right—Right(xk ;\y AA — AN P y/\{ z oy
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log —logs(x) —log
(s(x) <s(y) <log + log — 2log

(<)

13-11

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. 2z Xl
Case 1. Right—Right(xk x ;\y AA —{ Pl y/\< z 5
pot. change = log + log + log
—log —log —log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log

(<) <log + log — 2log

13-12

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. 2z Xl
Case 1. Right—Right(x% x %AA —{ Pl y/\< z 5
pot. change = log | + log + log
—log —log —log
(=s5(z)) = log + log — log — log
(s(x) <s(y) <log + log — 2log

(<) <log + log — 2log

Potential after Rotation

Consider any rotation;

before rotation,

13-13

afterwards

7\

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. E
Case 1. Right—Right(x% %AA — < y/\<~
pot. change = log + log + log
—log — log — log
(=5(z)) = log + log — log — log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log

Potential after Rotation

Consider any rotation;

before rotation,

13-14

afterwards

A

Lemma. After a double rotation, the potential increases J
by < 3 (log — log) — 2.
Proof. Lz
Case 1. Right—Right(x% %AA — (X y/{z
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log —2log

Potential after Rotation

Consider any rotation;

before rotation,

13-15

afterwards

A

Lemma. After a double rotation, the potential increases J
by < 3 (log — log) — 2.
Proof. Lz
Case 1. Right—Right(x% %AA — (X y/{z
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log —2log

+ <

Potential after Rotation

Consider any rotation;

before rotation,

13-16

afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. z
=i y
Case 1. Right—Right(x% %AA —¢S /{ z 7&
pot. change = log) + log + log .
—log — log — log

(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log

+ < = log + log

Potential after Rotation

Consider any rotation;

before rotation,

13-17

afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. z
=i y
Case 1. Right—Right(x% %AA —¢S /{ z 7&
pot. change = log) + log + log .
—log — log — log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log
+ < = log + log = log

13-18

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. z X
=i > y
Case 1. Right—Right(x% X %AA a8 /{ z 7&
pot. change = log | + log + log B
—log —log —log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log
+ < = log + log = log

< log (/2)

(AM-GM)

13-19

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. z X
=i > y
Case 1. Right—Right(x% X %AA a8 /{ z 7&
pot. change = log | + log + log B
—log —log —log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log
+ < = log + log = log

< log (/2)% < 2log —2

(AM-GM)

13-20

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. z X
Ve > y
Case 1. Right—Right(x% X %AA a8 /{ z 7&
pot. change = log | + log + log B
—log —log —log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log
+ < = log + log = log

< log (/2)% < 2log —2

(AM-GM)

13-21

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. z X
=i > y
Case 1. Right—Right(x% X %AA a8 /{ z 7&
pot. change = log] + log + log .
—log —log —log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log
< 3log — 3log —2
+ < = log + log = log

< log (/2)% < 2log —2

(AM-GM)

13-22

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. z X
=i > y
Case 1. Right—Right(x% X %AA a8 /{ z 7&
pot. change = log] + log + log .
—log —log —log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log
< 3log —3log —2 v
+ < = log + log = log

< log (/2)% < 2log —2

(AM-GM)

13-23

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. / Left-Left(x) Lz x
y y
Case 1. Right—Right(x% x %AA — < /{ z 7&
pot. change = log | + log + log B
—log — log — log
(=s(z)) = log + log —log —log
(s(x) <s(y) <log + log — 2log
(<) <log + log — 2log
< 3log — 3log —2 v
+ < = log + log = log

< log (/2)% < 2log —2

(AM-GM)

14 -1

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof. 2 — .

