Julius-Maximilians- Lehrstuhl fiir e
UNIVERSITAT INFORMATIK | ||||I | h
WU RZ B U RG Effiziente Algorithmen und

wissenshasierte Systeme Institut fiir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 7. Shortest Paths in Graphs with Negative Weights

Steven Chaplick & Alexander Wolff Chair for Computer Science |

Motivation

Problem. Let G = (H UV, E) be a bipartite graph with
positive vertex weights £: HUV — N and a
permutation m of HU V.

H V
6 o1
3
2
3
5

Motivation

Problem.

Let G = (H U V, E) be a bipartite graph with
positive vertex weights £: HUV — N and a
permutation m of HU V.

Does G admit a stick representation that respects
the given stick order 7 and stick lengths £7

AV 13 56
6 o1 ° 0
3)

—>
2 Q
—1 | 2
3 ® 3
5 Q
Q

Motivation

Problem.

Let G = (H U V, E) be a bipartite graph with
positive vertex weights £: HUV — N and a
permutation m of HU V.

Does G admit a stick representation that respects
the given stick order 7 and stick lengths £7

AV 13 56
6 o1 ° 0
3)

—»
2 Q
—+4 | 2
3 ® 3
5 Q
Q

Motivation

Algorithm.

1

3

5

6

Motivation

Algorithm.
H V
6 o1
3
—>
Tl 2
3
5
6

Motivation n=|H|+ |V

Algorithm. x, < - <x <x3 =0

H V

0 o1

3

—>

2
3

5

0

Motivation n = IH + |V

Algorithm. x, <:---<x <xx=0.Letn>h>v >1.

H V
6 o1
3 —>
|2 e |
3 4
5 X5°
6

Motivation

Algorithm. x, < - - <x <x3=0.Letn>h>v>1.
for each hv € E:

H Vv

6% o1

: 3

3 SO
5 0

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{{p, £, }

H Vv

6% o1

: 3

3 SaE
5 0

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{{p, £, }
for each hv ¢ E:

H VvV

6% o1
3

y ’

3 X e
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{{p, £, }
for each hv € E: x, — x5, > min{lp, 0, }

H Vv

6% o1

: 3

3 X e
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{{p, £, }
for each hv € E: x, — x5, > min{lp, 0, }

Solve LP
H V
§ o1
, 3
3 X% e
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{{p, £, }
for each hv € E: x, — x5, > min{lp, 0, }

Solve LP (without objective function):

H VvV

6% o1

: 3

3 X e -
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{lp, £, }
for each hv € E: x, — x5, > min{lp, 0, }

Solve LP (without objective function):

variables = # constraints =
H V
6 o1
2 P
3 e T
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{lp, £, }
for each hv € E: x, — x5, > min{lp, 0, }
Solve LP (without objective function):
variables = n—1 # constraints =

H Vv

6% o1

: 3

3 X e
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.
for each hv € E: x, — xp < min{lp, £, }
for each hv € E: x, — x5, > min{lp, 0, }
Solve LP (without objective function):
variables = n—1 # constraints = |H|-|V|+n—1

H Vv

6% o1

: 3

3 X e
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.

for each hv € E: x, — xp < min{lp, £, } |
for each hv € E: x, — xp > min{{y, 0, } E%Elvs%m)s'to
Solve LP (without objective function):

variables = n—1 # constraints = |H|-|V|+n—1

H VvV

6% o1

: 3

3 X e
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.

for each hv € E: x, — xp < min{lp, £, } |
for each hv € E: x, — xp > min{{y, 0, } E%Elvs%m)s'to
Solve LP (without objective function):

variables = n—1 # constraints = |H|-|V|+n—1

H V = runtime:
6 o1
, 3
3 e
5

Motivation

Algorithm. x, < --- < x <x3=0.Letn>h>v >1.

for each hv € E: x, — xp < min{lp, £, } |
for each hv € E: x, — xp > min{{y, 0, } E%Elvs%m)s'to
Solve LP (without objective function):

variables = n—1 # constraints = |H|-|V|+n—1

H V = runtime: O(n>° log(L+n))
6 o1
. 3
3 e T
5

Motivation

Algorithm. x, < --- < x <x3=0.lLetn>h>v >1.

for each hv € E: x, — xp < min{4p, L, } |
for each hv € E: x, — xp > min{{p, L, } Improve this to

O(|E| + n)!

