

Computational Geometry

Convex Partition or Oblivious Routing

Thomas van Dijk

Winter Semester 2019/20

S

t

2 - 1

S

t

2 - 2

t

2 - 3

t

t

t

S

Result: Deterministic oblivious routing in triangulations.

Result:

Randomized oblivious routing convex partitions.

S

Point set P

Convex hull CH(P)

Convex hull CH(P)

Convex hull CH(P)

A triangulation of *P*:

A triangulation of *P*: 8 faces

A triangulation of *P*: 8 faces

A minimal convex partition: 5 faces

Minimum number of faces?

Minimum number of faces?

Minimum number of faces? 4 faces

Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

Minimum number of faces? 4 faces

Not as much as we would like...

Not as much as we would like...

... no polynomial-time algorithm known.

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

Not as much as we would like...

- ... no polynomial-time algorithm known.
- ... NP-hardness unknown.
- ... it is fixed parameter tractable ...

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable by an unconvincing parameter. (number of interior points)

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable by an unconvincing parameter. (number of interior points)

Exact: $O(n^{3h+3})$ time, where *h* is # nested convex hulls.

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable by an unconvincing parameter. (number of interior points)

Exact: $O(n^{3h+3})$ time, where *h* is # nested convex hulls. Integer Linear Program (ILP)

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable by an unconvincing parameter. (number of interior points)

Exact: $O(n^{3h+3})$ time, where *h* is # nested convex hulls.Integer Linear Program (ILP)Approx:Factor 3 in $O(n \log n)$ time.

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable by an unconvincing parameter. (number of interior points)

Exact: $O(n^{3h+3})$ time, where h is # nested convex hulls.Integer Linear Program (ILP)Approx:Factor 3 in $O(n \log n)$ time.Factor $\frac{30}{11}$ in $O(n^2)$ time.

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable by an unconvincing parameter. (number of interior points)

Exact: $O(n^{3h+3})$ time, where h is # nested convex hulls.Approx:Integer Linear Program (ILP)Factor 3 in $O(n \log n)$ time.This lectureFactor $\frac{30}{11}$ in $O(n^2)$ time.

Integer Linear Programming (ILP)

Variables $x \in \mathbb{Z}^n$

Integer Linear Programming (ILP)

Variables $x \in \mathbb{Z}^n$

Objective function Maximize $c^{\mathsf{T}}x = \sum_{i} c_{i}x_{i}$
Variables $x \in \mathbb{Z}^n$

Objective function Maximize $c^{\mathsf{T}}x = \sum_{i} c_{i}x_{i}$

Constraints $Ax \leq b$

MAX INDEPENDENT SET

Variables $x \in \mathbb{Z}^n$

Objective function Maximize $c^{\mathsf{T}}x = \sum_{i} c_i x_i$

Constraints $Ax \leq b$

MAX INDEPENDENT SET

Variables $x \in \mathbb{Z}^n$

Objective function Maximize $c^{\mathsf{T}}x = \sum_{i} c_i x_i$

Constraints $Ax \leq b$

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ **subject to**:

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ **subject to**:

 $x_{ij} = 1$ $\forall \ \overline{ij} \ \text{on} \ CH(P)$

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ **subject to**:

$$x_{ij} = 1$$
 $\forall \ \overline{ij} \text{ on } CH(P)$

 $\sum_{k \in \text{Behind}(i,j)} x_{ik} \ge 1 \qquad \forall (i,j) \in P^2, \text{ where } i \text{ is interior}$

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ **subject to**:

$$x_{ij} = 1$$
 $\forall \ \overline{ij} \text{ on } CH(P)$

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ **subject to**:

$$x_{ij} = 1$$
 $\forall \ \overline{ij} \text{ on } CH(P)$

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ **subject to**:

$$x_{ij} = 1$$
 $\forall \ \overline{ij} \text{ on } CH(P)$

 $\sum_{k \in \text{Behind}(i,j)} x_{ik} \ge 1 \qquad \forall (i,j) \in P^2, \text{ where } i \text{ is interior}$

 $x_{ij} + x_{kl} \le 1$ $\forall \ \overline{ij} \text{ and } \overline{kl} \text{ that cross}$

Binary variable x_{ij} meaing: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ **subject to**:

$$x_{ij} = 1$$
 $\forall \ \overline{ij} \text{ on } CH(P)$

 $\sum_{k \in \text{Behind}(i,j)} x_{ik} \ge 1 \qquad \forall (i,j) \in P^2, \text{ where } i \text{ is interior}$

 $x_{ij} + x_{kl} \le 1$ $\forall \ \overline{ij} \text{ and } \overline{kl} \text{ that cross}$

 $\sum_{j \in P} x_{ij} \ge 3 \qquad \forall i \in P, \text{ where } i \text{ is interior}$

Theorem A 3-approximation of a minimum convex partition of *P* can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Theorem A 3-approximation of a minimum convex partition of *P* can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition *E* of *P*, it holds that $\frac{k}{2} + b + \frac{a}{2} + 1 \le |R(E)|$. (This assumes no colinear p

Theorem A 3-approximation of a minimum convex partition of *P* can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition *E* of *P*, it holds that $\frac{k}{2} + \frac{b}{2} + \frac{a}{2} + 1 \le |R(E)|$. (This assumes no colinear p

Theorem A 3-approximation of a minimum convex partition of *P* can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition *E* of *P*, it holds that $\frac{k}{2} + \frac{b}{2} + \frac{a}{2} + 1 \le |R(E)|$. (This assumes no colinear p

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Let $k \ge 3$ be number of interior points; n - k outer points.

