

Advanced Algorithms

Winter term 2019/20

Lecture 7. Shortest Paths in Graphs with Negative Weights

Steven Chaplick & Alexander Wolff

Chair for Computer Science I

Problem. Let $G = (H \cup V, E)$ be a bipartite graph with positive vertex weights $\ell : H \cup V \rightarrow \mathbb{N}$ and a permutation π of $H \cup V$.

Problem. Let $G = (H \cup V, E)$ be a bipartite graph with positive vertex weights $\ell : H \cup V \rightarrow \mathbb{N}$ and a permutation π of $H \cup V$.

Does G admit a *stick representation* that respects the given stick order π and stick lengths ℓ ?

Problem. Let $G = (H \cup V, E)$ be a bipartite graph with positive vertex weights $\ell : H \cup V \rightarrow \mathbb{N}$ and a permutation π of $H \cup V$.

Does G admit a *stick representation* that respects the given stick order π and stick lengths ℓ ?

Algorithm.

Algorithm.

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$.

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$. for each $hv \in E$:

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$. for each $hv \in E$: $x_v - x_h < \min\{\ell_h, \ell_v\}$

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$. for each $hv \in E$: $x_v - x_h < \min\{\ell_h, \ell_v\}$ for each $hv \notin E$:

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$. for each $hv \in E$: $x_v - x_h < \min\{\ell_h, \ell_v\}$ for each $hv \notin E$: $x_v - x_h > \min\{\ell_h, \ell_v\}$

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$. for each $hv \in E$: $x_v - x_h < \min\{\ell_h, \ell_v\}$ for each $hv \notin E$: $x_v - x_h > \min\{\ell_h, \ell_v\}$ Solve LP

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$. for each $hv \in E$: $x_v - x_h < \min\{\ell_h, \ell_v\}$ for each $hv \notin E$: $x_v - x_h > \min\{\ell_h, \ell_v\}$ Solve LP (without objective function):

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$.for each $hv \in E$: $x_v - x_h < \min\{\ell_h, \ell_v\}$ for each $hv \notin E$: $x_v - x_h > \min\{\ell_h, \ell_v\}$ Solve LP (without objective function):# variables =# constraints =

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$. for each $hv \in E$: $x_v - x_h < \min\{\ell_h, \ell_v\}$ for each $hv \notin E$: $x_v - x_h > \min\{\ell_h, \ell_v\}$

Solve LP (without objective function): #variables = n-1 # constraints =

n = |H| + |V|

n = |H| + |V|

Algorithm.
$$x_n < \cdots < x_2 < x_1 = 0$$
. Let $n \ge h > v \ge 1$.

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$.

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$.

n = |H| + |V|

Algorithm. $x_n < \cdots < x_2 < x_1 = 0$. Let $n \ge h > v \ge 1$.

n = |H| + |V|

Algorithm.

m.
$$x_n < \cdots < x_2 < x_1 = 0$$
. Let $n \ge h > v \ge 1$

Is this system feasible?

Is this system feasible?

Yes: Take x = (-5, -3, 0, -1, 4)

Is this system feasible?

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Is this system feasible?

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Is this system feasible?

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Yes: Take x = (-5, -3, 0, -1, 4) or x' = (0, 2, 5, 4, 9).

Definition. The constraint graph $G_{A,b}$ is a weighted digraph with vertex set $V_A = \{v_0, v_1, \dots, v_n\}$ and edge set $E_A = \{v_i v_j : x_j - x_i \le b_{ij} \text{ is a constraint}\} \cup \{v_0 v_k : 1 \le k \le n\}.$ The weight of $v_i v_i$ is b_{ij} if i > 0 and 0 otherwise.
Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for $k = 1, \ldots, n$. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, \ldots, \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for $k = 1, \ldots, n$. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, \ldots, \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles.

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0.

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ-inequality ⇒

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for $k = 1, \ldots, n$. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, \ldots, \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$.

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. Now assume \exists neg. cycle and $Ax \leq b$ has a solution x.

