

Approximationsalgorithmen

k-Center via Parametric Pruning

6. Vorlesung

Steven Chaplick

Wintersemester 2019/20

Given: A complete graph G = (V, E) satisfying the triangle inequality

Given: A complete graph G = (V, E) satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

vertex set $S \subseteq V$

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

vertex set $S \subseteq V$

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Let $E = \{e_1, ..., e_m\}$ with $c(e_1) \le ... \le c(e_m)$.

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \leq \dots \leq c(e_m)$. Suppose we know that $OPT = c(e_j)$.

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \leq \dots \leq c(e_m)$. Suppose we know that $OPT = c(e_j)$.

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \leq \dots \leq c(e_m)$. Suppose we know that $OPT = c(e_j)$.

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \leq \dots \leq c(e_m)$. Suppose we know that $OPT = c(e_j)$.

... try each G_i .

 \ldots try each G_i .

Def.

Def. A vertex set D of a graph H is **dominated**, when each vertex is either in D or adjacent to a vertex in D.

Def. A vertex set D of a graph H is **dominated**, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

Def. A vertex set D of a graph H is **dominated**, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

Def. A vertex set D of a graph H is **dominated**, when each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

... but computing dom(H) is NP-hard.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_i
Idea: Find a small dominating set in a "coarsened" G_i

Def. The square H^2 of a graph H has the same vertex set as H.

Idea: Find a small dominating set in a "coarsened" G_i

Def. The square H^2 of a graph *H* has the same vertex set as *H*.

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Idea: Find a small dominating set in a "coarsened" G_i

Def. The square H^2 of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 when they are within distance two in H.

Obs. A dominating set in G_j^2 with $\leq k$ elements is already a 2-Approximation.

Idea: Find a small dominating set in a "coarsened" G_j

Def. The **square** H^2 of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 when they are within distance **two** in H.

Obs. A dominating set in G_j^2 with $\leq k$ elements is already a 2-Approximation. Why?

Idea: Find a small dominating set in a "coarsened" G_j

Def. The square H^2 of a graph H has the same vertex set as H. Additionally, two vertices $u \neq v$ are adjacent in H^2 when they are within distance **two** in H.

Obs. A dominating set in G_j^2 with $\leq k$ elements is already a 2-Approximation. Why? $\max_{e \in E(G_i)} = e_j !$

Def. A vertex set *U* in a graph is called **independent** (or **stable**), if no pair of vertices in *U* form an edge.

Def. A vertex set *U* in a graph is called **independent** (or **stable**), if no pair of vertices in *U* form an edge.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Def. A vertex set *U* in a graph is called independent (or stable), if no pair of vertices in *U* form an edge. An independent set is called maximal when no superset of it is an independent set.

Lemma. For a graph *H* and an independent set *U* in H^2 , $|U| \le \operatorname{dom}(H)$.

Lemma. For a graph *H* and an independent set *U* in H^2 , $|U| \le \operatorname{dom}(H)$.

Star

Star

Lemma. For a graph *H* and an independent set *U* in H^2 , $|U| \le \operatorname{dom}(H)$.

Star

Lemma. For a graph *H* and an independent set *U* in H^2 , $|U| \le \operatorname{dom}(H)$.

Star

Lemma. For a graph *H* and an independent set *U* in H^2 , $|U| \le \operatorname{dom}(H)$.

What does a dominating set of *H* look like in H^2 ?

Clique

Star

Lemma. For a graph *H* and an independent set *U* in H^2 , $|U| \le \operatorname{dom}(H)$.

What does a dominating set of *H* look like in H^2 ?

Clique

Star

Lemma. For a graph *H* and an independent set *U* in H^2 , $|U| \le \operatorname{dom}(H)$.

What does a dominating set of *H* look like in H^2 ?

Clique

Algorithm Metric-*k*-CENTER Sort the edges of *G* by cost: $c(e_1) \leq \ldots \leq c(e_m)$

Algorithm Metric-*k*-CENTER Sort the edges of *G* by cost: $c(e_1) \leq \ldots \leq c(e_m)$ for $j = 1, \ldots, m$ do

Algorithm Metric-*k*-CENTER Sort the edges of *G* by cost: $c(e_1) \leq ... \leq c(e_m)$ **for** j = 1, ..., m **do** Construct G_j^2

Algorithm Metric-*k*-CENTER Sort the edges of *G* by cost: $c(e_1) \leq ... \leq c(e_m)$ **for** j = 1, ..., m **do** Construct G_j^2 Find a maximal independent set U_j in G_j^2

```
Algorithm Metric-k-CENTER
Sort the edges of G by cost: c(e_1) \leq ... \leq c(e_m)
for j = 1, ..., m do
Construct G_j^2
Find a maximal independent set U_j in G_j^2
if |U_j| \leq k then
return U_j
```

Algorithm Metric-*k*-CENTER Sort the edges of *G* by cost: $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 if $|U_i| \leq k$ then return U_i

Lemma. For *j* provided by the Algorithm, we have $c(e_j) \leq \text{OPT}$.

```
Algorithm Metric-k-CENTER
Sort the edges of G by cost: c(e_1) \leq ... \leq c(e_m)
for j = 1, ..., m do
Construct G_j^2
Find a maximal independent set U_j in G_j^2
if |U_j| \leq k then
return U_j
```

Lemma. For *j* provided by the Algorithm, we have $c(e_j) \leq OPT$.

