UNIVERSITÄT WÜRZBURG

Chair for
 INFORMATICS I

Efficient Algorithms and Knowledge-Based Systems

Computational Geometry

Convex Partition
 or

Oblivious Routing

Oblivious routing

Oblivious routing

Oblivious routing

Oblivious routing
t

Oblivious routing

Oblivious routing

Oblivious routing

Oblivious routing

Oblivious routing

Oblivious routing

Oblivious routing

Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)
\qquad

Point set P

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.)

Convex hull $\mathrm{CH}(P)$

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.)

Convex hull $\mathrm{CH}(P)$

Minimum Convex Partition of Points Sets

 (Uiten: assume no colinear points.)

Convex hull $\mathrm{CH}(P)$

Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

A triangulation of P :

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.)

A triangulation of P :
8 faces

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.)

A triangulation of P :
8 faces

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.)

A minimal convex partition: 5 faces

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.) -Minimum number of faces?

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.)

Minimum number of faces?

Minimum Convex Partition of Points Sets

 (Often: assume no colinear points.)

Minimum number of faces? 4 faces

Minimum Convex Partition of Points Sets

Minimum number of faces? 4 faces

Known results

Not as much as we would like...

Known results

Not as much as we would like...
... no polynomial-time algorithm known.

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.
... it is fixed parameter tractable ...

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.
... it is fixed parameter tractable ...
... by an unconvincing parameter.
(number of interior points)

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.
... it is fixed parameter tractable ...
... by an unconvincing parameter.
(number of interior points)

Exact: $\quad O\left(n^{3 h+3}\right)$ time, where h is \# nested convex hulls.

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.
... it is fixed parameter tractable ...
... by an unconvincing parameter.
(number of interior points)

Exact: $\quad O\left(n^{3 h+3}\right)$ time, where h is \# nested convex hulls. Integer Linear Program (ILP)

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.
... it is fixed parameter tractable ...
... by an unconvincing parameter.
(number of interior points)

Exact: $\quad O\left(n^{3 h+3}\right)$ time, where h is \# nested convex hulls.
Integer Linear Program (ILP)
Approx: Factor 3 in $O(n \log n)$ time.

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.
... it is fixed parameter tractable ...
... by an unconvincing parameter.
(number of interior points)

Exact: $\quad O\left(n^{3 h+3}\right)$ time, where h is \# nested convex hulls. Integer Linear Program (ILP)
Approx: Factor 3 in $O(n \log n)$ time.
Factor $\frac{30}{11}$ in $O\left(n^{2}\right)$ time.

Known results

Not as much as we would like...
... no polynomial-time algorithm known.
... NP-hardness unknown.
... it is fixed parameter tractable ...
... by an unconvincing parameter.
(number of interior points)

Exact: $\quad O\left(n^{3 h+3}\right)$ time, where h is \# nested convex hulls.
Integer Linear Program (ILP)
Approx: Factor 3 in $O(n \log n)$ time.
This lecture
Factor $\frac{30}{11}$ in $O\left(n^{2}\right)$ time.

Integer Linear Programming (ILP)

Variables $\quad x \in \mathbb{Z}^{n}$

Integer Linear Programming (ILP)

Variables $\quad x \in \mathbb{Z}^{n}$

Objective function Maximize $c^{\top} x=\sum_{i} c_{i} x_{i}$

Integer Linear Programming (ILP)

Variables $\quad x \in \mathbb{Z}^{n}$

Objective function Maximize $c^{\top} x=\sum_{i} c_{i} x_{i}$
Constraints $A x \leq b$

Integer Linear Programming (ILP)

Max Independent Set

Variables $\quad x \in \mathbb{Z}^{n}$

Objective function Maximize $c^{\top} x=\sum_{i} c_{i} x_{i}$

Constraints $\quad A x \leq b$

Given a graph $G=(V, E)$, pick a maximum cardinality set $S \subseteq V$ such that no two vertices are adjacent.

Integer Linear Programming (ILP)

Max Independent Set

Variables $\quad x \in \mathbb{Z}^{n}$

Objective function Maximize $c^{\top} x=\sum_{i} c_{i} x_{i}$

Constraints $\quad A x \leq b$

Given a graph $G=(V, E)$, pick a maximum cardinality set $S \subseteq V$ such that no two vertices are adjacent.