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. **Now assume** \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. \Rightarrow

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. Now assume \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. $\Rightarrow x_2 - x_1 \leq b_{12}$,

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. Now assume \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. $\Rightarrow x_2 - x_1 \leq b_{12}, x_3 - x_2 \leq b_{23}, \dots$

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. **Now assume** \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. $\Rightarrow x_2 - x_1 \leq b_{12}, x_3 - x_2 \leq b_{23}, \dots, x_k - x_{k-1} \leq b_{k-1,k}$. \Rightarrow

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. Now assume \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. $\Rightarrow x_2 - x_1 \leq b_{12}, x_3 - x_2 \leq b_{23}, \dots, x_k - x_{k-1} \leq b_{k-1,k}$. \Rightarrow

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. **Now assume** \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. $\Rightarrow x_2 - x_1 \leq b_{12}, x_3 - x_2 \leq b_{23}, \dots, x_k - x_{k-1} \leq b_{k-1,k}$. $\Rightarrow 0 \leq b_{12} + b_{23} + \dots + b_{k-1,k}$

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. **Now assume** \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. $\Rightarrow x_2 - x_1 \leq b_{12}, x_3 - x_2 \leq b_{23}, \dots, x_k - x_{k-1} \leq b_{k-1,k}$. $\Rightarrow 0 \leq b_{12} + b_{23} + \dots + b_{k-1,k} = w(C)$

Theorem. Let $Ax \leq b$ be a system of difference constraints, and let $\delta_k = \delta(v_0, v_k)$ be the length of a shortest $v_0 - v_k$ path for k = 1, ..., n. If $G_{A,b}$ contains no negative cycles, then $x = (\delta_1, ..., \delta_n)$ is a feasible solution. If $G_{A,b}$ contains a negative cycle, then there is no feasible solution.

Proof. Assume no neg. cycles. Consider $v_i v_j \in E_A$ with i > 0. Δ -inequality $\Rightarrow \delta_j \leq \delta_i + b_{ij}$, or $\delta_j - \delta_i \leq b_{ij}$. Letting $x_i = \delta_i$ and $x_j = \delta_j$ satisfies $x_j - x_i \leq b_{ij}$. **Now assume** \exists neg. cycle and $Ax \leq b$ has a solution x. Wlog., let $C = \langle v_1, v_2, \dots, v_k = v_1 \rangle$ be a neg. cycle. $\Rightarrow x_2 - x_1 \leq b_{12}, x_3 - x_2 \leq b_{23}, \dots, x_k - x_{k-1} \leq b_{k-1,k}$. $\Rightarrow 0 \leq b_{12} + b_{23} + \dots + b_{k-1,k} = w(C)$

Ideas?

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

```
Initialize(graph G, vtx s)
foreach u \in V do
u.d = \infty
u.\pi = nil
s.d = 0
```

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

```
Initialize(graph G, vtx s)

foreach u \in V do

u.d = \infty estimate for \delta(s, u)

u.\pi = nil

s.d = 0
```

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach $u \in V$ doRelax(vtx u, vtx v, weights w)
if v.d > u.d + w(u, v) then
 $u.d = \infty$ $u.d = \infty$
 $u.\pi = nil$
s.d = 0estimate for $\delta(s, u)$ if v.d > u.d + w(u, v) then
v.d = u.d + w(u, v)
 $v.\pi = u$
Q.DecreaseKey(v, v.d)

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main subroutine of Dijkstra:

 $\begin{array}{l} \mathsf{Relax}(\mathsf{vtx}\ u,\ \mathsf{vtx}\ v,\ \mathsf{weights}\ w) \\ \mathbf{if}\ v.d > u.d + w(u,v)\ \mathbf{then} \\ v.d = u.d + w(u,v) \\ v.\pi = u \\ Q.\mathsf{DecreaseKey}(v,v.d) \end{array}$

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

But maybe we can reduce to this problem?

What about adding the same constant *c* to each edge weight?