Solve LP (without objective function):
variables = n—1 # constraints = |H|-|V|+n—1

H V = runtime: O(n>° log(L+n))
6 o1
. 3
3 e T
5

Motivation

Algorithm. x, < --- < x <x3=0.lletn>h>v >1.

for each hv € E: x, — xp < min{4p, L, } |
for each hv € E: x, — xp > min{{p, L, } Improve this to

O(|E| + n)!

Solve LP (without objective function):
variables = n—1 # constraints = |H|-|V|+n—1

H V = runtime: O(n>° log(L+n))
6 o1
. 3
3 e T
5

Solving Systems of Difference Constraints

Is this system feasible?

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,-3,0,—1,4)

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take x = (—5,—3,0,—-1,4) or x' =(0,2,5,4,9).

Lemma. Let x be a solution to a system Ax < b of
difference constraints, and let d € R. Then
x+d=(x1+4d,..., X, + d) is a solution, too.

Solving Systems of Difference Constraints

Is this system feasible?

Definition. The constraint graph Ga p is a weighted digraph
with vertex set V4 = {w, v1, ..., Vn} and edge set
Ea ={vivi: xi —x; < bjj is a constraint} U
{vovik: 1 < k < n}.
The weight of v;v; is b;; if i > 0 and 0 otherwise.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k=1, ..., n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Proof. Assume no neg. cycles.

Now assume d neg. cycle and Ax < b has a solution x.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.

Now assume d neg. cycle and Ax < b has a solution x.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality =

Now assume d neg. cycle and Ax < b has a solution x.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 0; < 0; + bjj, or

Now assume d neg. cycle and Ax < b has a solution x.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.

Now assume d neg. cycle and Ax < b has a solution x.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there is no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.
Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.
—

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there is no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.
Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.
= Xo—x1 < byo,

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there is no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.
Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.
= Xo—x1 < b1o, x3—Xx2 < boz, ...,

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there is no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.
Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.

= Xo—X1 < b, X3—x2 < boz, ..., Xk—Xk—1 < br—1k.
—

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there i1s no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.

Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.
= xo—X1 < b1, x3—x0 < bo3, ..., Xk—Xk—1 < br—1 k-
—

2

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there is no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.
Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.

= Xo—X1 < b, X3—x2 < boz, ..., Xk—Xk—1 < br—1k.
?OS bio + bos + -+ b1«

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there is no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.
Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.

= Xo—X1 < b, X3—x2 < boz, ..., Xk—Xk—1 < br—1k.
?OS bio+ b3+ -+ b1, = w(C)

Shortest Paths Do the Job

Theorem. Let Ax < b be a system of difference constraints,
and let 0, = d(vy, vi) be the length of a shortest

Vo—Vk path for k =1,...,n.
If Gap contains no negative cycles,
then x = (01, ...,0,) is a feasible solution.

If Gap contains a negative cycle,
then there is no feasible solution.

Proof. Assume no neg. cycles. Consider v;v; € E4 with / > 0.
A-inequality = 5j < 9; + b,’j, or 5j —0; < b,'j.
Letting x; = 0; and x; = 0; satisfies x; — x; < by;.

Now assume d neg. cycle and Ax < b has a solution x.
Wilog., let C = (v1, vo, ..., Vx = vy) be a neg. cycle.
= Xo—X1 < b, X3—x2 < boz, ..., Xk—Xk—1 < br—1k.

?O§b12‘|‘b23‘|‘““|‘bk—l,k :W(C)ﬁ

Shortest Paths & Negative Edge Weights

Ideas?

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?

What about adding the same constant ¢ to each edge weight?

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?

What about adding the same constant ¢ to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?
What about adding the same constant ¢ to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Shortest Paths & Negative Edge Weights

Ideas?
Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?

What about adding the same constant ¢ to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Initialize(graph G, vtx 5)
foreach v € V do

L u.d = oo
u.m = nil
s.d=0

Shortest Paths & Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?
What about adding the same constant ¢ to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Initialize(graph G, vtx 5)

foreach v € V do :
u.d = oo < estimate for (s, u)

L u.m = nil |

s.d=0

Shortest Paths & Negative Edge Weights

Ideas?
Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?
What about adding the same constant ¢ to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach v € V do :
L u.d = oo estimate for d(s, u)

u.m = nil pointer to predecessor
sd=0 on some “currently”
shortest s—u path

Shortest Paths & Negative Edge Weights

Ideas?
Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?