Integer Linear Programming (ILP)

Max Independent Set

$$
\text { Variables } x_{v} \in\{0,1\} \quad \forall v \in V
$$

Objective function Maximize $c^{\top} x=\sum_{i} c_{i} x_{i}$

Constraints $\quad A x \leq b$

Given a graph $G=(V, E)$, pick a maximum cardinality set $S \subseteq V$ such that no two vertices are adjacent.

Integer Linear Programming (ILP)

$x_{v} \in \mathbb{Z}, \quad 0 \leq x_{v} \leq 1 \quad$ MAx Independent Set Variables $\quad x_{v} \in\{\underline{0,1}\} \quad \forall v \in V$

Objective function Maximize $c^{\top} x=\sum_{i} c_{i} x_{i}$

Constraints $\quad A x \leq b$

Given a graph $G=(V, E)$, pick a maximum cardinality set $S \subseteq V$ such that no two vertices are adjacent.

Integer Linear Programming (ILP)

Max Independent Set

$$
\text { Variables } x_{v} \in\{0,1\} \quad \forall v \in V
$$

Objective function Maximize $\mathbb{1}_{n}^{\top} x=\sum_{v \in V} x_{v}$

Constraints $\quad A x \leq b$

Given a graph $G=(V, E)$, pick a maximum cardinality set $S \subseteq V$ such that no two vertices are adjacent.

Integer Linear Programming (ILP)

Max Independent Set

$$
\text { Variables } x_{v} \in\{0,1\} \quad \forall v \in V
$$

Objective function Maximize $\mathbb{1}_{n}^{\top} x=\sum_{v \in V} x_{v}$
Constraints $\quad x_{u}+x_{v} \leq 1 \quad \forall\{i, j\} \in E$

Given a graph $G=(V, E)$, pick a maximum cardinality set $S \subseteq V$ such that no two vertices are adjacent.

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?
Minimize $\quad \sum_{i j}$ subject to:

$$
\{i, j\} \in P^{2}
$$

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?
Minimize $\sum_{\{i, j\} \in P^{2}} x_{i j}$ subject to:

$$
x_{i j}=1 \quad \forall \overline{i j} \text { on } C H(P)
$$

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?
Minimize $\sum_{\{i, j\} \in P^{2}} x_{i j}$ subject to:

$$
x_{i j}=1 \quad \forall \overline{i j} \text { on } C H(P)
$$

$\sum \quad x_{i k} \geq 1 \quad \forall(i, j) \in P^{2}$, where i is interior $k \in \operatorname{Behind}(i, j)$

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?
Minimize $\sum_{\{i, j\} \in P^{2}} x_{i j}$ subject to:

$$
x_{i j}=1 \quad \forall \overline{i j} \text { on } C H(P)
$$

$\sum \quad x_{i k} \geq 1 \quad \forall(i, j) \in P^{2}$, where i is interior $k \in \operatorname{Behind}(i, j)$

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?
Minimize $\sum_{\{i, j\} \in P^{2}} x_{i j}$ subject to:

$$
x_{i j}=1 \quad \forall \overline{i j} \text { on } C H(P)
$$

$\sum \quad x_{i k} \geq 1 \quad \forall(i, j) \in P^{2}$, where i is interior $k \in \operatorname{Behind}(i, j)$

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?
Minimize $\sum_{\{i, j\} \in P^{2}} x_{i j}$ subject to:

$$
x_{i j}=1 \quad \forall \overline{i j} \text { on } C H(P)
$$

$\sum x_{i k} \geq 1 \quad \forall(i, j) \in P^{2}$, where i is interior $k \in \operatorname{Behind}(i, j)$

$$
x_{i j}+x_{k l} \leq 1 \quad \forall \overline{i j} \text { and } \overline{k l} \text { that cross }
$$

Integer Linear Programming (ILP)

Binary variable $x_{i j}$ meaing: do we select $\{i, j\}$ as an edge?
Minimize $\sum_{\{i, j\} \in P^{2}} x_{i j}$ subject to:

$$
x_{i j}=1 \quad \forall \overline{i j} \text { on } C H(P)
$$

$\sum x_{i k} \geq 1 \quad \forall(i, j) \in P^{2}$, where i is interior $k \in \operatorname{Behind}(i, j)$

$$
x_{i j}+x_{k l} \leq 1 \quad \forall \overline{i j} \text { and } \overline{k l} \text { that cross }
$$

$$
\sum_{j \in P} x_{i j} \geq 3 \quad \forall i \in P, \text { where } i \text { is interior }
$$