Problem: Paths with few edges get relatively cheaper :-(

Recall initialization and main subroutine of Dijkstra:

s u.d u v.d v

 $\mathsf{Relax}(\mathsf{vtx}\ u,\ \mathsf{vtx}\ v,\ \mathsf{weights}\ w)$ $\mathbf{if}\ v.d > u.d + w(u,v)\ \mathbf{then}$ v.d = u.d + w(u,v) $v.\pi = u$ $[Q.\mathsf{DecreaseKey}(v,v.d)]$

```
Dijkstra(graph G, weights w, vtx s)

Initialize(G, s)

Q = new PriorityQueue(G.V, d)

while not Q.Empty() do

| u = Q.ExtractMin()

foreach v \in Adj[u] do

| Relax(u, v; w)
```

```
Dijkstra(graph G, weights w, vtx s)
  Initialize(G, s)
  Q = new PriorityQueue(G.V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
     foreach v \in \operatorname{Adj}[u] do
        Relax(u, v; w) Bellman–Ford(graph G, weights w, vtx s)
                          Initialize(G, s)
                          for i = 1 to |G.V| - 1 do
                              foreach uv \in G.E do
                               | Relax(u, v; w)
                          foreach uv \in G.E do
                              if v.d > u.d + w(u, v) return false
                          return true
```

```
Dijkstra(graph G, weights w, vtx s)
                                         runtime?
  Initialize(G, s)
  Q = new PriorityQueue(G.V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
     foreach v \in \operatorname{Adj}[u] do
        Relax(u, v; w) Bellman–Ford(graph G, weights w, vtx s)
                          Initialize(G, s)
                          for i = 1 to |G.V| - 1 do
                              foreach uv \in G.E do
                               | Relax(u, v; w)
                          foreach uv \in G.E do
                              if v.d > u.d + w(u, v) return false
                          return true
```

```
Dijkstra(graph G, weights w, vtx s)
                                         runtime?
                                          O(E + V \log V)
  Initialize(G, s)
  Q = new PriorityQueue(G.V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
     foreach v \in \operatorname{Adj}[u] do
         Relax(u, v; w) Bellman–Ford(graph G, weights w, vtx s)
                          Initialize(G, s)
                          for i = 1 to |G.V| - 1 do
                              foreach uv \in G.E do
                               | Relax(u, v; w)
                          foreach uv \in G.E do
                              if v.d > u.d + w(u, v) return false
                          return true
```

```
Dijkstra(graph G, weights w, vtx s)
                                         runtime?
                                          O(E + V \log V)
  Initialize(G, s)
  Q = new PriorityQueue(G.V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
     foreach v \in \operatorname{Adj}[u] do
         Relax(u, v; w) Bellman–Ford(graph G, weights w, vtx s)
                          Initialize(G, s)
                          for i = 1 to |G.V| - 1 do
                              foreach uv \in G.E do
                               | Relax(u, v; w)
            runtime?
                          foreach uv \in G.E do
                              if v.d > u.d + w(u, v) return false
                          return true
```

```
Dijkstra(graph G, weights w, vtx s)
                                          runtime?
                                          O(E + V \log V)
  Initialize(G, s)
  Q = new PriorityQueue(G.V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
     foreach v \in \operatorname{Adj}[u] do
         Relax(u, v; w) Bellman–Ford(graph G, weights w, vtx s)
                          Initialize(G, s)
                          for i = 1 to |G.V| - 1 do
                              foreach uv \in G.E do
                               | Relax(u, v; w)
            runtime?
            O(V \cdot E)
                          foreach uv \in G.E do
                              if v.d > u.d + w(u, v) return false
                          return true
```

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

Suppose v is not reachable from s.

Correctness of Bellman–Ford

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \dots, v_k = v \rangle$.

Suppose v is *not* reachable from s.
If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \dots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$.

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \dots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization,

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \dots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \ldots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$. In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \ldots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \le n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$. In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

$$\Rightarrow v_i.d \leq v_{i-1}.d + w(v_{i-1}, v_i).$$

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \ldots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \le n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \leq v_{i-1}.d + w(v_{i-1}, v_i)$. By induction, $v_{i-1}.d = \delta(s, v_{i-1})$.