What about adding the same constant ¢ to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main
subroutine of Dijkstra:

Initialize(graph G, vtx s) Relax(vtx u, vtx v, weights w)
~ foreachuec Vdo ifvd>ud+ w(u, v) then |
L U.d = oo < estimate for 6(s, u) v.d = u.d + W(U, V) :
u.m = nil < pointer to predecessor V.IT = U
sd=0 on some “currently”
shortest s—u path | (.DecreaseKey(v, v.d)

Shortest Paths & Negative Edge Weights

Ideas?
Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?
What about adding the same constant ¢ to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main S u.d AN
subroutine of Dijkstra: v.d V

Initialize(graph G, vtx s) Relax(vtx u, vtx v, weights w)
~ foreachue Vdo 5 if v.d > u.d+ w(u, v) then
L u.d = oo < estimate for 6(s, u) v.d = u.d + W(U V)

u.m = nil pointer to predecessor VT = U
sd=0 on some “currently”
shortest s—u path | (.DecreaseKey(v, v.d)

Shortest Paths & Negative Edge Weights

Ideas?
Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?
What about adding the same constant ¢ to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main S u.d AN
subroutine of Dijkstra: v.d V

Initialize(graph G, vtx s) Relax(vtx u, vtx v, weights w)
~ foreachuc Vdo i if v.d > u.d+ w(u,v) then
L u.d = oo < estimate for o(s, u) | v.d = u.d + W(U V)

u.m = nil < pointer to predecessor VT = U
— on some “currently”
s.d=0 shortest s—u path [Q DecreaseKeY(V V. d)]

The Bellman—Ford Algorithm

Dijkstra(graph G, weights w, vtx 5)

~ Initialize(G, s) :
"~ @ = new PriorityQueue(G.V, d)
- while not Q.Empty() do |
: u = Q.ExtractMin()

foreach v € Adj[u] do
| Relax(u, v; w)

The Bellman—Ford Algorithm

Dijkstra(graph G, weights w, vtx 5)

~ Initialize(G, s) :
"~ @ = new PriorityQueue(G.V, d)
- while not Q.Empty() do |
: u = Q.ExtractMin()

foreach v € Adj[u] do

| Relax(u, v;) ‘Beliman—Ford(graph G, weights w, vixs)’

- Initialize(G, s)

fori=1to|G.V|—1do

| foreach uv € G.E do
| Relax(u, v; w)

f(;reach uv € G.E do :
I L if v.d > u.d + w(u, v) return falseé

return true

The Bellman—Ford Algorithm

Dijkstra(graph G, weights w, vtx 5) runtime?

~ Initialize(G, s) :
"~ @ = new PriorityQueue(G.V, d)
- while not Q.Empty() do |
: u = Q.ExtractMin()

foreach v € Adj[u] do

| Relax(u, v;) ‘Beliman—Ford(graph G, weights w, vixs)’

- Initialize(G, s)

fori=1to|G.V|—1do

| foreach uv € G.E do
| Relax(u, v; w)

f(;reach uv € G.E do :
I L if v.d > u.d + w(u, v) return falseé

return true

The Bellman—Ford Algorithm

Dijkstra(graph G, weights w, vtx s)! runtime?

- Initialize(G, s) ~ O(E+ Vlog V)
@ = new PriorityQueue(G.V, d)

~ while not Q.Empty() do '

: u = Q.ExtractMin()

foreach v € Adj[u] do

| Relax(u, v;) ‘Beliman—Ford(graph G, weights w, vixs)’

- Initialize(G, s)

fori=1to|G.V|—1do

| foreach uv € G.E do
| Relax(u, v; w)

f(;reach uv € G.E do :
I L if v.d > u.d + w(u, v) return falseé

return true

The Bellman—Ford Algorithm

Dijkstra(graph G, weights w, vtx s)! runtime?

- Initialize(G, s) ~ O(E+ Vlog V)
@ = new PriorityQueue(G.V, d)

~ while not Q.Empty() do '

: u = Q.ExtractMin()

foreach v € Adj[u] do

| Relax(u, v;) ‘Beliman—Ford(graph G, weights w, vixs)’

- Initialize(G, s)
fori=1to|G.V|—1do
: foreach uv € G.E do
runtime? | Relax(u, v; w)

foreach uv € G.E do :
I L if v.d > u.d + w(u, v) return falseé

return true

The Bellman—Ford Algorithm

Dijkstra(graph G, weights w, vtx s)! runtime?

