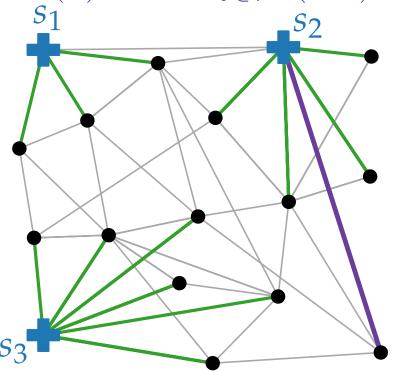
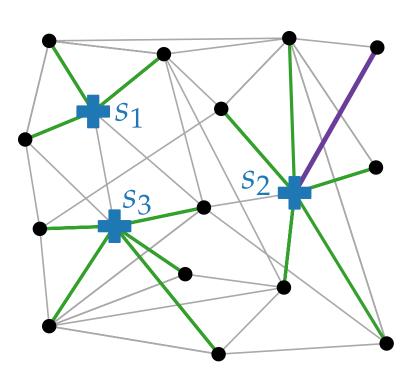


Approximationsalgorithmen

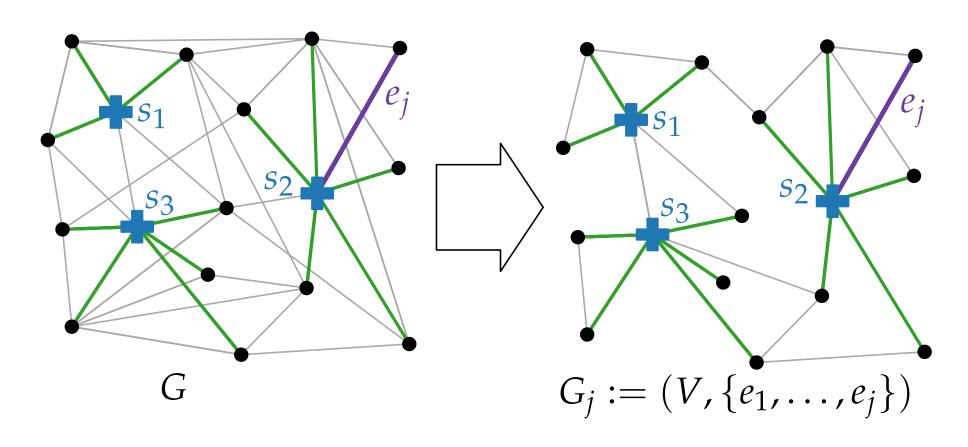
k-Center via Parametric Pruning


6. Vorlesung

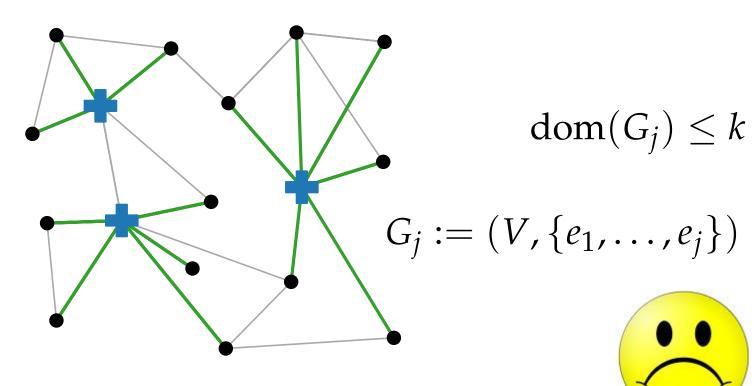

The metric *k*-Center-Problem

Given: A complete graph G = (V, E) with edge costs $c: E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.


Find: A k-element vertex set S, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

Parametric Pruning

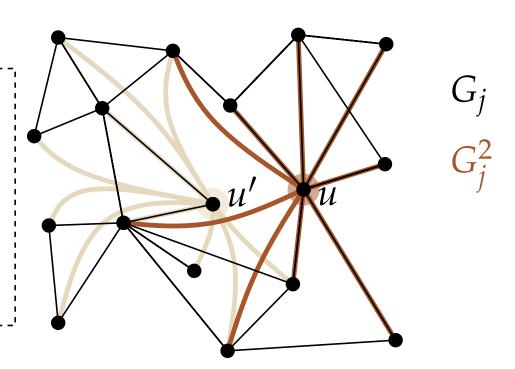

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose we know that $OPT = c(e_j)$.

... try each G_i .

... try each G_i .

Def. A vertex set D of a graph H is **dominated**, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

... but computing dom(H) is NP-hard.