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \ldots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \le v_{i-1}.d + w(v_{i-1}, v_i). \text{ By induction, } v_{i-1}.d = \delta(s, v_{i-1}).$ $\Rightarrow v_i.d \le \delta(s, v_{i-1}) + w(v_{i-1}, v_i) =$

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \ldots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \le v_{i-1}.d + w(v_{i-1}, v_i). \text{ By induction, } v_{i-1}.d = \delta(s, v_{i-1}).$ $\Rightarrow v_i.d \le \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \underset{\delta \text{ s.p.}}{=} \delta(s, v_i)$

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \dots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \leq v_{i-1}.d + w(v_{i-1}, v_i). \text{ By induction, } v_{i-1}.d = \delta(s, v_{i-1}).$ $\Rightarrow v_i.d \leq \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \underset{\delta \text{ s.p.}}{=} \delta(s, v_i) \underset{\text{Relax}}{\Rightarrow} v_i.d = \delta(s, v_i).$

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \dots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \le v_{i-1}.d + w(v_{i-1}, v_i). \text{ By induction, } v_{i-1}.d = \delta(s, v_{i-1}).$ $\Rightarrow v_i.d \le \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \underset{\delta \text{ s.p.}}{=} \delta(s, v_i) \underset{\text{Relax}}{\Rightarrow} v_i.d = \delta(s, v_i).$ Suppose v is not reachable from s. \Rightarrow Initially, $v.d = \infty$

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \ldots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \le v_{i-1}.d + w(v_{i-1}, v_i). \text{ By induction, } v_{i-1}.d = \delta(s, v_{i-1}).$ $\Rightarrow v_i.d \le \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \underset{\delta \text{ s.p.}}{=} \delta(s, v_i) \implies v_i.d = \delta(s, v_i).$ Suppose v is not reachable from s. \Rightarrow Initially, $v.d = \infty$ \Rightarrow During execution, v.d remains ∞ (otherwise $\exists s-v$ path)

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \dots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \le v_{i-1}.d + w(v_{i-1}, v_i). \text{ By induction, } v_{i-1}.d = \delta(s, v_{i-1}).$ $\Rightarrow v_i.d \le \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \underset{\delta \text{ s.p.}}{=} \delta(s, v_i) \implies v_i.d = \delta(s, v_i).$ Suppose v is not reachable from s. \Rightarrow Initially, $v.d = \infty$ \Rightarrow During execution, v.d remains ∞ (otherwise $\exists s-v$ path) \Rightarrow At termination, v.d = $\infty = \delta(s, v).$

If G contains no neg. cycle reachable from s, after the for-i loop, for every vertex v, $v.d = \delta(s, v)$ and Bellman–Ford returns true.

Suppose v is reachable from s.

 $\Rightarrow \exists$ shortest *s*-*v* path $\delta = \langle s = v_0, v_1, \ldots, v_k = v \rangle$.

G has no negative cycle, δ shortest path \Rightarrow length $k \leq n - 1$. After initialization, $v_0.d = \delta(s, v_0) = 0$.

In phase *i* of the alg., $v_{i-1}v_i$ is relaxed.

 $\Rightarrow v_i.d \le v_{i-1}.d + w(v_{i-1}, v_i). \text{ By induction, } v_{i-1}.d = \delta(s, v_{i-1}).$ $\Rightarrow v_i.d \le \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \underset{\delta \text{ s.p.}}{=} \delta(s, v_i) \implies v_i.d = \delta(s, v_i).$ Suppose v is not reachable from s. \Rightarrow Initially, $v.d = \infty$ \Rightarrow During execution, v.d remains ∞ (otherwise $\exists s-v$ path) \Rightarrow At termination, v.d = $\infty = \delta(s, v).$

The Bellman–Ford Algorithm (overview)

Initialize(graph G, vtx s) foreach $u \in V$ do $\lfloor u.d = \infty$ $u.\pi = nil$ s.d = 0 Relax(vtx u, vtx v, weights w) **if** v.d > u.d + w(u, v) **then** v.d = u.d + w(u, v) $v.\pi = u$

Bellman–Ford(graph *G*, weights *w*, vtx *s*) Initialize(*G*, *s*) for i = 1 to |G.V| - 1 do foreach $uv \in G.E$ do Relax(u, v; w) foreach $uv \in G.E$ do if v.d > u.d + w(u, v) return false return true

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \ldots, v_k = v_0 \rangle$ be such a negative cycle.

