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Problem. Let G = (H UV, E) be a bipartite graph with
positive vertex weights £: HUV — N and a
permutation m of HU V.
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Solving Systems of Difference Constraints

Is this system feasible?

Definition. The constraint graph Ga p is a weighted digraph
with vertex set V4 = {w, v1, ..., Vn} and edge set
Ea ={vivi: xi —x; < bjj is a constraint} U
{vovik: 1 < k < n}.
The weight of v;v; is b;; if i > 0 and 0 otherwise.
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Theorem. Let Ax < b be a system of difference constraints,
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Ideas?
Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?
What about adding the same constant ¢ to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main S u.d AN
subroutine of Dijkstra: v.d V

Initialize(graph G, vtx s) Relax(vtx u, vtx v, weights w)
~ foreachuc Vdo i if v.d > u.d+ w(u,v) then
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s.d=0 shortest s—u path [Q DecreaseKeY(V V. d)]
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The Bellman—Ford Algorithm (overview)

——————————————————————————————————————————————————————————————————————————————————

Initialize(graph G, vtx s) Relax(vtx u, vtx v, weights w)
foreach u€ V do if v.d > u.d + w(u, v) then
L u.d = oo L v.d = u.d + w(u, v) |
u.m = nal E | P
s.d =

Bellman —Ford(graph G, weights w, vtxs)

- Initialize( G, s)

fori=1to|G.V|-1do

' foreach uv € G.E do
| Relax(u, v; w)

fc;reach uv € G.E do .
| ifv.d > u.d+ w(u,v) return false

return true
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Correctness (cont'd)

If G contains a negative cycle that is reachable from s,
then Bellman—Ford returns false.

Let C = (wy, V1, ..., Vk = Vp) be such a negative cycle.

Assume that Bellman-Ford returns true.

= vi.d < vo.d +w(vp,v1), ..., vik.d < Vie_1.d + w(vk_1, V&),
S 0< Th, (v, v) = w(C) 4

For this implication we additionally need that ) . v;.d < oc.

(True since C is reachable from s, plus the previous proof.)

Improvement: O(v/VE log W), where W = max,,cr w(u, v).
[Goldberg, SIAM J. Comput. 1995]
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Assume that the graph is given by a matrix W = (w;j)1<i j<n-
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Runtime: O(n*)

return L’



Faster APSP

Faster-All-Pairs-SP(n x n matrix W)
[(1) — W

m=1

while m < n—1 do
[ — new n X n matrix
L = Extend-Shortest-Path(
m =

return L(M

Runtime: O(n’ log n)
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Faster APSP

Faster-All-Pairs-SP(n x n matrix W)
L) = w
m=1
while m < n—1 do

L(2m) — new n x n matrix

(2m) — Extend-Shortest-Path(L(™), [(m)
m=2m

return L(M

Runtime: O(n’ log n)
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The Floyd-Warshall Algorithm "' 2" 12

[F., Comm. ACM 1977]
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for j=1to ndo

return D(")
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intermediate vertices < k
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\ ] d% = min{d Y, gD 4 gy
vertices < k vertices < k

d?) = wjj; if k > 0 then

Floyd—Warshall(n x n matrix W)
DO — Improvement:

O(V(VlogV + E))
Johnson's algorithm
[J. ACM 1977]

for k=1 to ndo

D) = new n x n matrix

for i =1 to ndo

for j=1to ndo
) = mingd® D, gl | gDy

L, = Runtime:

return D(") O(n°)
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