Case 2. Right-Left(x) /N /<x§\ N—/\ >/\ /\iy)\

14 -2

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof. Z\sy Z‘/x\‘y
Case 2. Right-Left(x) £/<x§\ N—= N A N\

pot. change = log + log + log
—log —log —log

14 -3

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. —— Ly
Case 2. Right-Left(x) /N e NN N AN\
VAN
pot. change = log + log + log
—log — log — log

(=s(z)) = log + log — log — log

14 -4

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. —— Ly
Case 2. Right-Left(x) /S e NN N AN\
VAN
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log — log — log

(

VAN

) <log + log —2log

14 -5

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof. —— L
Case 2. Right-Left(x) /S e AN A AN AN

VAN -
pot. change = log + log + log

—log — log — log

(=s(z)) = log + log — log — log

(

VAN

) <log + log —2log

14 -6

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof. —— S
Case 2. Right-Left(x) /N e A—»K AN\

VAN - -
pot. change = log + log + log

—log — log — log

(=s(z)) = log + log — log — log

(

VAN

) <log + log —2log

14 -7

Potential after Rotation

Consider any rotation; betore rotation, afterwards
Lemma. After a double rotation, the potential increases J
by < 3 (log —log () —2.

Proof. & —— S
Case 2. Right-Left(x) xS A—»K AN\

VANAN = -
pot. change = log + log + log

—log — log — log

(=5(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log

14 -8

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. —— S
Case 2. Right-Left(x) /N e A—»K AN\
VAN - -
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log
4+ < = log + log

< 2log —2

14 -9

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. —— S
Case 2. Right-Left(x) /N e A—»K AN\
VAN - -
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log
4+ < = log + log

< 2log —2

14 - 10

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log — log) — 2.
Proof. —— S
Case 2. Right-Left(x) /N e A—»K AN\
VAN < -
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log
< 2log —2log —2
4+ < = log + log

< 2log —2

14 - 11

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. —— S
Case 2. Right-Left(x) /N e A—»K AN\
VAN < -
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log
< 2log —2log —2
(> 5(x))
4+ < = log + log

< 2log —2

14 - 12

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. —— S
Case 2. Right-Left(x) /N e A—»K AN\
VAN < -
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log
< 2log —2log —2
(>s(x)) < 3log —3log -2
4+ < = log + log

< 2log —2

14 - 13

Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma. After a double rotation, the potential increases
by < 3 (log — log) — 2.
Proof. —— S
Case 2. Right-Left(x) /N e A—»K AN\
VAN - -
pot. change = log + log + log
—log — log — log
(=s(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log
< 2log —2log —2
(>5(v)) < 3log —3logs(x) —2 v
4+ < = log + log

< 2log —2

14 - 14

Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma. After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof. / Left-Right(x) 2 —

Case 2. Right-Left(x) &Ax% S K 5 AT

"

pot. change = log + log + log
—log —log —log
(=s5(z)) = log + log — log — log
(s(x) <sly)) <log +log —2log
< 2log —2log —2
(>5(v)) < 3log —3logs(x) —2 v
+ < = log + log

< 2log —2

15 -

Access Lemma

Access Lemma

Access Lemma

Proof.

Access Lemma

15 -

p
Lemma.

/

After a single rotation, the potential increases
by < 3 (log —log (1)).

After a double rotation, the potential increases
by < 3 (log —log () —2.

2N

VAN

s
Lemma.

The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof.

W.l.o.g. k double rotations and 1 single rotation.

Access Lemma

15 -

p
Lemma.

/

After a single rotation, the potential increases
by < 3 (log —log (1)).

After a double rotation, the potential increases
by < 3 (log —log () —2.

VAN

s
Lemma.

The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof.

W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.

Access Lemma

15 -

p
Lemma.

/

After a single rotation, the potential increases
by < 3 (log —log (1)).

After a double rotation, the potential increases
by < 3 (log —log () —2.

VAN

s
Lemma.

The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof.

W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most

Access Lemma

15 -

p
Lemma.

/

After a single rotation, the potential increases
by < 3 (log —log (1)).

After a double rotation, the potential increases
by < 3 (log —log () —2.

VAN

s
Lemma.

The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof.

W.l.o.g. k double rotations and 1 single rotation.

Let be atter i single/double rotations.
Potential increases by at most

Yiq (3 (log — log) —2)

Access Lemma

15 -

p
Lemma.

