Julius-Maximilians- Lehrstuhl fiir . .
I UNIVERSITAT INFORMATIK | I'l'l | fl
WU RZ B U RG Effiziente Algorithmen und

wissensbasierte Systeme Institut fuir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 8. Optimal binary search trees

Philipp Kindermann Chair for Computer Science |



How good is a binary search tree?

Binary search tree:

13

12

19

14

11

17| 21

24

27




How good is a binary search tree?

Binary search tree:

13

12

19

14

11

17| 21

24

27




How good is a binary search tree?

Binary search tree:

13

12

19

14

11

17 121

24

27




How good is a binary search tree?

Binary search tree:

w.C. query time ©O(n)

13

12

19

14

11

17| 21

24

27




How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

w.C. query time ©O(n)

12

11

13

19

14

17] |21

24

27




How good is a binary search tree?

Binary search tree:

Balanced binary search tree:

(e.g. Red-Black-Tree)

w.C. query time ©O(n)

12

11

13

19

14

17] |21

24

27




How good is a binary search tree?

Binary search tree: w.C. query time ©O(n)

Balanced binary search tree: w.c. query time O(logn)
(e.g. Red-Black-Tree)

12

2 |5 |8 (11} 13 [17] 21} |27




How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

12

13

19

14

17] |21

24

2-8

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27




How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before?

12

13

19

14

17] |21

24

2-9

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27




How good is a binary search tree?

Binary search tree:

Balanced binary search tree:

(e.g. Red-Black-Tree)

What if we know the query before?

3

11

13

19

w.C. query time ©O(n)

14

12

17] |21

24

2-10

optimal

w.c. query time O(logn)

27



How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before?
3

13

19

w.C. query time ©O(n)

14

12

17] |21

24

2-11

optimal

w.c. query time O(logn)

27



How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

3

13

19

w.C. query time ©O(n)

14

12

17] |21

24

2-12

optimal

w.c. query time O(logn)

27



How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?

12

13

19

14

17] |21

24

2-13

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27




How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

13

19

14

17] |21

24

2-14

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27




How good is a binary search tree?

Binary search tree:

Balanced binary search tree:
(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

13

19

14

17] |21

24

2-15

optimal
w.C. query time ©O(n)

w.c. query time O(logn)

27




2-16

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

21 |5 |8 (11} {134 17 21} |27




2-17

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2—13—5

12

21 15 |8 (11} {134 17 21} |27




2-18

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1
Sequence of queries?

e.g. 2—13—5

or 2—13—2—13—2...

12

21 |5 |8 (11} {134 17 21} |27




2-19

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries? O(logn) per query
e.g. 2—13—5
2—13—2—13—2. ..
or >
6 19
3 9 14 24

21 |5 |8 (11} {134 17 21} |27




2-20

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries? O(logn) per query
or 2—13—2—13—2...
12
6 19
3 9 14 24

21 |5 |8 (11} {134 17 21} |27




How good is a binary search tree?

Binary search tree:

Balanced binary se¢ [5
(e.g. Red-Black-T

What if we know th
Sequence of queries?

e.g. 2—13—5

or 2—13—2—13—2...

2-21

optimal

w.C. query time @(n))

13

12

11

14

19

17 |21

24

)

27




2-22

How good is a binary search tree? .
optimal

Binary search tree: w.C. query time @(n))

Balanced binary se: [5 )
(e.g. Red-Black-T

What if we know th 13
Sequence of queries?

e.g. 2—13—5

or 2—13—2—13—2...

12 19

8 (11 17 (21} |27




2-23

How good is a binary search tree?

optimal
Binary search tree: w.C. query time ©O(n)
Balanced binary search tree: w.c. query time O(logn)

(e.g. Red-Black-Tree)

What if we know the query before? w.c. query time 1

Sequence of queries? O(logn) per query
or 2—13—2—13—2... 17 not always!
6 19

The performance 3 9 14 24

of a BST depends
on the model! 2| |5 |8 (A1 (131 |17} 21| |27




Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?



Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

12

13

14

19

17] |21

24

27




Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

Lemma.  The worst-case malicious query cost in any BST
with 7 nodes is at least ()(logn) per query.