 \Rightarrow

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

9 -

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

$$\Rightarrow$$
 $v_1.d \leq v_0.d + w(v_0, v_1), \ldots,$

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

$$\Rightarrow$$
 $v_1.d \leq v_0.d + w(v_0, v_1), \ldots, v_k.d \leq v_{k-1}.d + w(v_{k-1}, v_k),$

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

$$\Rightarrow v_1.d \leq v_0.d + w(v_0, v_1), \dots, v_k.d \leq v_{k-1}.d + w(v_{k-1}, v_k),$$
$$\Rightarrow_{\Sigma}$$

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

$$\Rightarrow v_1.d \leq v_0.d + w(v_0, v_1), \dots, v_k.d \leq v_{k-1}.d + w(v_{k-1}, v_k),$$

$$\Rightarrow 0 \leq \sum_{i=1}^k w(v_{i-1}, v_i) =$$

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

$$\Rightarrow v_1.d \leq v_0.d + w(v_0, v_1), \dots, v_k.d \leq v_{k-1}.d + w(v_{k-1}, v_k),$$

$$\Rightarrow 0 \leq \sum_{i=1}^k w(v_{i-1}, v_i) = w(C) \checkmark$$

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

Assume that Bellman-Ford returns true.

$$\Rightarrow v_1.d \le v_0.d + w(v_0, v_1), \dots, v_k.d \le v_{k-1}.d + w(v_{k-1}, v_k),$$

$$\Rightarrow 0 \le \sum_{i=1}^k w(v_{i-1}, v_i) = w(C)$$

Solution For this implication we additionally need that $\sum_i v_i d < \infty$.

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

Assume that Bellman-Ford returns true.

$$\Rightarrow v_1.d \le v_0.d + w(v_0, v_1), \dots, v_k.d \le v_{k-1}.d + w(v_{k-1}, v_k),$$

$$\Rightarrow 0 \le \sum_{i=1}^k w(v_{i-1}, v_i) = w(C)$$

For this implication we additionally need that $\sum_i v_i d < \infty$. (True since *C* is reachable from *s*, plus the previous proof.)

If G contains a negative cycle that is reachable from s, then Bellman–Ford returns false.

Let $C = \langle v_0, v_1, \dots, v_k = v_0 \rangle$ be such a negative cycle.

Assume that Bellman-Ford returns true.

$$\Rightarrow v_1.d \le v_0.d + w(v_0, v_1), \dots, v_k.d \le v_{k-1}.d + w(v_{k-1}, v_k),$$

$$\Rightarrow 0 \le \sum_{i=1}^k w(v_{i-1}, v_i) = w(C)$$

For this implication we additionally need that $\sum_i v_i d < \infty$. (True since *C* is reachable from *s*, plus the previous proof.)

Improvement: $O(\sqrt{VE} \log W)$, where $W = \max_{uv \in E} w(u, v)$. [Goldberg, SIAM J. Comput. 1995]

 $W_{jj} = 0$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$.

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then $\ell_{ij}^{(0)} =$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} =$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n}$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ \ell_{ik}^{(m-1)} + w_{kj} \right\}.$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) =$

 $w_{ii} = 0$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} =$

 $w_{ii} = 0$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} =$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \dots$
Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \dots$ since shortest paths are simple (if there are no neg. cycles)!

