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Oblivious routing

Result:
Deterministic oblivious routing in triangulations.
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Oblivious routing

Result:
Deterministic oblivious routing in triangulations.

Result:
Randomized oblivious routing convex partitions.
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A minimal convex partition: 5 faces
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Integer Linear Programming (ILP)

MAX INDEPENDENT SET
Variables x, € {0,1} YoeV

Objective function Maximize 1)x = Z X
veV

Constraints  x, + x, < 1 v{i,j} € E

e

Given a graph G = (V, E), pick a maximum
cardinality set S C V such that no two vertices
are adjacent.
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Integer Linear Programming (ILP)
Binary variable x;; meaing: do we select {7, j} as an edge?

Minimize Z x;j subject to:
{i,j}epP?

.’Xfi]'Zl \V/i_jOHCH(P)

Z xXie > 1 V (i,7) € P?, where i is interior
keBehind (i,))

Xij+x <1 V ij and kI that cross

Z Xijj > 3 Vi1 € P, where i is interior
jeP
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3-Approximation

Theorem A 3-approximation of a minimum convex
partition of P can be computed in O(nlogn)
time.

Lemma For every convex partition E of P, it holds that
S+b+%+1<|R(E).

Lemma There is a convex partition E of P such that
R(E)| < 3k+ 3.
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A lowerbound

Let k > 3 be number of interior points; n — k outer points.
Let CHjn(P) := convex hull of inner points.

Claim: Type a vertex needs at least one edge to CH(P).
Claim: Type b vertex needs at least two edges to CH(P).

2(n—k) +3k +a+2b

Every outer point has degree two on the convex hull.
Every interior point has degree at least 3.

There are a 4 2b edges arriving at CH from interior.

#edgeszn+§+%+b
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A lowerbound

Let k > 3 be number of interior points; n — k outer points.
Let CHjn(P) := convex hull of inner points.

Claim: Type a vertex needs at least one edge to CH(P).
Claim: Type b vertex needs at least two edges to CH(P).

2(n—k) +3k +a+2b

Every outer point has degree two on the convex hull.
Every interior point has degree at least 3.

There are a 4 2b edges arriving at CH from interior.
Euler

# faces > §+%+b+1
O

#edges >n+ 5+ 4 +b
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Lemma There is a convex partition E of P such that
R(E)| < 3k+ 3.

Q has partition with %(k —0) + % faces.

New faces: ¢+ 1.

Total: %k + % — %8 + 1.

-28



An upperbound

Lemma There is a convex partition E of P such that
R(E)| < 3k+ 3.

Q has partition with %(k —0) + % faces.

New faces: ¢+ 1.

Total: %k + % — %Z + 1. Note! ¢ > 2 O
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