12

21 |5 |8 (11} {134 17 21} |27




Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

Lemma.  The worst-case malicious query cost in any BST
with 7 nodes is at least ()(logn) per query.

Definition. A BST is balanced if the (amortized) cost of any
query is O(logn).
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Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more
likely to be queried.
Suppose we queried key x; and want to query key x; next.

Let 6;; = |rank(x;) — rank(x;)|.
‘Definition. A BST has the dynamic finger property if the ]

(amortized) cost of queries are O(log J;;).

‘Lemma. A level-linked Red-Black-Tree has the dynamic
finger property.
b 125

3 9 14 24
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Model 4: Temporal Locality

If a key is queried, then it’s likely to be queried again soon.

A static tree will have a hard time...
What if we can move elements?

Idea: Use a sequence of trees
Move queried key to first tree, then kick out oldest key.

\

‘Definition. A BST has the working set property if the
(amortized) cost of a query for key x is
O(logt), where ¢ is the number of keys queried
more recently than x.
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(




All these properties...

Balanced: Queries take (amort.) O(logn) time
Entropy: Queries take expected O(1 + H) time
Dynamic Finger: Queries take O(logJ;) time (J;: rank diff.)
Working Set: Queries take O(logt) time (t: recency)



All these properties...

Balanced: Queries take (amort.) O(logn) time
Entropy: Queries take expected O(1 + H) time
Dynamic Finger: Queries take O(logd;) time (J;: rank diff.)
Working Set: Queries take O(logt) time (t: recency)

... 1s there one BST to rule them all?




All these properties...

Balanced: Queries take (amort.) O(logn) time
Entropy: Queries take expected O(1 + H) time
Dynamic Finger: Queries take O(logd;) time (J;: rank diff.)
Working Set: Queries take O(logt) time (t: recency)

... 1s there one BST to rule them all?

Yes!
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Idea:Whenever we query a key,
rotate it to the root.
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Splay(x): Rotate x to the root
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J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

3 x Right(x)>
A e
KK “Left(y) /( 7\

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root
Query(8) Query(6) :
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Idea:Whenever we query a key,
rotate it to the root.

3 x Right(x)>
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Splay(x): Rotate x to the root
Query(x): Splay(x), then return root




Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea:Whenever we query a key,
rotate it to the root.

‘ x Right(x)>
A e
KK “Left(y) /( 7\

Query(x) Splay(x), then return root

Query(8) Query(6) 5
Query(3) =
Query(2) .
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Query(x) Splay(x), then return root
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Query (3) We’re back at the start [
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Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985
e . Idea:Whenever we query a key,
il rotate it to the root.
ADS: Yy : X
- \‘ : ngh’c(x)> /( 7
A ~Left(y) A\

Query(x) Splay(x), then return root

Query(8) Query(6) 2

Query (3) We’re back at the start... 6
Query (2) and we did ®(n?) rotations 3]
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Splay
Algorithm: Splay(x) 7

if x = root then X A
y = parent of x

if y = root then /<
if x < y then Right(x)

if y < x then Left(x)
else lRight—Right(x)

z = parent of y X

if x < y < z then Right-Right(x) S y
Z




Splay
Algorithm: Splay(x)
if x # root then = Z A

y = parent of x
if y = root then /<

if x < y then Right(x)
if y < x then Left(x) A
else Left-Left(x)
z = parent of y ~
if x < y < z then Right-Right(x) S Y
if z < y < x then Left-Left(x) X

/\







Splay

Algorithm: Splay(x)

if x = root then

y = parent of x

if y = root then A
if x < y then Right(x)

if y < x then Left(x)

else

z = parent of y

if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)

Y

if y < x < z then Left-Right(x) /<




Splay

Algorithm: Splay(x)

if x = root then 1

y = parent of x & X

if y = root then A
if x < y then Right(x) A

if y < x then Left(x)

else lRight—Left(x)

z = parent of y
if x < y < z then Right-Right(x) Y
if z < y < x then Left-Left(x) 1 -

if y < x < z then Left-Right(x)
| if z < x <y then Right-Left(x)
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Splay

