
1

Steven Chaplick & Alexander Wolff Chair for Computer Science I

Advanced Algorithms

Winter term 2019/20

Lecture 7. Shortest Paths in Graphs with Negative Weights

2 - 1

Motivation

Problem. Let G = (H ∪ V , E) be a bipartite graph with
positive vertex weights ` : H ∪ V → N and a
permutation π of H ∪ V .

π

1

3

5

6

6

2
3

VH

2 - 2

Motivation

Problem. Let G = (H ∪ V , E) be a bipartite graph with
positive vertex weights ` : H ∪ V → N and a
permutation π of H ∪ V .

Does G admit a stick representation that respects
the given stick order π and stick lengths `?

π

1

3

5

6

6

2
3

VH

6

2
3

1 3 5 6

2 - 3

Motivation

Problem. Let G = (H ∪ V , E) be a bipartite graph with
positive vertex weights ` : H ∪ V → N and a
permutation π of H ∪ V .

Does G admit a stick representation that respects
the given stick order π and stick lengths `?

π

1

3

5

6

6

2
3

VH

6

2
3

1 3 5 6

2 - 4

Motivation

π

1

3

5

6

6

2
3

VH

6

2
3

1 3 5 6

Algorithm.

2 - 5

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

2 - 6

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

n = |H|+ |V |

2 - 7

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0 . Let n ≥ h > v ≥ 1.

x2

x4

n = |H|+ |V |

2 - 8

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E :

. Let n ≥ h > v ≥ 1.

x2

x4

n = |H|+ |V |

2 - 9

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
. Let n ≥ h > v ≥ 1.

x2

x4

n = |H|+ |V |

2 - 10

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E :

. Let n ≥ h > v ≥ 1.

x4

x1

n = |H|+ |V |

2 - 11

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

n = |H|+ |V |

2 - 12

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP

n = |H|+ |V |

2 - 13

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

n = |H|+ |V |

2 - 14

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =

n = |H|+ |V |

2 - 15

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =n−1

n = |H|+ |V |

2 - 16

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =n−1 |H|·|V |+n−1

n = |H|+ |V |

2 - 17

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =n−1 |H|·|V |+n−1

Exercise:
Improve this to
O(|E| + n)!

n = |H|+ |V |

2 - 18

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =n−1 |H|·|V |+n−1

Exercise:
Improve this to
O(|E| + n)!

⇒ runtime:

n = |H|+ |V |

2 - 19

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =n−1 |H|·|V |+n−1

Exercise:
Improve this to
O(|E| + n)!

⇒ runtime: O(n3.5 log(L+n))

n = |H|+ |V |

2 - 20

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =n−1 |H|·|V |+n−1

Exercise:
Improve this to
O(|E| + n)!

⇒ runtime: O(n3.5 log(L+n))

n = |H|+ |V |

2 - 21

Motivation

π

1

3

5

6

6

2
3

VH

Algorithm.

x1
x2

x3
x4

x6

x7

x5

xn < · · · < x2 < x1 = 0

for each hv ∈ E : xv − xh < min{`h, `v}
for each hv 6∈ E : xv − xh > min{`h, `v}

. Let n ≥ h > v ≥ 1.

x4

x1

Solve LP (without objective function):

variables = # constraints =n−1 |H|·|V |+n−1

Exercise:
Improve this to
O(|E| + n)!

⇒ runtime: O(n3.5 log(L+n))

n = |H|+ |V |difference constraints

3 - 1

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

3 - 2

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4)

3 - 3

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

3 - 4

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

3 - 5

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−1

−3
−3

0

1

v1

v2

v3
v4

v5

3 - 6

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

3 - 7

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

3 - 8

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

3 - 9

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

3 - 10

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1
0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

3 - 11

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

3 - 12

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−5

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

3 - 13

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−3

−5

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

3 - 14

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

−1

−3

−5

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

Definition. The constraint graph GA,b is a weighted digraph
with vertex set VA = {v0, v1, . . . , vn} and edge set
EA = {vi vj : xj − xi ≤ bi j is a constraint}∪

{v0vk : 1 ≤ k ≤ n}.
The weight of vi vj is bi j if i > 0 and 0 otherwise.

4 - 1

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

4 - 2

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles.

