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Randomized oblivious routing convex partitions.

Deterministic oblivious routing in triangulations.
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Known results

Not as much as we would like...

... NP-hardness unknown.

... no polynomial-time algorithm known.

... it is fixed parameter tractable ...
... by an unconvincing parameter.

(number of interior points)

O(n3h+3) time, where h is # nested convex hulls.

Approx: Factor 3 in O(n log n) time.

Factor 30
11 in O(n2) time.

Exact:

Integer Linear Program (ILP)

This lecture
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Integer Linear Programming (ILP)

Variables

Objective function

Constraints

MAX INDEPENDENT SET

Given a graph G = (V, E), pick a maximum
cardinality set S ⊆ V such that no two vertices
are adjacent.

xv ∈ {0, 1} ∀v ∈ V

Maximize 1
ᵀ
nx = ∑

v∈V
xv

xu + xv ≤ 1 ∀{i, j} ∈ E
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Integer Linear Programming (ILP)

Minimize ∑
{i,j}∈P2

xij subject to:

Binary variable xij meaing: do we select {i, j} as an edge?

xij + xkl ≤ 1 ∀ ij and kl that cross

xij = 1 ∀ ij on CH(P)

∀ (i, j) ∈ P2, where i is interior∑
k∈Behind(i,j)

xik ≥ 1

∑
j∈P

xij ≥ 3 ∀ i ∈ P, where i is interior
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3-Approximation

Theorem A 3-approximation of a minimum convex
partition of P can be computed in O(n log n)
time. (This assumes no colinear points.)

Lemma For every convex partition E of P, it holds that
k
2 + b + a

2 + 1 ≤ |R(E)|.

Lemma There is a convex partition E of P such that
|R(E)| ≤ 3

2 k + 3
2 .

(This assumes no colinear points.)
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A lowerbound
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Let CHin(P) := convex hull of inner points.

Claim: Type a vertex needs at least one edge to CH(P).

Claim: Type b vertex needs at least two edges to CH(P).

Every outer point has degree two on the convex hull.

There are a + 2b edges arriving at CH from interior.

Every interior point has degree at least 3. (No colinear points.)

Degree sum: 2(n− k) + 3k + a + 2b

# edges ≥ n + k
2 + a

2 + b # faces ≥ k
2 + a

2 + b + 1Euler
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An upperbound

Lemma There is a convex partition E of P such that
|R(E)| ≤ 3

2 k + 3
2 .

Induction on k: k ≥ 2

q1

q2

r1

r2

p1 p2

convex

Chain C with ` ≥ 2 points.

Q has partition with 3
2 (k− `) + 3

2 faces.

New faces: `+ 1.

Total: 3
2 k + 3

2 −
1
2 `+ 1. Note! ` ≥ 2
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