/

After a single rotation, the potential increases
by < 3 (log —log (1)).

After a double rotation, the potential increases
by < 3 (log —log () —2.

s
Lemma.

The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

VAN

Proof.

W.l.o.g. k double rotations and 1 single rotation.

Let be atter i single/double rotations.
Potential increases by at most
i (3(logsi(x) —log) —2)

+3 (log — log)

Access Lemma

15 -

p
Lemma.

/

After a single rotation, the potential increases
by < 3 (log —log (1)).

After a double rotation, the potential increases
by < 3 (log —log () —2.

VAN

s
Lemma.

The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof.

W.l.o.g. k double rotations and 1 single rotation.

Let be after i single/double rotations.
Potential increases by at most

Y 1 (3(log — log) —2)

+3 (log — log)

= 3 (log —logs(x)) — 2k

15 -10

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.

Let be atter i single/double rotations.
Potential increases by at most
i (3(logsi(x) —log) —2)

root! +3 (lo —log)

= 3 (log —logs(x)) —2k

15-11

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most
Zﬁ-‘—11(3 (log T log)) —2)
+3 (lo — log
t!
Y = 3 (log —logs(x)) — 2k

=3 (logW —logs(x)) — 2k

15-12

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most
Zﬁ-‘—11(3 (log T log)) —2)
+3 (lo — log
t!
Y = 3 (log —logs(x)) — 2k

=3 (logW —logs(x)) — 2k

< w(x))

15-13

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most
Zﬁ-‘—11(3 (log T log)) —2)
+3 (lo — log
t!
Y = 3 (log —logs(x)) — 2k

=3 (logW —logs(x)) — 2k
(s(x) <w(x)) <3 (logW —logw(x)) — 2k

15-14

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most
Zﬁ-‘—11(3 (log T log)) —2)
+3 (lo — log
t!
Y = 3 (log —logs(x)) — 2k

=3 (logW —logs(x)) — 2k
(s(x) <w(x)) <3 (logW —logw(x)) —2k = 3log(W/w(x)) — 2k

15-15

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most
Zﬁ-‘—11(3 (log T log)) —2)
+3 (lo — log
t!
Y = 3 (log —logs(x)) — 2k

=3 (logW —logs(x)) — 2k
(s(x) <w(x)) <3 (logW —logw(x)) —2k = 3log(W/w(x)) — 2k
2k 4+ 1 rotations = (amort.) cost

15-16

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most
Zﬁ-‘—11(3 (log T log)) —2)
+3 (lo — log
t!
Y = 3 (log —logs(x)) — 2k

=3 (logW —logs(x)) — 2k
(s(x) <w(x)) <3 (logW —logw(x)) —2k = 3log(W/w(x)) — 2k
2k + 1 rotations = (amort.) cost <1+ 3log(W/w(x))

15-17

Access Lemma

‘Lemma. After a single rotation, the potential increases

by < 3 (log —log -1)).
After a double rotation, the potential increases
by < 3 (log —log () —2.

/

VAN

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let be atter i single/double rotations.
Potential increases by at most
Zﬁ-‘—11(3 (log T log)) —2)
+3 (lo — log
t!
Y = 3 (log —logs(x)) — 2k

=3 (logW —logs(x)) — 2k
(s(x) <w(x)) <3 (logW —logw(x)) —2k = 3log(W/w(x)) — 2k
2k + 1 rotations = (amort.) cost <1+ 3log(W/w(x))

Balance

16 -

Balance

16 -

Balance

Proof.

16 -

Balance

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

\¥

‘Definition. A BST is balanced if the (amortized) cost of any
query is O(logn).

.

:Theorem. Splay Trees are balanced. J

Proof. Choose w(x) = 1 for each x

16 -5

Balance

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

\¥

‘Definition. A BST is balanced if the (amortized) cost of any
query is O(logn).

.