3-Approximation

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

3-Approximation
Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition E of P, it holds that $\frac{k}{2}+b+\frac{a}{2}+1 \leq|R(E)|$. (This assumes no colinear 1

3-Approximation
Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition E of P, it holds that $\frac{\mathfrak{k}}{2}+b+\frac{a}{2}+1 \leq|R(E)|$. (This assumes no colinear P

3-Approximation

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition E of P, it holds that $\frac{\mathfrak{k}}{2}+b+\frac{a}{2}+1 \leq|R(E)|$. (This assumes no colinear P

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\mathrm{in}}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $C H(P)$.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $C H(P)$.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points. Let $C H_{\text {in }}(P):=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\text {in }}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $\mathrm{CH}(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\text {in }}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $\mathrm{CH}(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\text {in }}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

Degree sum:

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\mathrm{in}}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

Degree sum: $2(n-k)$
Every outer point has degree two on the convex hull.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\text {in }}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

Degree sum: $2(n-k)+3 k$
Every outer point has degree two on the convex hull.
Every interior point has degree at least 3 .

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\text {in }}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

Degree sum: $2(n-k)+3 k$
Every outer point has degree two on the convex hull.
Every interior point has degree at least 3. (No colinear points.)

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\text {in }}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

Degree sum: $2(n-k)+3 k+a+2 b$
Every outer point has degree two on the convex hull.
Every interior point has degree at least 3 . \square
There are $a+2 b$ edges arriving at $C H$ from interior.

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\mathrm{in}}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

Degree sum: $2(n-k)+3 k+a+2 b$
Every outer point has degree two on the convex hull.
Every interior point has degree at least 3. (No colinear points.)
There are $a+2 b$ edges arriving at $C H$ from interior.
\# edges $\geq n+\frac{k}{2}+\frac{a}{2}+b$

A lowerbound

Let $k \geq 3$ be number of interior points; $n-k$ outer points.
Let $C H_{\text {in }}(P):=$ convex hull of inner points.
Claim: Type a vertex needs at least one edge to $C H(P)$.
Claim: Type b vertex needs at least two edges to $C H(P)$.

Degree sum: $2(n-k)+3 k+a+2 b$
Every outer point has degree two on the convex hull.
Every interior point has degree at least 3. (No colinear points.)
There are $a+2 b$ edges arriving at $C H$ from interior.
\# edges $\geq n+\frac{k}{2}+\frac{a}{2}+b \xrightarrow{\text { Euler }} \#$ faces $\geq \frac{k}{2}+\frac{a}{2}+b+1$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=0$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=0 \quad \Longrightarrow|R(E)| \leq \frac{3}{2}$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=1$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=1 \quad \Longrightarrow|R(E)| \leq 3$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=1 \quad \Longrightarrow|R(E)| \leq 3$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=1 \quad \Longrightarrow|R(E)| \leq 3$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=1 \quad \Longrightarrow|R(E)| \leq 3$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k=1 \quad \Longrightarrow|R(E)| \leq 3$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2 \quad$ Ind. hyp. holds for Q

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

Ind. hyp. holds for Q

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$

Chain C with $\ell \geq 2$ points.

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$ Chain C with $\ell \geq 2$ points.
Q has partition with $\frac{3}{2}(k-\ell)+\frac{3}{2}$ faces.

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$ Chain C with $\ell \geq 2$ points.
Q has partition with $\frac{3}{2}(k-\ell)+\frac{3}{2}$ faces.
New faces:

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$ Chain C with $\ell \geq 2$ points.
Q has partition with $\frac{3}{2}(k-\ell)+\frac{3}{2}$ faces.
New faces: $\ell+1$.

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$ Chain C with $\ell \geq 2$ points.
Q has partition with $\frac{3}{2}(k-\ell)+\frac{3}{2}$ faces.
New faces: $\ell+1$.
Total: $\frac{3}{2} k+\frac{3}{2}-\frac{1}{2} \ell+1$.

An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k+\frac{3}{2}$.

Induction on $k: \quad k \geq 2$ Chain C with $\ell \geq 2$ points.
Q has partition with $\frac{3}{2}(k-\ell)+\frac{3}{2}$ faces.
New faces: $\ell+1$.
Total: $\frac{3}{2} k+\frac{3}{2}-\frac{1}{2} \ell+1$.
Note! $\ell \geq 2 \quad \square$

Putting it together

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Proof:

Putting it together

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Proof: At the excercise sheet!