- Initialize(G, s) ~ O(E+ Vlog V)
@ = new PriorityQueue(G.V, d)

~ while not Q.Empty() do '

: u = Q.ExtractMin()

foreach v € Adj[u] do

| Relax(u, v;) ‘Beliman—Ford(graph G, weights w, vixs)’

- Initialize(G, s)
fori=1to|G.V|—1do
: foreach uv € G.E do
runtime? | Relax(u, v; w)

O(V - E)

foreach uv € G.E do :
I L if v.d > u.d + w(u, v) return falseé

return true

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.
= d shortest s—v path d = (s = vp, vy, ..., vk = V).

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.
= d shortest s—v path d = (s = vp, vy, ..., vk = V).
G has no negative cycle, 0 shortest path = length kK < n —1.

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.
= d shortest s—v path d = (s = vp, vy, ..., vk = V).
G has no negative cycle, 0 shortest path = length kK < n —1.

After initialization,

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-i loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;i.d < vj_1.d + w(v,_1, v;).

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).
= v;.d <6(s,vi_1) + w(vi_1,vj) =

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).
= v;.d < 6(s,vi_1) + w(vi_1,v;) = (s, v;)

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).
= v;.d <6(s,vi_1) + w(viit, vi) = d0(s,v;) = vi.d = (s, Vv;).

Suppose v is not reachable from s.

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).
= v;.d <6(s,vi_1) + w(viit, vi) = d0(s,v;) = vi.d = (s, Vv;).

Suppose v is not reachable from s. = Initially, v.d = o©

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).
= v;.d <6(s,vi_1) + w(viit, vi) = d0(s,v;) = vi.d = (s, Vv;).
Suppose v is not reachable from s. = Initially, v.d = o©

= During execution, v.d remains co (otherwise 3 s—v path)

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = d(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).
= v;.d <6(s,vi_1) + w(viit, vi) = d0(s,v;) = vi.d = (s, Vv;).
Suppose v is not reachable from s. = Initially, v.d = o©

= During execution, v.d remains co (otherwise 3 s—v path)
= At termination, v.d = co = J(s, v).

Correctness of Bellman—Ford

If G contains no neg. cycle reachable from s, after the for-/ loop,
for every vertex v, v.d = 4(s, v) and Bellman—Ford returns true.

Suppose v is reachable from s.

= d shortest s—v path d = (s = vp, vy, ..., vk = V).

G has no negative cycle, 0 shortest path = length kK < n — 1.
After initialization, vo.d = é(s, vy) = 0.

In phase / of the alg., v;_1v; is relaxed.

= v;.d < vj_1.d + w(v;_1, v;). By induction, v;_1.d = (s, vi_1).
= v;.d <6(s,vi_1) + w(viit, vi) = d0(s,v;) = vi.d = (s, Vv;).
Suppose v is not reachable from s. = Initially, v.d = o©

= During execution, v.d remains co (otherwise 3 s—v path)
= At termination, v.d = co = J(s, v).

The Bellman—Ford Algorithm (overview)

——

Initialize(graph G, vtx s) Relax(vtx u, vtx v, weights w)
foreach u€ V do if v.d > u.d + w(u, v) then
L u.d = oo L v.d = u.d + w(u, v) |
u.m = nal E | P
s.d =

Bellman —Ford(graph G, weights w, vtxs)

- Initialize(G, s)

fori=1to|G.V|-1do

' foreach uv € G.E do
| Relax(u, v; w)

fc;reach uv € G.E do .
| ifv.d > u.d+ w(u,v) return false

return true

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

—

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

= vi.d < vy.d + W(Vo, Vl), Ce

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),

—

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.
Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),

—
X

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.
Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),

e 0 < fozl w(Vvi-1, Vi) =

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),

= 0< Y w(vie1, vi) = w(C) %

>

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),
S 0< Th, (v, v) = w(C) 4

For this implication we additionally need that) . v;.d < oc.

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),
S 0< Th, (v, v) = w(C) 4

For this implication we additionally need that) . v;.d < oc.

(True since C is reachable from s, plus the previous proof.)

Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),
S 0< Th, (v, v) = w(C) 4

For this implication we additionally need that) . v;.d < oc.

(True since C is reachable from s, plus the previous proof.)