:Theorem. Splay Trees are balanced. J

Proof. Choose w(x) =1foreachx = W =n

16 -6

Balance

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))
‘Definition. A BST is balanced if the (amortized) cost of any
\ query is O(logn).
:Theorem. Splay Trees are balanced.]
Proof. Choose w(x) =1foreachx = W =n

Splay(x) costs at least as much as finding x

16 -7

Balance

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))
‘Definition. A BST is balanced if the (amortized) cost of any
\ query is O(logn).
ZTheorem. Splay Trees are balanced.]
Proof. Choose w(x) =1foreachx = W =n

Splay(x) costs at least as much as finding x
= Queries take (amort.) O(logn) time.

16 -

Balance

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))
‘Definition. A BST is balanced if the (amortized) cost of any
\ query is O(logn).
ZTheorem. Splay Trees are balanced.]
Proof. Choose w(x) =1foreachx = W =n

Splay(x) costs at least as much as finding x
= Queries take (amort.) O(logn) time.

Entropy

Entropy

17 -

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

\¥

‘Definition. A BST has the entropy property if queries take
expected O(1 — Y ; p;log p;) time.

\.

:Theorem. Splay Trees have the entropy property.

Entropy

17 -

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

\¥

‘Definition. A BST has the entropy property if queries take
expected O(1 — Y ; p;log p;) time.

\.

:Theorem. Splay Trees have the entropy property.

Proof.

17 -

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

(Definition. A BST has the entropy property if queries take \
expected O(1 — Y ; p;log p;) time.

\.

:Theorem. Splay Trees have the entropy property.

Proof. Choose w(x;) = Pi

17 -

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

(Definition. A BST has the entropy property if queries take \
expected O(1 — Y ; p;log p;) time.

\.

:Theorem. Splay Trees have the entropy property.

Proof. Choose w(x;) =p; = W=1

17 -

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

(Definition. A BST has the entropy property if queries take \
expected O(1 — Y ; p;log p;) time.

.

:Theorem. Splay Trees have the entropy property.

Proof. Choose w(x;) =p; = W=1
Time to query x;:

17 -

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

(Definition. A BST has the entropy property if queries take \
expected O(1 — Y ; p;log p;) time.

.

:Theorem. Splay Trees have the entropy property.

Proof. Choose w(x;) =p; = W=1

Time to query x;:
<14 3log(W/w(x;))

17 -

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

(Definition. A BST has the entropy property if queries take \
expected O(1 — Y ; p;log p;) time.

.

:Theorem. Splay Trees have the entropy property.

Proof. Choose w(x;) =p; = W=1
Time to query x;:
<14 3log(W/w(x;))
— 1+3log(1/p)

17 -

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

(Definition. A BST has the entropy property if queries take \
expected O(1 — Y ; p;log p;) time.

.

:Theorem Splay Trees have the entropy property.

Proof. Choose w(x;) =p; =W=1
Time to query x;:

1+ 3log(W/w(x;))

L+ 3;Og(1/Pz)

1 —-3logp;

Il I/\

17 - 10

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

(Definition. A BST has the entropy property if queries take \
expected O(1 — Y ; p;log p;) time.

\.

ZTheorem Splay Trees have the entropy property.

Proof. Choose w(x;) =p; =W=1
Time to query x;:

1+ 3log(W/w(x;))

L+ 3;Og(1/Pz)

1 —-3logp;

= expected query time:

Il I/\

17 -11

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

‘Definition. A BST has the entropy property if queries take)
expected O(1 — Y ; p;log p;) time.

\.

ZTheorem Splay Trees have the entropy property.

Proof. Choose w(x;) =p; =W=1
Time to query x;:
1+ 3log(W/w(x;))
L+ 3;Og(1/Pz)
1 —-3logp;
= expected query time:
O(XiZy pi(1 - 3logp;))

Il I/\

17 -12

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

‘Definition. A BST has the entropy property if queries take)
expected O(1 — Y ; p;log p;) time.

\.

ZTheorem Splay Trees have the entropy property.