Splay(3):
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Splay

Splay(3):
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Splay

Splay(3):
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Splay

Splay(3):
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Splay

Splay(3):
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Splay

Splay(3):
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Splay

Splay(3):

Call Splay(x):
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Splay

Splay(3):

Call Splay(x):
® after Search(x)
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Splay

Splay(3):

Call Splay(x):
® after Search(x)
e after Insert(x)




Splay

Algorithm: Splay(x)

Splay(3):
if x = root then play (3
y = parent of x 3
if y = root then
if x < y then Right(x) 5 6
if y < x then Left(x)
else 1 A 7
z = parent of y
if x < y < z then Right-Right(x) 5
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x) ' Call Splay(x):
L ifz<x< Yy then nght—Left(x) ® after Search(x)
| Splay(x) e after Insert(x)

® before Delete(x)
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w(x): weight of x (here 1), W = Y w(x) (here n)
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;
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24

11
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

1| 2 |15

81+ 11110 11170 1211 11271
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 200

81+ 11110 11170 1211 11271




Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 200
— 5(child) < s(parent)/2
111314
11127 119
119 |6 1114/ 1
11 81+ 1T 1f17]r 121

11-13
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11277



Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-14

mark edges: 112 |
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 1113)
1127 19|
119 |6 1114/ 1
81+ 1111 171 121

245

11277



Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-15

mark edges: 112 |
— 5(child) < s(parent)/2
— 5(child) > s(parent) /2 1113)
1127 19|
119 |6 1114/ 1
81+ 1111 171 121

245
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-16

mark edges: 112 |
— 5(child) < s(parent)/2
— 5(child) > s(parent) /2 1113)
1127 19|
119 |6 1114/ 1
81+ 1111 171 121

245

11277



Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2

15

111314

111217 1119]6

119 |6 1114/ 1

18 111 117} 121

1|15z

1131 1161

24

11 - 20

11

27)



Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

mark edges: !
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

2
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-23

mark edges: {2
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 13
Cost to query x;: Mol 9l
119 |6 1114/ 11243
81+ 11110 11170 1211 11271
1|15z
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)

s(x): sum of all w(x) in subtree of x;

11-24

mark edges: {2
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 13
Cost to query x;: O(#blue + #red) Mol 19l
119 |6 1114/ 11243
81+ 11110 11170 1211 11271
1|15z

1131 116
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: {2

— 5(child) < s(parent)/2

— 5(child) > s(parent)/2 13
Cost to query x;: O(#blue + #red) Mol 19l

Idea: blue edges halve the weight

119 |6 1114/ 11243

81+ 11110 11170 1211 11271

1|15z
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
—= 5(child) > s(parent)/2 13[4
Cost to query x;: O(#blue + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ 1124

81+ 11110 11170 1211 11271

1|15z
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
—= 5(child) > s(parent)/2 13[4
Cost to query x;: O(log W + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ 1124

81+ 11110 11170 1211 11271

1|15z
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
—= 5(child) > s(parent)/2 13|
Cost to query x;: O(log W + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ 1124

How can we amortize red edges?
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges: 2]
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2 13|
Cost to query x;: O(log W + #red) Mol 19l
Idea: blue edges halve the weight
= #blue € O(log W) 9] 114/ |

How can we amortize red edges?

Use sum-of-logs potential 8 1) 1f17) 21

24
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Why is Splay fast?

w(x): weight of x (here 1), W = Y w(x) (here n)
s(x): sum of all w(x) in subtree of x;

mark edges:
— 5(child) < s(parent)/2
— 5(child) > s(parent)/2

Cost to query x;: O(log W + #red)

Idea: blue edges halve the weight
= #blue € O(log W)

How can we amortize red edges?

Use sum-of-logs potential
® =Y logs(x)
Amortized cost:

real cost + &, — P
\ (potential after splay)

1|2

15

1113

111217

14

1119]6

1910 114

81+ 1111 1

1|5 |3

1131 116

17)1 121

24

11 -30
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Potential after Rotation

Consider any rotation; betore rotation, afterwards
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Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma.  After a single rotation, the potential increases
by < 3 (log —log -1 )).
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Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma.  After a single rotation, the potential increases
by < 3 (log —log -1 )).