Improvement: O(v/VE log W), where W = max,,cr w(u, v).
[Goldberg, SIAM J. Comput. 1995]

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

Then Eg-)) —

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

(

0 ifi=j

Then Eg-)) = _
oo otherwise

\

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

()

0 ifi=j

[hen 8(-(-)) = _
i
0O otherW|se)

(m) _
> and éij —

\

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

()

0 ifi=j

[hen 8(-(-)) = _
i
0O otherW|se)

> and Effn) = min
J 1<k<n

\

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

()

0 ifi=j

[hen 8(-(-)) = _
i
0O otherW|se)

> and Eg") = 1r<nkign {65;"_1) + wy; }-

\

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

()

0 ifi=j

[hen 8(-(-)) = _
i
0O otherW|se)

> and Eg") = 1r<nkign {65;"_1) + wy; }-

\

= 0(i.J) =

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

()

0 ifi=j o N
sand 2277 = min {03 + e
(00 otherW|se g 1</<|< ik Wi }

= 0(i,j) = E(" 1) _

Then E(-(-)) = <

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

()

0 ifi=j o N
sand 2277 = min {03 + e
(00 otherW|se g 1</<|< ik Wi }

= 3(i,j) = z(” V=) =

Then E(-(-)) = <

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

()

0 ifi=j o N
sand 2277 = min {03 + e
(00 otherW|se g 1</<|< ik Wi }

— 5() g(” 1) g(”) g(”‘l‘l)

Then E(-(-)) = <

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-;n) be the length of a shortest /—j path with < m edges.

(O -f " — ") . B

Then é(.(.)) = = > and El(..) = min {E(Dy Wi }.
(00 otherW|se J 1<k<n

— 5() g(” 1) _ é(”) g(n—l—l) since shortest paths are simple

"+ (if there are no neg. cycles)!

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-J(n) be the length of a shortest /—j path with < m edges.

()

> and ij)= min {8() + Wi }.

Then El(-(-)) = <
J | o0 otherW|se 1<k<n

: (n 1) (n) (n—|—1) since shortest paths are simple
~ 5("./) f é é "+ * (if there are no neg. cycles)!

Extend—Shortest—Paths(L, W)

"= ({}; = 00) new n X n matrix
for /=1 to ndo
for j=1tondo

for k=1 to ndo
L K:J — min{g;j,éik—l—ij}

return L’

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-J(n) be the length of a shortest /—j path with < m edges.

0 ifi=j)
Then ¢©) — (m) _ (m=1) ey
en Ly = (oo otherwise (and £ 1r<nk|2 ™+ wig)
. n— n n since shortest paths are simple
~ 5(’1./) Z(Y = Z() ﬁ(+1) "+ (if there af'e J;cf nteg. cycles){)
Extend-Shortest-Paths(L, W) Slow-All-Pairs-SP(W)
/

= (£i; = 00) new n x n matrix
for i =1 to ndo
for j=1to ndo
for k=1 to ndo
L K:J = min{g;j,éik—l—ij}

return L’

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-J(n) be the length of a shortest /—j path with < m edges.

0 ifi=j »
Then (@ — () _ (m1) |y
en b = (oo otherwise and £ 1r<nk|2 ™+ wig)
= 0(i,j) = f(” V= 07 = 07 = i here are no neg, evcle9)
Extend-Shortest-Paths(L, W) Slow-All-Pairs-SP(W)
"= (£j; = 00) new n x n matrix L) =W
for i=1to ndo for m=2ton—1do
for j=1to ndo L™ = new matrix
for k=1 to ndo L(m) = ESP(L(m™=1) W)

L Kf-j — min{@f-j,ﬁik—l—wkj} roturn [(—1)

return L’

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-J(n) be the length of a shortest /—j path with < m edges.

0 ifi=j »
Then (@ — () _ (m1) |y
en b = (oo otherwise and £ 1r<nk|2 ™+ wig)
= 0(i,j) = f(” V= 07 = 07 = i here are no neg, evcle9)
Extend-Shortest-Paths(L, W) Slow-All-Pairs-SP(W)
"= (£j; = 00) new n x n matrix L) =W
for i=1to ndo for m=2ton—1do
for j=1to ndo L™ = new matrix
for k=1 to ndo L(m) = ESP(L(m™=1) W)

L Kf-j — min{@f-j,ﬁik—l—wkj} roturn [(—1)

Runtime:

return L’

10 -

All-Pairs Shortest Paths

Assume that the graph is given by a matrix W = (w;j)1<i j<n-

Let KI(-J(n) be the length of a shortest /—j path with < m edges.