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

4 - 3

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

4 - 4

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

4 - 5

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

4 - 6

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

4 - 7

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

4 - 8

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

4 - 9

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒ x2−x1 ≤ b12,
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

4 - 10

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒ x2−x1 ≤ b12, x3−x2 ≤ b23, . . . ,
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

4 - 11

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒ x2−x1 ≤ b12, xk−xk−1 ≤ bk−1,k .x3−x2 ≤ b23, . . . ,
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

⇒

4 - 12

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒ x2−x1 ≤ b12, xk−xk−1 ≤ bk−1,k .x3−x2 ≤ b23, . . . ,
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

⇒
Σ

4 - 13

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒ x2−x1 ≤ b12, xk−xk−1 ≤ bk−1,k .x3−x2 ≤ b23, . . . ,
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

⇒ 0 ≤ b12 + b23 + · · ·+ bk−1,k
Σ

4 - 14

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒ x2−x1 ≤ b12, xk−xk−1 ≤ bk−1,k .x3−x2 ≤ b23, . . . ,
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

⇒ 0 ≤ b12 + b23 + · · ·+ bk−1,k = w(C)
Σ

4 - 15

Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.

Proof. Assume no neg. cycles. Consider vi vj ∈ EA with i > 0.
∆-inequality ⇒ δj ≤ δi + bi j , or
Letting xi = δi and xj = δj satisfies xj − xi ≤ bi j .

δj − δi ≤ bi j .

Now assume ∃ neg. cycle and Ax ≤ b has a solution x .

⇒ x2−x1 ≤ b12, xk−xk−1 ≤ bk−1,k .x3−x2 ≤ b23, . . . ,
Wlog., let C = 〈v1, v2, . . . , vk = v1〉 be a neg. cycle.

⇒ 0 ≤ b12 + b23 + · · ·+ bk−1,k = w(C) �
Σ

5 - 1

Shortest Paths & Negative Edge Weights

Ideas?

5 - 2

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

5 - 3

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

5 - 4

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

5 - 5

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

5 - 6

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

5 - 7

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0

5 - 8

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0

estimate for δ(s, u)

5 - 9

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0

estimate for δ(s, u)

pointer to predecessor
on some “currently”
shortest s–u path

5 - 10

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Relax(vtx u, vtx v , weights w)

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0

estimate for δ(s, u)

pointer to predecessor
on some “currently”
shortest s–u path

5 - 11

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Relax(vtx u, vtx v , weights w)

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0

estimate for δ(s, u)

pointer to predecessor
on some “currently”
shortest s–u path

s

vv .d
u.d

u

5 - 12

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Relax(vtx u, vtx v , weights w)

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0

estimate for δ(s, u)

pointer to predecessor
on some “currently”
shortest s–u path

s

vv .d
u.d

u

[]

6 - 1

The Bellman–Ford Algorithm

Initialize(G , s)
Q = new PriorityQueue(G .V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

Relax(u, v ; w)

Dijkstra(graph G , weights w , vtx s)

6 - 2

The Bellman–Ford Algorithm

Initialize(G , s)
Q = new PriorityQueue(G .V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

Relax(u, v ; w)

Dijkstra(graph G , weights w , vtx s)

Initialize(G , s)
for i = 1 to |G .V | − 1 do

foreach uv ∈ G .E do
Relax(u, v ; w)

foreach uv ∈ G .E do
if v .d > u.d + w(u, v) return false

return true

Bellman–Ford(graph G , weights w , vtx s)

6 - 3

The Bellman–Ford Algorithm

Initialize(G , s)
Q = new PriorityQueue(G .V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

Relax(u, v ; w)

Dijkstra(graph G , weights w , vtx s)

Initialize(G , s)
for i = 1 to |G .V | − 1 do

foreach uv ∈ G .E do
Relax(u, v ; w)

foreach uv ∈ G .E do
if v .d > u.d + w(u, v) return false

return true

Bellman–Ford(graph G , weights w , vtx s)

runtime?

6 - 4

The Bellman–Ford Algorithm

Initialize(G , s)
Q = new PriorityQueue(G .V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

Relax(u, v ; w)

Dijkstra(graph G , weights w , vtx s)

Initialize(G , s)
for i = 1 to |G .V | − 1 do

foreach uv ∈ G .E do
Relax(u, v ; w)

foreach uv ∈ G .E do
if v .d > u.d + w(u, v) return false

return true

Bellman–Ford(graph G , weights w , vtx s)

runtime?
O(E + V log V)

6 - 5

The Bellman–Ford Algorithm

Initialize(G , s)
Q = new PriorityQueue(G .V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

Relax(u, v ; w)

Dijkstra(graph G , weights w , vtx s)

Initialize(G , s)
for i = 1 to |G .V | − 1 do

foreach uv ∈ G .E do
Relax(u, v ; w)

foreach uv ∈ G .E do
if v .d > u.d + w(u, v) return false

return true

Bellman–Ford(graph G , weights w , vtx s)

runtime?
O(E + V log V)

runtime?