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Claim: Type *b* vertex needs at least

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Claim: Type *b* vertex needs at least

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Claim: Type *b* vertex needs at least

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Claim: Type *b* vertex needs at least **two** edges to CH(P).

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type *a* vertex needs at least one edge to CH(P).

Claim: Type *b* vertex needs at least **two** edges to CH(P).

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

- Claim: Type *a* vertex needs at least one edge to CH(P).
- Claim: Type *b* vertex needs at least **two** edges to CH(P).

Degree sum:
Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

- Claim: Type *a* vertex needs at least one edge to CH(P).
- Claim: Type *b* vertex needs at least **two** edges to CH(P).

Degree sum:
$$2(n-k)$$

Every outer point has degree two on the convex hull.

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

- Claim: Type *a* vertex needs at least one edge to CH(P).
- Claim: Type *b* vertex needs at least **two** edges to CH(P).

Degree sum:
$$2(n-k) + 3k$$

Every outer point has degree two on the convex hull. Every interior point has degree at least 3.

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

- Claim: Type *a* vertex needs at least one edge to CH(P).
- Claim: Type *b* vertex needs at least **two** edges to CH(P).

Degree sum:
$$2(n-k) + 3k$$

Every outer point has degree two on the convex hull. Every interior point has degree at least 3. (No colinear points.)

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

- Claim: Type *a* vertex needs at least one edge to CH(P).
- Claim: Type *b* vertex needs at least **two** edges to CH(P).

Degree sum:
$$2(n-k) + 3k + a + 2b$$

Every outer point has degree two on the convex hull. Every interior point has degree at least 3. (No colinear points.) There are a + 2b edges arriving at *CH* from interior.

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

- Claim: Type *a* vertex needs at least one edge to CH(P).
- Claim: Type *b* vertex needs at least **two** edges to CH(P).

Degree sum:
$$2(n-k) + 3k + a + 2b$$

Every outer point has degree two on the convex hull. Every interior point has degree at least 3. (No colinear points.) There are a + 2b edges arriving at *CH* from interior.

$$\# \text{ edges} \ge n + \frac{k}{2} + \frac{a}{2} + b$$

Let $k \ge 3$ be number of interior points; n - k outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

- Claim: Type *a* vertex needs at least one edge to CH(P).
- Claim: Type *b* vertex needs at least **two** edges to CH(P).

Degree sum:
$$2(n-k) + 3k + a + 2b$$

Every outer point has degree two on the convex hull. Every interior point has degree at least 3. (No colinear points.) There are a + 2b edges arriving at *CH* from interior.

edges
$$\ge n + \frac{k}{2} + \frac{a}{2} + b$$

= # faces $\ge \frac{k}{2} + \frac{a}{2} + b + 1$

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: k = 0

Induction on *k*:
$$k = 0 \implies |R(E)| \le \frac{3}{2}$$

Lemma There is a convex partition *E* of *P* such that $|R(E)| \le \frac{3}{2}k + \frac{3}{2}$.

Induction on k: k = 1

Induction on k:
$$k = 1 \implies |R(E)| \le 3$$

Induction on k:
$$k = 1 \implies |R(E)| \le 3$$

Induction on k:
$$k = 1 \implies |R(E)| \le 3$$

Induction on k:
$$k = 1 \implies |R(E)| \le 3$$

Induction on k:
$$k = 1 \implies |R(E)| \le 3$$

Lemma There is a convex partition *E* of *P* such that $|R(E)| \le \frac{3}{2}k + \frac{3}{2}.$

Induction on *k*: $k \ge 2$

There is a convex partition *E* of *P* such that Lemma $|R(E)| \le \frac{3}{2}k + \frac{3}{2}.$

Induction on *k*:

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}.$

Induction on *k*:

Lemma There is a convex partition *E* of *P* such that $|R(E)| \le \frac{3}{2}k + \frac{3}{2}.$

Induction on *k*:

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}.$

Induction on *k*:

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}.$

Induction on *k*:

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}.$

Induction on *k*:

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on *k*: $k \ge 2$

 q_1 p_1 p_2 r_2

 r_1

Lemma There is a convex partition *E* of *P* such that $|R(E)| \le \frac{3}{2}k + \frac{3}{2}$.

Induction on *k*: $k \ge k$

Lemma There is a convex partition *E* of *P* such that $|R(E)| \le \frac{3}{2}k + \frac{3}{2}$.

Induction on *k*: $k \ge 2$

 q_1 p_1 p_2 r_1 r_2

Lemma There is a convex partition *E* of *P* such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on *k*: $k \ge 2$

 q_1 p_1 p_2 r_1 r_2

Lemma There is a convex partition *E* of *P* such that $|R(E)| \le \frac{3}{2}k + \frac{3}{2}$.

Induction on *k*: $k \ge 2$

 q_1 p_1 p_2 r_1 r_2

Induction on *k*:
$$k \ge 2$$
 Chain *C* with $\ell \ge 2$ points.

Lemma There is a convex partition *E* of *P* such that $|R(E)| \le \frac{3}{2}k + \frac{3}{2}$.

Q has partition with $\frac{3}{2}(k - \ell) + \frac{3}{2}$ faces.

Putting it together

Theorem A 3-approximation of a minimum convex partition of *P* can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Proof:
Putting it together

Theorem A 3-approximation of a minimum convex partition of *P* can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Proof: At the excercise sheet!