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Problem. Let G = (H ∪ V , E ) be a bipartite graph with
positive vertex weights ` : H ∪ V → N and a
permutation π of H ∪ V .
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Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?



3 - 2

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4)



3 - 3

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).



3 - 4

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.



3 - 5

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−1

−3
−3

0

1

v1

v2

v3
v4

v5



3 - 6

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5



3 - 7

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b



3 - 8

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b



3 - 9

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b



3 - 10

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1
0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b



3 - 11

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b



3 - 12

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−5

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b



3 - 13

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

Yes: Take x = (−5,−3, 0,−1, 4) or x ′ = (0, 2, 5, 4, 9).

Lemma. Let x be a solution to a system Ax ≤ b of
difference constraints, and let d ∈ R. Then
x + d = (x1 + d , . . . , xn + d) is a solution, too.

−1

−3

−5

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b



3 - 14

Solving Systems of Difference Constraints

x1 − x2 ≤ 0
x1 − x5 ≤−1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤−1
x5 − x3 ≤−3
x5 − x4 ≤−3

Is this system feasible?

−1

−3

−5

−4

0

0

−1

−1

−3
−3

0

1

0

0

0

0

0

v0

v1

v2

v3
v4

v5

constraint
graph GA,b

Definition. The constraint graph GA,b is a weighted digraph
with vertex set VA = {v0, v1, . . . , vn} and edge set
EA = {vi vj : xj − xi ≤ bi j is a constraint}∪

{v0vk : 1 ≤ k ≤ n}.
The weight of vi vj is bi j if i > 0 and 0 otherwise.
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Shortest Paths Do the Job

Theorem. Let Ax ≤ b be a system of difference constraints,
and let δk = δ(v0, vk ) be the length of a shortest
v0–vk path for k = 1, . . . , n.
If GA,b contains no negative cycles,

then x = (δ1, . . . , δn) is a feasible solution.
If GA,b contains a negative cycle,

then there is no feasible solution.
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The Bellman–Ford Algorithm (overview)

Initialize(G , s)
for i = 1 to |G .V | − 1 do

foreach uv ∈ G .E do
Relax(u, v ; w)

foreach uv ∈ G .E do
if v .d > u.d + w(u, v) return false

return true

Bellman–Ford(graph G , weights w , vtx s)

Relax(vtx u, vtx v , weights w)

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u

Initialize(graph G , vtx s)

foreach u ∈ V do
u.d =∞
u.π = nil

s.d = 0
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