6 - 6

The Bellman–Ford Algorithm

Initialize(G , s)
Q = new PriorityQueue(G .V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

Relax(u, v ; w)

Dijkstra(graph G , weights w , vtx s)

Initialize(G , s)
for i = 1 to |G .V | − 1 do

foreach uv ∈ G .E do
Relax(u, v ; w)

foreach uv ∈ G .E do
if v .d > u.d + w(u, v) return false

return true

Bellman–Ford(graph G , weights w , vtx s)

runtime?
O(E + V log V)

runtime?
O(V · E)

7 - 1

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

7 - 2

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

Suppose v is not reachable from s.

7 - 3

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.

Suppose v is not reachable from s.

7 - 4

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

Suppose v is not reachable from s.

7 - 5

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

Suppose v is not reachable from s.

7 - 6

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization, v0.d = δ(s, v0) = 0.

Suppose v is not reachable from s.

7 - 7

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

Suppose v is not reachable from s.

7 - 8

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi).

Suppose v is not reachable from s.

7 - 9

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

Suppose v is not reachable from s.

7 - 10

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

⇒ vi .d ≤ δ(s, vi−1) + w(vi−1, vi) =

Suppose v is not reachable from s.

7 - 11

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

⇒ vi .d ≤ δ(s, vi−1) + w(vi−1, vi) =

Suppose v is not reachable from s.

δ(s, vi)
δ s.p.

7 - 12

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

⇒ vi .d ≤ δ(s, vi−1) + w(vi−1, vi) = ⇒ vi .d = δ(s, vi).

Suppose v is not reachable from s.

δ(s, vi)
δ s.p. Relax

7 - 13

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

⇒ vi .d ≤ δ(s, vi−1) + w(vi−1, vi) = ⇒ vi .d = δ(s, vi).

Suppose v is not reachable from s. ⇒ Initially, v .d =∞

δ(s, vi)
δ s.p. Relax

7 - 14

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

⇒ vi .d ≤ δ(s, vi−1) + w(vi−1, vi) = ⇒ vi .d = δ(s, vi).

Suppose v is not reachable from s. ⇒ Initially, v .d =∞
⇒ During execution, v .d remains ∞ (otherwise ∃ s–v path)

δ(s, vi)
δ s.p. Relax

7 - 15

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

⇒ vi .d ≤ δ(s, vi−1) + w(vi−1, vi) = ⇒ vi .d = δ(s, vi).

Suppose v is not reachable from s. ⇒ Initially, v .d =∞
⇒ During execution, v .d remains ∞ (otherwise ∃ s–v path)

⇒ At termination, v .d =∞ = δ(s, v). �

δ(s, vi)
δ s.p. Relax

7 - 16

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v , v .d = δ(s, v) and Bellman–Ford returns true.

Suppose v is reachable from s.

⇒ ∃ shortest s–v path δ = 〈s = v0, v1, . . . , vk = v〉.
G has no negative cycle, δ shortest path ⇒ length k ≤ n − 1.

After initialization,

In phase i of the alg., vi−1vi is relaxed.

v0.d = δ(s, v0) = 0.

⇒ vi .d ≤ vi−1.d + w(vi−1, vi). By induction, vi−1.d = δ(s, vi−1).

⇒ vi .d ≤ δ(s, vi−1) + w(vi−1, vi) = ⇒ vi .d = δ(s, vi).

Suppose v is not reachable from s. ⇒ Initially, v .d =∞
⇒ During execution, v .d remains ∞ (otherwise ∃ s–v path)

⇒ At termination, v .d =∞ = δ(s, v). �

δ(s, vi)
δ s.p. Relax

8

The Bellman–Ford Algorithm (overview)

Initialize(G , s)
for i = 1 to |G .V | − 1 do

foreach uv ∈ G .E do
Relax(u, v ; w)

foreach uv ∈ G .E do
if v .d > u.d + w(u, v) return false

return true

Bellman–Ford(graph G , weights w , vtx s)

Relax(vtx u, vtx v , weights w)

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0

9 - 1

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

9 - 2

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

9 - 3

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒

9 - 4

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . ,

9 - 5

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . , vk .d ≤ vk−1.d + w(vk−1, vk),