Proof. Choose w(x;) =p; = W=1

Time to query x;:

1+ 3log(W/w(x;))

L+ 3;Og(1/Pz)

1 —-3logp;

= expected query time:
O(¥iZ1 pi(1 —3logp;))
= O(1+ xiLq —pilogpi)

Il I/\

17 -13

Entropy

‘Lemma. The (amortized) cost of Splay(x) is
<14 3log(W/w(x))

A J

‘Definition. A BST has the entropy property if queries take)
expected O(1 — Y ; p;log p;) time.

\.

ZTheorem Splay Trees have the entropy property.

Proof. Choose w(x;) =p; = W=1

Time to query x;:

1+ 3log(W/w(x;))

L+ 3;Og(1/Pz)

1 —-3logp;

= expected query time:
O(¥iZ1 pi(1 —3logp;))
= O(1+ xiLq —pilogpi)

Il I/\

Querying a sequence

Let S be a sequence of queries.

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZsES Splay(s) + g — cp‘s‘)

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZsES Splay(s) + g — cp‘s‘)

How can we bound ®y — @g)?

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZsES Splay(s) + g — cp‘s‘)

How can we bound ®y — @g)?
Reminder: ® =) log

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + @y — CID‘S‘)
How can we bound ®y — @g)?

Reminder: ® =) log
> w(x)

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + @y — CID‘S‘)
How can we bound ®y — @g)?

Reminder: ® =) log
> w(x) = D5 = Ly logw(x)

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + $g — CID‘S‘)
How can we bound ®y — @g)?
Reminder: ® =) log
> w(x) = $5) = Ly logw(x)
= log W

18 -

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + $g — CID‘S‘)
How can we bound ®y — @g)?
Reminder: ® =) log
> w(x) = $5) = Ly logw(x)
=logiW = @y <) logW

18 -10

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + $g — CID‘S‘)
How can we bound ®y — @g)?
Reminder: ® =) log
> w(x) = $5) = Ly logw(x)
=logiW = @y <) logW
= Oy — D) < Ly (logW —log w(x))

18-11

18 -12

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + $g — CID‘S‘)
How can we bound ®y — @g)?
Reminder: ® =) log
> w(x) = $5) = Ly logw(x)
=logiW = @y <) logW
= ©p — D5 < Yy (logW —logw(x)) <}, Splay(x)

18-13

Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + $g — CID‘S‘)
How can we bound ®y — @g)?
Reminder: ® =) log
> w(x) = D5 > Yy logw(x)
=logiW = @y <) logW
= ©p — D5 < Yy (logW —logw(x)) <}, Splay(x)

= as long as every key is queried at least once, it doesn’t
change the running time.

Static Optimality

Given a sequence S of queries.

19 -

Static Optimality

Given a sequence S of queries.
Let T be the optimal static tree with
the shortest query time OPTjg for S.

19 -

Static Optimality

£.5=2,52,5,2,...
Given a sequence S of queries. 85 = 2082
Let T be the optimal static tree with
the shortest query time OPTjg for S.

Static Optimality

eg. 5$=2,52572,...,5

Given a sequence S of queries. T

Let T be the optimal static tree with
the shortest query time OPTjg for S.

Static Optimality

Given a sequence S of queries. ?[;g ST L2
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

Static Optimality

£.5=2,52,5,2,...,5
Given a sequence S of queries. ?[;g > °
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

Static Optimality

£.5=2,52,5,2,...,5
Given a sequence S of queries. ?[;g > °
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

‘Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

‘Theorem. Splay Trees are statically optimal.

Static Optimality

£.5=2,52,5,2,...,5
Given a sequence S of queries. ;;5 >
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

‘Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

‘Theorem. Splay Trees are statically optimal.

Proof.

19-9

Static Optimality
Given a sequence S of queries. ;g ST L2
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

‘Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

.

ZTheorem. Splay Trees are statically optimal.

Proof. Let f; be the number of queries for key x; in S.

19-10

Static Optimality
Given a sequence S of queries. ;g ST L2
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

‘Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

. J

ZTheorem. Splay Trees are statically optimal.