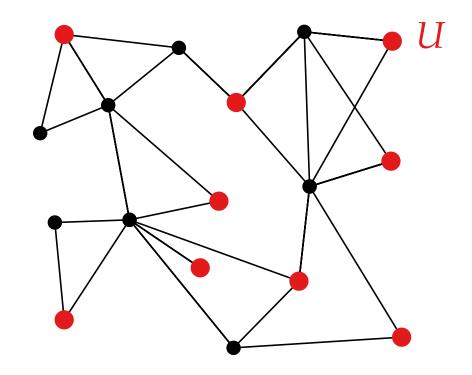

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_j

Def. The **square** H^2 of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 when they are within distance **two** in H.

Obs. A dominating set in G_j^2 with $\leq k$ elements is already a 2-Approximation.

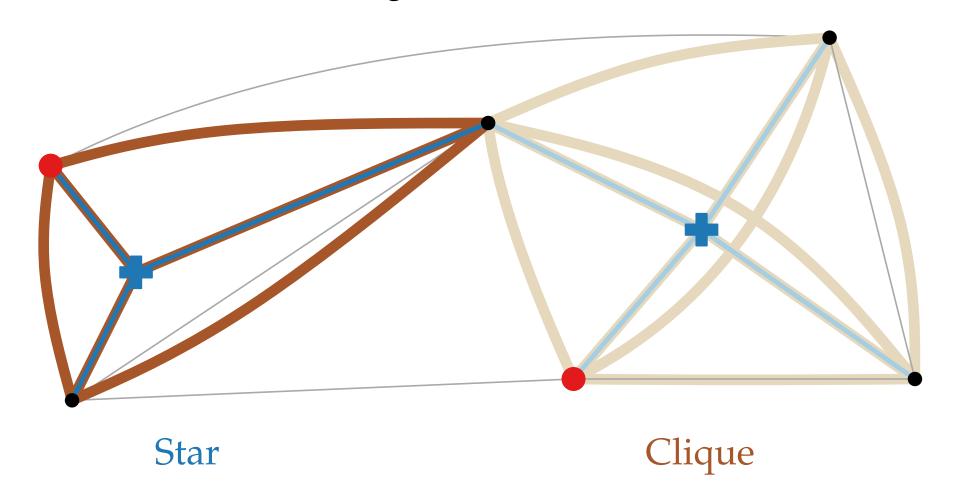
Why? $\max_{e \in E(G_i)} = e_j$!



Independent Sets

Def.

A vertex set *U* in a graph is called **independent** (or **stable**), if no pair of vertices in *U* form an edge. An independent set is called **maximal** when no superset of it is an independent set.


Obs. Maximal independent sets are dominating sets :-)

Independent Sets in H^2

Lemma. For a graph H and an independent set U in H^2 , $|U| \le \text{dom}(H)$.

What does a dominating set of H look like in H^2 ?

Factor-2 approx. for metric *k*-Center

```
Algorithm Metric-k-Center

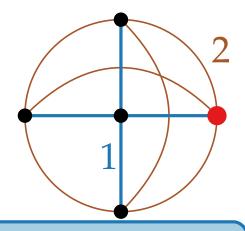
Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1, \ldots, m do

Construct G_j^2

Find a maximal independent set U_j in G_j^2

if |U_j| \leq k then


| return U_j
```

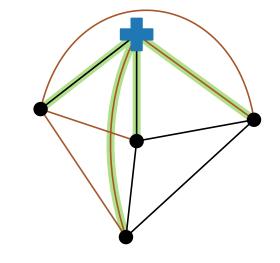
Lemma. For *j* provided by the Algorithm, we have $c(e_j) \leq \text{OPT}$.

Theorem. The above algorithm is a factor-2 approximation algorithm for the metric k-Center problem.

Can we do better ...?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon > 0$.


Proof. Reduce from dominating set to metric k-Center. Given.: G = (V, E), k

Constr. complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

 \triangle -inequality holds

S: metric k-Center If $dom(G) \le k$, then cost(S) = 1If dom(G) > k, then cost(S) = 2

Metric k-Center problem weighted

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$. , vertex weights $w: V \to \mathbb{Q}_{\geq 0}$ and a weight limit $W \in \mathbb{Q}_+$

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

vertex set *S* of weight at most *W*

Find: A *k*-element vertex set *S*, such that

 $cost(S) := max_{v \in V} c(v, S)$ is minimized.

The weighted version

```
Algorithm metric-weighted-Center
  Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set U_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in U_i \}
      if |U_j| \le \kappa then w(S_j) \le W
return U_j S_j u \in U_j
                                                          s_j(u) \le 3c(e_j)
```

$$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$$

Theorem. The above is a factor-3 approximation algorithm for the metric weighted-Center problem.