 $w_{ii} = 0$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \dots$ since shortest paths are simple (if there are no neg. cycles)!
Extend-Shortest-Paths(L, W)
 $L' = (\ell'_{ij} = \infty) \text{ new } n \times n \text{ matrix}$
for $i = 1$ to n do
 $\begin{bmatrix} \text{for } j = 1 \text{ to } n \text{ do} \\ 0 \end{bmatrix} \begin{bmatrix} \text{Slow-All-Pairs-SP}(W) \\ \text{Slow-All-Pairs-SP}(W) \end{bmatrix}$
return L'

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \dots$ since shortest paths are simple (if there are no neg. cycles)!
Extend-Shortest-Paths(L, W)
 $L' = (\ell_{ij}' = \infty) \text{ new } n \times n \text{ matrix}$
for $i = 1$ to n do
 $\begin{bmatrix} \text{for } j = 1 \text{ to } n \text{ do} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \text{ to } n \text{ do} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \ell_{ij}' = \min\{\ell_{ij}', \ell_{ik} + w_{kj}\} \end{bmatrix}$
Forture $L^{(m)}$ and $L^{(m)} = \text{ESP}(L^{(m-1)}, W)$
reture $L^{(m-1)}$

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \dots$ since shortest paths are simple (if there are no neg. cycles)!
Extend-Shortest-Paths(L, W)
 $L' = (\ell_{ij}' = \infty) \text{ new } n \times n \text{ matrix}$
for $i = 1$ to n do
 $\begin{bmatrix} \text{for } j = 1 \text{ to } n \text{ do} \\ 0 \\ \ell_{ij}' = \min\{\ell_{ij}', \ell_{ik} + w_{kj}\} \end{bmatrix}$
return L'
Slow-All-Pairs-SP(W)
 $L^{(1)} = W$
for $m = 2$ to $n - 1$ do
 $L^{(m)} = \text{new matrix}$
 $L^{(m)} = \text{ESP}(L^{(m-1)}, W)$
return $L^{(n-1)}$
Runtime:

Assume that the graph is given by a matrix $W = (w_{ij})_{1 \le i,j \le n}$. Let $\ell_{ij}^{(m)}$ be the length of a shortest i-j path with $\le m$ edges.

Then
$$\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 and $\ell_{ij}^{(m)} = \min_{1 \le k \le n} \{\ell_{ik}^{(m-1)} + w_{kj}\}.$
 $\Rightarrow \delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \dots$ since shortest paths are simple (if there are no neg. cycles)!
Extend-Shortest-Paths(L, W)
 $L' = (\ell'_{ij} = \infty) \text{ new } n \times n \text{ matrix}$
for $i = 1$ to n do
 $\begin{bmatrix} \text{for } j = 1 \text{ to } n \text{ do} \\ 0 \\ \ell'_{ij} = \min\{\ell'_{ij}, \ell_{ik} + w_{kj}\} \end{bmatrix}$
return L'
Slow-All-Pairs-SP(W)
 $L^{(1)} = W$
for $m = 2$ to $n - 1$ do
 $L^{(m)} = \text{new matrix}$
 $L^{(m)} = \text{ESP}(L^{(m-1)}, W)$
return $L^{(n-1)}$
Runtime: $O(n^4)$

Faster APSP

```
Faster-All-Pairs-SP(n \times n matrix W)
  L^{(1)} = W
  m = 1
  while m < n - 1 do
      L = \text{new } n \times n \text{ matrix}
     L = Extend-Shortest-Path(
      m =
  return L^{(m)}
Runtime: O(n^3 \log n)
```

Faster APSP

```
Faster-All-Pairs-SP(n \times n matrix W)
  I^{(1)} = W
  m = 1
  while m < n - 1 do
       L^{(2m)} = \text{new } n \times n \text{ matrix}
       L^{(2m)} = \text{Extend-Shortest-Path}(L^{(m)}, L^{(m)})
       m = 2m
  return L^{(m)}
```

Runtime: $O(n^3 \log n)$

The Floyd–Warshall Algorithm [W., J. ACM 1962] [F., Comm. ACM 1977]

The Floyd–Warshall Algorithm [W., J. ACM 1962] [F., Comm. ACM 1977]

The Floyd–Warshall Algorithm [W., J. ACM 1962] [F., Comm. ACM 1977]

The Floyd–Warshall Algorithm [W., J. ACM 1962] [F., Comm. ACM 1977]

[W., J. ACM 1962] [F., Comm. ACM 1977]

[W., J. ACM 1962] [F., Comm. ACM 1977]