⇒

9 - 6

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . , vk .d ≤ vk−1.d + w(vk−1, vk),

⇒
Σ

9 - 7

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . , vk .d ≤ vk−1.d + w(vk−1, vk),

⇒ 0 ≤
∑k

i=1 w(vi−1, vi) =
Σ

9 - 8

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . , vk .d ≤ vk−1.d + w(vk−1, vk),

⇒ 0 ≤
∑k

i=1 w(vi−1, vi) = w(C)
Σ

9 - 9

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . , vk .d ≤ vk−1.d + w(vk−1, vk),

⇒ 0 ≤
∑k

i=1 w(vi−1, vi) = w(C)
Σ

For this implication we additionally need that
∑

i vi .d <∞.

9 - 10

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . , vk .d ≤ vk−1.d + w(vk−1, vk),

⇒ 0 ≤
∑k

i=1 w(vi−1, vi) = w(C)
Σ

For this implication we additionally need that
∑

i vi .d <∞.

(True since C is reachable from s, plus the previous proof.)

9 - 11

Correctness (cont’d)

If G contains a negative cycle that is reachable from s,
then Bellman–Ford returns false.

Let C = 〈v0, v1, . . . , vk = v0〉 be such a negative cycle.

Assume that Bellman-Ford returns true.

⇒ v1.d ≤ v0.d + w(v0, v1), . . . , vk .d ≤ vk−1.d + w(vk−1, vk),

⇒ 0 ≤
∑k

i=1 w(vi−1, vi) = w(C)
Σ

For this implication we additionally need that
∑

i vi .d <∞.

(True since C is reachable from s, plus the previous proof.)

Improvement: O(
√

V E log W), where W = maxuv∈E w(u, v).

[Goldberg, SIAM J. Comput. 1995]

10 - 1

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

wj j = 0

10 - 2

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

wj j = 0

10 - 3

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

wj j = 0

10 - 4

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

wj j = 0

10 - 5

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and `

(m)
i j =

wj j = 0

10 - 6

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j =

wj j = 0

10 - 7

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

10 - 8

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) =

10 - 9

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j =

10 - 10

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j =

10 - 11

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j = `

(n+1)
i j = . . .

10 - 12

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j = `

(n+1)
i j = . . .

since shortest paths are simple
(if there are no neg. cycles)!

10 - 13

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j = `

(n+1)
i j = . . .

since shortest paths are simple
(if there are no neg. cycles)!

L′ = (`′i j =∞) new n × n matrix

for i = 1 to n do
for j = 1 to n do

for k = 1 to n do
`′i j = min{`′i j , `ik +wkj}

return L′

Extend-Shortest-Paths(L, W)

10 - 14

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j = `

(n+1)
i j = . . .

since shortest paths are simple
(if there are no neg. cycles)!

L′ = (`′i j =∞) new n × n matrix

for i = 1 to n do
for j = 1 to n do

for k = 1 to n do
`′i j = min{`′i j , `ik +wkj}

return L′

Extend-Shortest-Paths(L, W) Slow-All-Pairs-SP(W)

10 - 15

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j = `

(n+1)
i j = . . .

since shortest paths are simple
(if there are no neg. cycles)!

L′ = (`′i j =∞) new n × n matrix

for i = 1 to n do
for j = 1 to n do

for k = 1 to n do
`′i j = min{`′i j , `ik +wkj}

return L′

Extend-Shortest-Paths(L, W)
L(1) = W
for m = 2 to n − 1 do

L(m) = new matrix

L(m) = ESP(L(m−1),W)

return L(n−1)

Slow-All-Pairs-SP(W)

10 - 16

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j = `

(n+1)
i j = . . .

since shortest paths are simple
(if there are no neg. cycles)!

L′ = (`′i j =∞) new n × n matrix

for i = 1 to n do
for j = 1 to n do

for k = 1 to n do
`′i j = min{`′i j , `ik +wkj}

return L′

Extend-Shortest-Paths(L, W)
L(1) = W
for m = 2 to n − 1 do

L(m) = new matrix

L(m) = ESP(L(m−1),W)

return L(n−1)

Slow-All-Pairs-SP(W)

Runtime:

10 - 17

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (wi j)1≤i ,j≤n.

Let `
(m)
i j be the length of a shortest i–j path with ≤ m edges.

