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Independent Sets

Detf. A vertex set U in a graph is called independent
(or stable), if no pair of vertices in U form an
edge. An independent set is called maximal
when no superset of it is an independent set.

Obs. Maximal .
' independent sets are
dominating sets :-) |
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Factor-2 approx. for metric k-CENTER

Algorithm Metric-k-CENTER .
- Sort the edges of G by cost: c(e) < ... < c(em)

forj=1,...,mdo -
Construct GJZ

Find a maximal independent set U; in GJZ
if |U;| <k then
| return U

______________________________________________________________________________

‘Lemma. For j provided by the Algorithm, we have
c(ej) < OPT.

.

‘Theorem. The above algorithm is a factor-2 approximation |
algorithm for the metric k-CENTER problem.

\. J
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A‘\—inequality holds
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Given: A complete graph G = (V E) with metric edge costs

¢: E — Q> and araturatrramiver k < [V, vertex weights
and a weight limit

For each vertex set S C V, c(v, S) is the cost of the cheapest edge
from v to the a vertex in S.

vertex set S of Weight at most
Find: A k-element-vertex-set-5such that
cost(S) := max,cy ¢(v,S) is minimized.
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The weighted version

‘Algorithm metric- -CENTER
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The weighted version

‘Algorithm metric- -CENTER
Sort the edges of G by cost : c(e1) < ... < c(em)
forj=1,...,mdo

Construct GJZ

Find a maximal independent set U]- in GJZ

Compute S, := {s]-(u) | u € LI]-}

if \U]( <“k-then
| return 4} S;




The weighted version

‘Algorithm metric- -CENTER
Sort the edges of G by cost : c(e1) < ... < c(em)
forj=1,...,mdo

Construct GJZ

Find a maximal independent set U]- in GJZ

Compute S, := {s]-(u) | u € LI]-}

if \U]( <“k-then
| return 4} S;




The weighted version

‘Algorithm metric- -CENTER
Sort the edges of G by cost : c(e1) < ... < c(em)
forj=1,...,mdo

Construct GJZ

Find a maximal independent set U; in GJZ

Compute S; := {s;(u) | u € U; }

if \U]( <“k-then
| return 4} S:

Theorem. The above is a factor-3 approximation algorithm
for the metric weighted-CENTER problem.
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