UNIVERSITÄT WÜRZBURG

Approximationsalgorithmen

k-Center via Parametric Pruning

6. Vorlesung

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ satisfying the triangle inequality

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ satisfying the triangle inequality

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

$$
\text { vertex set } S \subseteq V
$$

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

$$
\text { vertex set } S \subseteq V
$$

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q} \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.
$\operatorname{cost}(S):=\max _{v \in V} c(v, S)$

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q} \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.
$\operatorname{cost}(S):=\max _{v \in V} c(v, S)$

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q} \geq 0$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

The metric k-Center-Problem

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbf{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Parametric Pruning

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$. Suppose we know that OPT $=c\left(e_{j}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$. Suppose we know that OPT $=c\left(e_{j}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$. Suppose we know that OPT $=c\left(e_{j}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$. Suppose we know that OPT $=c\left(e_{j}\right)$.

G

$G_{j}:=\left(V,\left\{e_{1}, \ldots, e_{j}\right\}\right)$
\ldots. try each G_{i}.
...try each G_{i}.
Def.

\ldots. try each G_{i}.
Def. A vertex set D of a graph H is dominated, when each vertex is either in D or adjacent to a vertex in D.

\ldots. try each G_{i}.
Def. A vertex set D of a graph H is dominated, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

...try each G_{i}.
Def. A vertex set D of a graph H is dominated, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

...try each G_{i}.
Def. A vertex set D of a graph H is dominated, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H.

Square of a Graph

Idea:

Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. \quad The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

Obs. A dominating set in G_{j}^{2} with $\leq k$
elements is already a 2-Approximation.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

Obs. A dominating set in G_{j}^{2} with $\leq k$
elements is already a 2-Approximation.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}

Def. The square H^{2} of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^{2} when they are within distance two in H.

Obs. A dominating set in G_{j}^{2} with $\leq k$
elements is already a 2-Approximation.
Why? $\max _{e \in E\left(G_{j}\right)}=e_{j}$!

G_{j}

Independent Sets

Def.
A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge.

Independent Sets

Def.
A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Independent Sets

Def. A vertex set U in a graph is called independent (or stable), if no pair of vertices in U form an edge. An independent set is called maximal when no superset of it is an independent set.

Obs. Maximal independent sets are dominating sets :-)

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Star

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Star

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Star

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Independent Sets in H^{2}

Lemma. For a graph H and an independent set U in H^{2}, $|U| \leq \operatorname{dom}(H)$.
What does a dominating set of H look like in H^{2} ?

Factor-2 approx. for metric k-CENTER

Algorithm Metric-k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$

Factor-2 approx. for metric k-Center

Algorithm Metric-k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Factor-2 approx. for metric k-CENTER

Algorithm Metric- k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}

Factor-2 approx. for metric k-Center

Algorithm Metric- k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}

Factor-2 approx. for metric k-Center

Algorithm Metric- k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} if $\left|U_{j}\right| \leq k$ then
return U_{j}

Factor-2 approx. for metric k-Center

Algorithm Metric-k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} if $\left|U_{j}\right| \leq k$ then
return U_{j}
Lemma. For j provided by the Algorithm, we have $c\left(e_{j}\right) \leq$ OPT.

Factor-2 approx. for metric k-Center

Algorithm Metric- k-Center
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} if $\left|U_{j}\right| \leq k$ then
return U_{j}
Lemma. For j provided by the Algorithm, we have $c\left(e_{j}\right) \leq$ OPT.

Theorem. The above algorithm is a factor-2 approximation algorithm for the metric k-Center problem.

Can we do better ...?

Can we do better ... ?

What about a tight example?

Can we do better . . . ?

What about a tight example?

Can we do better ... ?

What about a tight example?

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-CENTER. Given.: $G=(V, E), k$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-CENTER. Given.: $G=(V, E), k$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center.
Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center.
Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
S : metric k-Center

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center.
Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
S : metric k-Center
If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
S : metric k-Center
If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
S : metric k-Center
If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$
If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
S : metric k-Center
If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$
If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
S : metric k-Center
If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$
If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\epsilon)$ approximation algorithm for the metric k-Center problem, for any $\epsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given.: $G=(V, E), k$
Constr. complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
S : metric k-Center
If dom $(G) \leq k$, then $\operatorname{cost}(S)=1$
If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$

Metric k-Center problem

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ and a natural number $k \leq|V|$.

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center problem

weighted
Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow Q_{\geq 0}$ and a natural number $k \leq|V|$.

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center problem

weighted
Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow Q_{\geq 0}$ and a natural number $k \leq|\dddot{V}|$., vertex weights $w: V \rightarrow \mathbb{Q}_{\geq 0}$ and a weight limit $W \in \mathbb{Q}_{+}$

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.

Find: A k-element vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center problem

weighted
Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow Q_{\geq 0}$ and a natural number $k \leq|\dddot{V}|$., vertex weights $w: V \rightarrow \mathbb{Q}_{\geq 0}$ and a weight limit $W \in \mathbb{Q}_{+}$

For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to the a vertex in S.
vertex set S of weight at most W
Find: A k-oloment vertex set S, such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

The weighted version

Algorithm metric-
-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
if $\left|U_{j}\right| \leq k$ then return U_{j}

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
if $\left|U_{j}\right| \leq k$ then
return U_{j}

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} what about the weights?
if $\left|U_{j}\right| \leq k$ then return U_{j}

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} what about the weights?
if $\left|U_{j}\right| \leq k$ then return U_{j}

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} what about the weights?
if $\left|U_{j}\right| \leq k$ then return U_{j}

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2} what about the weights?
if $\left|U_{j}\right| \leq k$ then return U_{j}
$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $\left|U_{j}\right| \leq k$ then return U_{j}

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $\left|U_{j}\right| \leq k$ then return U_{j}

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $\left|U_{j}\right| \leq k$ then $w\left(S_{j}\right) \leq W$ return $\not \Varangle_{j} S_{j}$

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}

Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $\left|U_{j}\right| \leq k$ then $w\left(S_{j}\right) \leq W$ return $\not \Varangle_{j} S_{j}$
$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}

Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $\left|U_{j}\right| \leq k$ then $w\left(S_{j}\right) \leq W$ return $\not \varliminf_{j} S_{j}$

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

The weighted version

Algorithm metric-weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set U_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in U_{j}\right\}$ if $\left|U_{j}\right| \leq k$ then return $\not \Varangle_{j} S_{j}$

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$
Theorem. The above is a factor-3 approximation algorithm for the metric weighted-Center problem.

