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The performance
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on the model!
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Lemma. The worst-case malicious query cost in any BST
with n nodes is at least Ω(log n) per query.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n).
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Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.
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δij = 2

:-)

Lemma. A level-linked Red-Black-Tree has the dynamic
finger property.

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).
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Model 4: Temporal Locality
If a key is queried, then it’s likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees

. . .

Move queried key to first tree, then kick out oldest key.

Definition. A BST has the working set property if the
(amortized) cost of a query for key x is
O(log t), where t is the number of keys queried
more recently than x.
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All these properties...

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amort.) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Yes! Splay Tree
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Whenever we query a key,
rotate it to the root.

Idea:
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Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985
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Query(x): Splay(x), then return root
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Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985
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Splay(x): Rotate x to the root
Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985
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Splay(x): Rotate x to the root
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Whenever we query a key,
rotate it to the root.

Idea:
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Query(6)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
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Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
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We’re back at the start...

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
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We’re back at the start...
and we did Θ(n2) rotations

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985



9 - 1

Rotations II
y

x y
xRight(x)

Left(y)



9 - 2

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x



9 - 3

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z



9 - 4

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)



9 - 5

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z



9 - 6

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)



9 - 7

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)



9 - 8

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left
(y
)



9 - 9

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left
(y
)Left(z)



9 - 10

Rotations II
y

x y
xRight(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 11

Rotations II

z

y
x

x

y
z

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 12

Rotations II

z

y
x

x

y
z

Le
ft
(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 13

Rotations II

z

y
x

Left-Right(y)

x

y
z

Le
ft
(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 14

Rotations II

z

y
x

Left-Right(y)

x

y
z

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 15

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)



9 - 16

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)

Le
ft

-R
ig

ht
(z
)



9 - 17

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

Le
ft
(y
)

R
ight(y

)

z
y

x

x
y

z
Right(y)

x
y

z

Right(x
)

Right-Right(x)

Left-Left(z)

Left
(y
)Left(z)

Le
ft

-R
ig

ht
(z
) R

ight-Left(x
)



9 - 18

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right-Right(x)

Left-Left(z)

Left
(y
)Right(x

)

Left(z)

R
ight(y

)

Le
ft

-R
ig

ht
(z
) R

ight-Left(x
)

Le
ft
(y
)



10 - 1

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)
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Algorithm: Splay(x)
if x 6= root then
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if y = root then
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Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
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Splay
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if x 6= root then

y = parent of x
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if x 6= root then
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if x < y then Right(x)
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else
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Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
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Splay
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Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Right-Right(x)

z
y

x

x



10 - 11

Splay

z
y

x

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)
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Algorithm: Splay(x)
if x 6= root then
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Splay

Algorithm: Splay(x)
if x 6= root then
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Splay

Algorithm: Splay(x)
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Algorithm: Splay(x)
if x 6= root then
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Algorithm: Splay(x)
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Splay

Algorithm: Splay(x)
if x 6= root then
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else
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Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
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Splay(3):

Call Splay(x):
• after Search(x)
• after Insert(x)
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Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)
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Splay(3):

Call Splay(x):
• after Search(x)
• after Insert(x)
• before Delete(x)
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log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)⇒ log s(x) + log s+(z)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)⇒ log s(x) + log s+(z) = log s(x)s+(z)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2
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Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.
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(s+(x) = s(z))
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log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards
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− log s(x)− log s(y)− log s(z)

=
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(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
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(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

s(x) + s+(z) ≤ s+(x)

(AM-GM)

⇒ log s(x) + log s+(z) = log s(x)s+(z)
≤ log (s+(x)/2)2 ≤ 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

/ Left-Left(x)



14 - 1

Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z
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y
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x)

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z
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y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z
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y
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x))
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z
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y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X
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Potential after Rotation

Lemma. After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

s+(y) + s+(z) ≤ s+(x) ⇒ log s+(y) + log s+(z)
≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X

/ Left-Right(x)
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 7

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))



15 - 8

Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x))
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!

= 3 (log W − log s(x))− 2k

Lemma. The (amortized) cost of Splay(x) is
≤ 1 + 3 log(W/w(x))

(s(x) ≤ w(x)) ≤ 3 (log W − log w(x))− 2k
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Access Lemma
Lemma. After a single rotation, the potential increases

by ≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases
by ≤ 3 (log s+(x)− log s(x))− 2.

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most
∑k

i=1 (3 (log si(x)− log si−1(x))− 2)
+3 (log sk+1(x)− log sk(x))

= 3 (log sk+1(x)− log s(x))− 2k
root!
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⇒ total cost O
(
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)Let Φk be the potential after query k.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
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s(root) = log W ⇒ Φ0 ≤ ∑x log W
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⇒ as long as every key is queried at least once, it doesn’t
change the running time.
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20 - 7

Dynamic Optimality

Given a sequence S of queries.
Let D∗S be the optimal dynamic tree with the
shortest query time OPT∗S for S.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT∗S) time for every S.

(That is, modifications are allowed, e.g. rotations)

Splay Trees: Queries take O(OPT∗S · log n) time.
Tango Trees: Queries take O(OPT∗S · log log n) time.

[Demaine, Harmon, Iacono, Pătras, cu ’04]
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