Then `
(0)
i j =

{
0 if i = j

∞ otherwise

}
and min

1≤k≤n
`
(m)
i j = {`(m−1)ik + wkj}.

wj j = 0

⇒ δ(i , j) = `
(n−1)
i j = `

(n)
i j = `

(n+1)
i j = . . .

since shortest paths are simple
(if there are no neg. cycles)!

L′ = (`′i j =∞) new n × n matrix

for i = 1 to n do
for j = 1 to n do

for k = 1 to n do
`′i j = min{`′i j , `ik +wkj}

return L′

Extend-Shortest-Paths(L, W)
L(1) = W
for m = 2 to n − 1 do

L(m) = new matrix

L(m) = ESP(L(m−1),W)

return L(n−1)

Slow-All-Pairs-SP(W)

Runtime: O(n4)

11 - 1

Faster APSP

L(1) = W
m = 1
while m < n − 1 do

L(2m) = new n × n matrix

L(2m) = Extend-Shortest-Path(L(m), L(m))
m = 2m

return L(m)

Faster-All-Pairs-SP(n × n matrix W)

Runtime: O(n3 log n)

11 - 2

Faster APSP

L(1) = W
m = 1
while m < n − 1 do

L(2m) = new n × n matrix

L(2m) = Extend-Shortest-Path(L(m), L(m))
m = 2m

return L(m)

Faster-All-Pairs-SP(n × n matrix W)

Runtime: O(n3 log n)

12 - 1

The Floyd–Warshall Algorithm

i j
k

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 2

The Floyd–Warshall Algorithm

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 3

The Floyd–Warshall Algorithm

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸
vertices< k

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 4

The Floyd–Warshall Algorithm

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸ ︸ ︷︷ ︸
vertices< k vertices< k

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 5

The Floyd–Warshall Algorithm

d
(0)
i j = wi j ; if k > 0 then

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸ ︸ ︷︷ ︸
vertices< k vertices< k

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 6

The Floyd–Warshall Algorithm

d
(0)
i j = wi j

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

; if k > 0 then

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸ ︸ ︷︷ ︸
vertices< k vertices< k

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 7

The Floyd–Warshall Algorithm

D(0) = W
for k = 1 to n do

D(k) = new n × n matrix
for i = 1 to n do

for j = 1 to n do

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

return D(n)

Floyd–Warshall(n × n matrix W)

d
(0)
i j = wi j

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

; if k > 0 then

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸ ︸ ︷︷ ︸
vertices< k vertices< k

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 8

The Floyd–Warshall Algorithm

D(0) = W
for k = 1 to n do

D(k) = new n × n matrix
for i = 1 to n do

for j = 1 to n do

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

return D(n)

Floyd–Warshall(n × n matrix W)

d
(0)
i j = wi j

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

; if k > 0 then

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸ ︸ ︷︷ ︸
vertices< k vertices< k

Runtime:

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 9

The Floyd–Warshall Algorithm

D(0) = W
for k = 1 to n do

D(k) = new n × n matrix
for i = 1 to n do

for j = 1 to n do

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

return D(n)

Floyd–Warshall(n × n matrix W)

d
(0)
i j = wi j

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

; if k > 0 then

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸ ︸ ︷︷ ︸
vertices< k vertices< k

Runtime:
O(n3)

[F., Comm. ACM 1977]

[W., J. ACM 1962]

12 - 10

The Floyd–Warshall Algorithm

D(0) = W
for k = 1 to n do

D(k) = new n × n matrix
for i = 1 to n do

for j = 1 to n do

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

return D(n)

Floyd–Warshall(n × n matrix W)

d
(0)
i j = wi j

d
(k)
i j = min{d (k−1)

i j , d
(k−1)
ik + d

(k−1)
kj }

; if k > 0 then

i j
k

︷ ︸︸ ︷intermediate vertices ≤ k

︸ ︷︷ ︸ ︸ ︷︷ ︸
vertices< k vertices< k

Runtime:
O(n3)

Improvement:
O(V (V log V + E))
Johnson’s algorithm

[J. ACM 1977]

[F., Comm. ACM 1977]

[W., J. ACM 1962]

	Titel
	Motivation
	Solving Systems of Difference Constraints
	Shortest Paths Do the Job
	Shortest Paths \& Negative Edge Weights
	The Bellman--Ford Algorithm
	Correctness of Bellman--Ford
	The Bellman--Ford Algorithm (overview)
	Correctness (cont'd)
	All-Pairs Shortest Paths
	Faster APSP
	The Floyd--Warshall Algorithm

