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The metric k-Center-Problem
Given: A complete graph G = (V, E) with edge costs c : E→ Q≥0
satisfying the triangle inequality and a natural number k ≤ |V|.
For each vertex set S ⊆ V, c(v, S) is the cost of the cheapest edge
from v to the a vertex in S.

Find: A k-element vertex set S, such that
cost(S) := maxv∈V c(v, S) is minimized.
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in D. The cardinality of a smallest dominating
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. . . try each Gi.

. . . but computing dom(H) is NP-hard.

A vertex set D of a graph H is dominated, when
each vertex is either in D or adjacent to a vertex
in D. The cardinality of a smallest dominating
set in H is denoted by dom(H).

Def.

Gj := (V, {e1, . . . , ej})

dom(Gj) ≤ k
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Idea:
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set as H. Additionally, two vertices u 6= v are
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two in H.
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Gj

G2
ju
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u′

A dominating set in
G2

j with ≤ k
elements is already
a 2-Approximation.

Obs.

Why? maxe∈E(Gj)
= ej !
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Independent Sets
A vertex set U in a graph is called independent
(or stable), if no pair of vertices in U form an
edge. An independent set is called maximal
when no superset of it is an independent set.

Def.

U

Maximal
independent sets are
dominating sets :-)

Obs.
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Algorithm Metric-k-Center

Sort the edges of G by cost: c(e1) ≤ . . . ≤ c(em)
for j = 1, . . . , m do

Construct G2
j

Find a maximal independent set Uj in G2
j

if |Uj| ≤ k then
return Uj

For j provided by the Algorithm, we have
c(ej) ≤ OPT.

Lemma.

The above algorithm is a factor-2 approximation
algorithm for the metric k-Center problem.

Theorem.
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Metric k-Center problem

Given: A complete graph G = (V, E) with metric edge costs
c : E→ Q≥0 and a natural number k ≤ |V|.

For each vertex set S ⊆ V, c(v, S) is the cost of the cheapest edge
from v to the a vertex in S.

Find: A k-element vertex set S, such that
cost(S) := maxv∈V c(v, S) is minimized.
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The weighted version

Algorithm metric- -Center
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The above is a factor-3 approximation algorithm
for the metric weighted-Center problem.

Theorem.
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