Proof. Let f; be the number of queries for key x; in S.

Let p; := fi/|S].

19-11

Static Optimality
Given a sequence S of queries. ‘;? ST L2
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

‘Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

\. J

ZTheorem. Splay Trees are statically optimal.

Proof. Let f; be the number of queries for key x; in S.

Let p; := fi/|S].
Choose p; as probability distribution.

19 -12

Static Optimality

£.5=2,5,2,5,2,...
Given a sequence S of queries. ;g ST L2
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

‘Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

\. J

ZTheorem. Splay Trees are statically optimal.

Proof. Let f; be the number of queries for key x; in S.
Let p; := fi/|S].
Choose p; as probability distribution.
Static optimality follows from entropy property.

19 -13

Static Optimality
Given a sequence S of queries. ;g ST L2
Let T¢ be the optimal static tree with opT. |9
the shortest query time OPTjg for S.

‘Definition. A BST is statically optimal if queries take
(amort.) O(OPTs) time for every S.

\. J

ZTheorem. Splay Trees are statically optimal.

Proof. Let f; be the number of queries for key x; in S.
Let p; := fi/|S].
Choose p; as probability distribution.
Static optimality follows from entropy property.

Dynamic Optimality

Given a sequence S of queries.

20 -

Dynamic Optimality

Given a sequence S of queries.
Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

20 -

Dynamic Optimality

Given a sequence S of queries.

Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

(That is, modifications are allowed, e.g. rotations)

20 - G

20 -

Dynamic Optimality

Given a sequence S of queries.

Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

(That is, modifications are allowed, e.g. rotations)

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPTyg) time for every S.

20 -

Dynamic Optimality

Given a sequence S of queries.

Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

(That is, modifications are allowed, e.g. rotations)

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPTyg) time for every S.

Splay Trees: Queries take O(OPT% - log n) time.

20 -

Dynamic Optimality

Given a sequence S of queries.

Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

(That is, modifications are allowed, e.g. rotations)

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPTyg) time for every S.

Splay Trees: Queries take O(OPT% - log n) time.
Tango Trees: Queries take O(OPT% - loglogn) time.

[Demaine, Harmon, [acono, Patrascu '04]

20-7

Dynamic Optimality

Given a sequence S of queries.

Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

(That is, modifications are allowed, e.g. rotations)

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPTyg) time for every S.

Splay Trees: Queries take O(OPT% - log n) time.
Tango Trees: Queries take O(OPT% - loglogn) time.

[Demaine, Harmon, [acono, Patrascu '04]

[Open Problem. Does a dynamically optimal BST exist? J

20 -

Dynamic Optimality

Given a sequence S of queries.

Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

(That is, modifications are allowed, e.g. rotations)

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPTyg) time for every S.

Splay Trees: Queries take O(OPT% - log n) time.
Tango Trees: Queries take O(OPT% - loglogn) time.

[Demaine, Harmon, [acono, Patrascu '04]

{Open Problem. Does a dynamically optimal BST exist? J

This is one of the biggest open problems in algorithms.

20 -

Dynamic Optimality

Given a sequence S of queries.

Let D¢ be the optimal dynamic tree with the
shortest query time OPT5 for S.

(That is, modifications are allowed, e.g. rotations)

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPTyg) time for every S.

Splay Trees: Queries take O(OPT% - log n) time.
Tango Trees: Queries take O(OPT% - loglogn) time.

[Demaine, Harmon, [acono, Patrascu '04]

{Open Problem. Does a dynamically optimal BST exist? J

This is one of the biggest open problems in algorithms.

Splay Trees are dynamically optimal.

	How good is a binary search tree?
	Model 1: Malicious Queries
	Model 2: Known Probability Distribution
	Model 3: Spacial Locality
	Model 4: Temporal Locality
	All these properties...

	Splay Trees
	Rotations II
	Splay
	Why is Splay fast?
	Potential after Rotation
	Access Lemma
	Balance

	Entropy
	Static Optimality
	Dynamic Optimality