Proof. Right(x)



Potential after Rotation

Consider any rotation;

before rotation,

12 -4

afterwards

Lemma.

by < 3 (log

—log (1 )).

After a single rotation, the potential increases

Proof. Right(x)

Yy

X

o

/N

2\

A\

\

Yy

A

2\




Potential after Rotation

Consider any rotation;

before rotation,

12-5

afterwards

Lemma.

by < 3 (log

—log (1 )).

After a single rotation, the potential increases

Yy

X

o

Proof. Right(x)

2\

Observe: Only and

A\

change.

\

Yy

A

2\




Potential after Rotation

Consider any rotation;

before rotation,

12-6

afterwards

Lemma.

by < 3 (log

—log (1 )).

After a single rotation, the potential increases

Proof. Right(x)

Yy

o

N\

Observe: Only and

pot. change = log
—log

A\

change.

+ log
— log

\

Yy

A

2\
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Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma.  After a single rotation, the potential increases

by < 3 (log —log (1 )).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log

( <s(y))
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Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma.  After a single rotation, the potential increases

by < 3 (log —log (1 )).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log

( <s(y)) <log — log



Potential after Rotation

Consider any rotation;

before rotation,

12-9

afterwards

Lemma.  After a single rotation, the potential increases

by < 3 (log —log (1 )).

Proof. Right(x)

Yy

o

N\

A\

Observe: Only and change.

pot. change = log + log

—log — log

( <s(y)) <log — log

( > 5(x))

\

Yy

A

2\
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Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma.  After a single rotation, the potential increases

by < 3 (log —log (1 )).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log
( <s(y)) <log — log
( >s(x) < 3(log —logs(x))
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Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma.  After a single rotation, the potential increases

by < 3 (log —log (1 )).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log
( <s(y)) <log — log
( >s(x) < 3(log —logs(x)) v
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Potential after Rotation

Consider any rotation; before rotation, afterwards
Lemma.  After a single rotation, the potential increases

by < 3 (log —log (1 )).
Proof. Right(x) y x

PRSP

Observe: Only and change.

pot. change = log + log
—log — log
( <s(y)) <log — log
( >s(x) < 3(log —logs(x))

NN

Left(x) analogue
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Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma.  After a double rotation, the potential increases
by < 3 (log —log () —2.
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Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma.  After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof.
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Potential after Rotation

Consider any rotation; betore rotation, afterwards

Lemma.  After a double rotation, the potential increases
by < 3 (log —log () —2.

Proof.
Case 1. Right-Right(x)



Potential after Rotation

Consider any rotation;

before rotation,

13-4

afterwards

Lemma.  After a double rotation, the potential increases
by < 3 (log —log () —2.
Proof. 2z Xl
BN

Case 1. Right-Right(

‘/

P

2\

2\

ay

A

Z

A

7\




Potential after Rotation

Consider any rotation;

before rotation,

13-5

afterwards

Lemma.  After a double rotation, the potential increases

by < 3 (log —log () —2.
Proof. z X
=% =kl
Case 1. Right-Right(x) JIx#” AA—’ﬁ P GE
AN VAQAN
pot. change = log + log + log
—log — log — log



Potential after Rotation

Consider any rotation;

before rotation,

13-6

afterwards

Lemma.

—log (1)) —2.

After a double rotation, the potential increases
by < 3 (log

Proof.

Case 1. Right-Right(

pot. change

( —

Z

yA/

X

2\

pas
= log

—log

+ log
— log

X
.

SVAA

+ log
— log

ay

AN

Z
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Querying a sequence

Let S be a sequence of queries.
What is the real cost of querying S?
Let @, be the potential after query k.

= total cost O (ZSES Splay(s) + $g — CID‘S‘)
How can we bound ®y — @g)?
Reminder: ® =) log
> w(x) = D5 > Yy logw(x)
=logiW = @y <)  logW
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= as long as every key is queried at least once, it doesn’t
change the running time.
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