0 ifi=j »
Then (@ — () _ (m1) |y
en b = (oo otherwise and £ 1r<nk|2 ™+ wig)
= 0(i,j) = f(” V= 07 = 07 = i here are no neg, evcle9)
Extend-Shortest-Paths(L, W) Slow-All-Pairs-SP(W)
"= (£j; = 00) new n x n matrix L) =W
for i=1to ndo for m=2ton—1do
for j=1to ndo L™ = new matrix
for k=1 to ndo L(m) = ESP(L(m™=1) W)

L Kf-j — min{@f-j,ﬁik—l—wkj} roturn [(—1)

Runtime: O(n*)

return L’

Faster APSP

Faster-All-Pairs-SP(n x n matrix W)
[(1) — W

m=1

while m < n—1 do
[— new n X n matrix
L = Extend-Shortest-Path(
m =

return L(M

Runtime: O(n’ log n)

11 -

Faster APSP

Faster-All-Pairs-SP(n x n matrix W)
L) = w
m=1
while m < n—1 do

L(2m) — new n x n matrix

(2m) — Extend-Shortest-Path(L(™), [(m)
m=2m

return L(M

Runtime: O(n’ log n)

11 -

12 -

The Floyd-Warshall Algorithm "' 2" 12

[F., Comm. ACM 1977]

M
i k .
J

The Floyd—Warshall Algorithm

intermediate vertices < k

—— >
J

I

The Floyd—Warshall Algorithm

intermediate vertices < k

.;\/“k)
i k Y.
S J

vertices < k

The Floyd—Warshall Algorithm

intermediate vertices < k

"\/7:* ~.

| S N — J
vertices < k vertices < k

12 -

The Floyd—Warshall Algorithm

12 -

intermediate vertices < k

"\/7:* ~.

| S N —— J
vertices < k vertices < k

40 =

p— W’./

if k> 0 then

The Floyd—Warshall Algorithm

12 -

intermediate vertices < k

"\/7:* ~.

| S N —— J
vertices < k vertices < k

d?) = wjj; if k > 0 then
() _ o g(k=1) (k=1)
dij = mm{dl-j . d:y

k—1
+dy

The Floyd—Warshall Algorithm

intermediate vertices < k

"\/7:* ~.

| S N — J
vertices < k vertices < k

d?) = wjj; if k > 0 then
() _ o g(k=1) (k=1)
dij = mm{dl-j . d:y

k—1
+ dﬁj At

Floyd—Warshall(n x n matrix W)

DO) — W
for k=1 to ndo

for i =1 to ndo
for j=1to ndo

return D(")

D) — new n x n matrix

) = min{dk D), gD 4 gl
1) 1) P

The Floyd—Warshall Algorithm

intermediate vertices < k

"\/7:* ~.

| S N — J
vertices < k vertices < k

d?) = wjj; if k > 0 then
() _ o g(k=1) (k=1)
dij = mm{dl-j . d:y

k—1
+ dﬁj At

Floyd—Warshall(n x n matrix W)

DO) — W
for k=1 to ndo

for i =1 to ndo
for j=1to ndo

return D(")

D) — new n x n matrix

) = min{dk D), gD 4 gl
1) 1) P

Runtime:

The Floyd—Warshall Algorithm

intermediate vertices < k

"\/7:* ~.

| S N — J
vertices < k vertices < k

d?) = wjj; if k > 0 then
() _ o g(k=1) (k=1)
dij = mm{dl-j . d:y

k—1
+ dﬁj At

Floyd—Warshall(n x n matrix W)

DO) — W
for k=1 to ndo

for i =1 to ndo
for j=1to ndo

return D(")

D) — new n x n matrix

) = min{dk D), gD 4 gl
1) 1) P

Runtime:

O(n?)

12 -

The Floyd—Warshall Algorithm

intermediate vertices < k

"\/7:* ~.

\] d% = min{d Y, gD 4 gy
vertices < k vertices < k

d?) = wjj; if k > 0 then

Floyd—Warshall(n x n matrix W)
DO — Improvement:

O(V(VlogV + E))
Johnson's algorithm
[J. ACM 1977]

for k=1 to ndo

D) = new n x n matrix

for i =1 to ndo

for j=1to ndo
) = mingd® D, gl | gDy

L, = Runtime:

return D(") O(n°)

	Titel
	Motivation
	Solving Systems of Difference Constraints
	Shortest Paths Do the Job
	Shortest Paths \& Negative Edge Weights
	The Bellman--Ford Algorithm
	Correctness of Bellman--Ford
	The Bellman--Ford Algorithm (overview)
	Correctness (cont'd)
	All-Pairs Shortest Paths
	Faster APSP
	The Floyd--Warshall Algorithm