Theorem. The above algorithm is a factor-**2** approximation algorithm for the metric *k*-CENTER problem.

What about a tight example?

What about a tight example?

What about a tight example?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

What about a tight example?

2

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER.

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), k

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), *k*

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), *k* Constr. complete graph $G' = (V, E \cup E')$

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), *k* Constr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

S: metric *k*-Center

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

> S: metric *k*-Center If dom(*G*) $\leq k$, then cost(*S*) = 1

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

> S: metric *k*-Center If dom(*G*) $\leq k$, then cost(*S*) = 1

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

> S: metric k-Center If dom(G) $\leq k$, then cost(S) = 1 If dom(G) > k, then cost(S) = 2

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

> S: metric k-Center If dom(G) $\leq k$, then cost(S) = 1 If dom(G) > k, then cost(S) = 2

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

> S: metric *k*-Center If dom(*G*) $\leq k$, then cost(*S*) = 1 If dom(*G*) > *k*, then cost(*S*) = 2

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor- $(2 - \epsilon)$ approximation algorithm for the metric *k*-CENTER problem, for any $\epsilon > 0$.

Proof. Reduce from dominating set to metric *k*-CENTER. Given.: G = (V, E), kConstr. complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$ \triangle -inequality holds S: metric *k*-Center If dom(G) $\leq k$, then cost(S) = 1If dom(G) > k, then cost(S) = 2

Metric *k*-CENTER problem

Given: A complete graph G = (V, E) with metric edge costs $c: E \rightarrow \mathbb{Q}_{>0}$ and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Find: A *k*-element vertex set *S*, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

Metric *k*-CENTER problem weighted

Given: A complete graph G = (V, E) with metric edge costs $c: E \rightarrow \mathbb{Q}_{>0}$ and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Find: A *k*-element vertex set *S*, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

Metric *k*-CENTER problem weighted

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$. , vertex weights $w: V \to \mathbb{Q}_{\geq 0}$ and a weight limit $W \in \mathbb{Q}_+$

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

Find: A *k*-element vertex set *S*, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

Metric *k*-CENTER problem weighted

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$. , vertex weights $w: V \to \mathbb{Q}_{\geq 0}$ and a weight limit $W \in \mathbb{Q}_+$

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to the a vertex in S.

vertex set *S* of weight at most *W* **Find**: A *k*-element vertex set *S*, such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.
Algorithm metric-
Sort the edges of G by $cost : c(e_1) \le \ldots \le c(e_m)$ for $j = 1, \ldots, m$ do
Construct G_j^2 Find a maximal independent set U_j in G_j^2

if $|U_j| \le k$ then | return U_j

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq ... \leq c(e_m)$ for j = 1, ..., m do Construct G_j^2 Find a maximal independent set U_j in G_j^2

> if $|U_j| \le k$ then | return U_j

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 what about the weights? if $|U_j| \le k$ then | return U_j

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 Compute $S_i := \{ s_i(u) \mid u \in U_i \}$ if $|U_i| \leq k$ then $u \in U_j$ $\bullet s_j(u)$ return U_i

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 Compute $S_i := \{ s_i(u) \mid u \in U_i \}$ if $|U_j| \leq k$ then $w(S_j) \leq W$ | return U_j u

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 Compute $S_i := \{ s_i(u) \mid u \in U_i \}$ if $|U_j| \leq k$ then $w(S_j) \leq W$ return $U_j S_j$ $u \in U_j$ $s_j(u)$

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 Compute $S_i := \{ s_i(u) \mid u \in U_i \}$ if $|U_j| \leq k$ then $w(S_j) \leq W$ $| return U_j S_j \qquad u \in U_j$ $\mathsf{s}_i(u)$

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 Compute $S_i := \{ s_i(u) \mid u \in U_i \}$ if $|U_j| \leq k$ then $w(S_j) \leq W$ return $U_j S_j$ $u \in U_j$ $s_j(u) \leq 3c(e_j)$

Algorithm metric-weighted-CENTER Sort the edges of *G* by cost : $c(e_1) \leq \ldots \leq c(e_m)$ for j = 1, ..., m do Construct G_i^2 Find a maximal independent set U_i in G_i^2 Compute $S_i := \{ s_i(u) \mid u \in U_i \}$ if $|U_j| \leq k$ then $w(S_j) \leq W$ return $U_j S_j$ $u \in U_j$ • $s_j(u)$ $\leq 3c(e_j)$

 $s_j(u) :=$ lightest node in $N_{G_j}(u) \cup \{u\}$

Theorem. The above is a factor-**3** approximation algorithm for the metric weighted-CENTER problem.