UNIVERSITÄT WÜRZBURG

Advanced Algorithms

Winter term 2019/20

Lecture 7. Shortest Paths in Graphs with Negative Weights

Motivation

Problem. Let $G=(H \cup V, E)$ be a bipartite graph with positive vertex weights $\ell: H \cup V \rightarrow \mathbb{N}$ and a permutation π of $H \cup V$.

Motivation

Problem. Let $G=(H \cup V, E)$ be a bipartite graph with positive vertex weights $\ell: H \cup V \rightarrow \mathbb{N}$ and a permutation π of $H \cup V$.
Does G admit a stick representation that respects the given stick order π and stick lengths ℓ ?

Motivation

Problem. Let $G=(H \cup V, E)$ be a bipartite graph with positive vertex weights $\ell: H \cup V \rightarrow \mathbb{N}$ and a permutation π of $H \cup V$.
Does G admit a stick representation that respects the given stick order π and stick lengths ℓ ?

Motivation

Algorithm.

Motivation

Algorithm.

Motivation

$$
n=|H|+|V|
$$

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$

Motivation

$$
n=|H|+|V|
$$

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$.

Motivation

$$
n=|H|+|V|
$$

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E$:

Motivation
Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E$:

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$
Solve LP

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$
Solve LP (without objective function):

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$
Solve LP (without objective function): \# variables $=$ $\#$ constraints $=$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$
Solve LP (without objective function): $\#$ variables $=n-1 \quad \#$ constraints $=$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$.
for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$
for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$
Solve LP (without objective function): $\#$ variables $=n-1 \quad \#$ constraints $=|H| \cdot|V|+n-1$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$ $O(|E|+n)!$

Solve LP (without objective function): $\#$ variables $=n-1 \quad \#$ constraints $=|H| \cdot|V|+n-1$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$ $O(|E|+n)!$

Solve LP (without objective function): $\#$ variables $=n-1 \quad \#$ constraints $=|H| \cdot|V|+n-1$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$ $O(|E|+n)!$

Solve LP (without objective function): $\#$ variables $=n-1 \quad \#$ constraints $=|H| \cdot|V|+n-1$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$. for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$

Exercise: Improve this to $O(|E|+n)!$

Solve LP (without objective function): $\#$ variables $=n-1 \quad \#$ constraints $=|H| \cdot|V|+n-1$

Motivation

Algorithm. $x_{n}<\cdots<x_{2}<x_{1}=0$. Let $n \geq h>v \geq 1$.
for each $h v \in E: x_{v}-x_{h}<\min \left\{\ell_{h}, \ell_{v}\right\}$ for each $h v \notin E: x_{v}-x_{h}>\min \left\{\ell_{h}, \ell_{v}\right\}$ $O(|E|+n)!$

Solve LP (without objective function): $\#$ variables $=n-1 \quad \#$ constraints $=|H| \cdot|V|+n-1$

Solving Systems of Difference Constraints

Is this system feasible?

$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Solving Systems of Difference Constraints

Is this system feasible?

$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$

Solving Systems of Difference Constraints

Is this system feasible?

$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.

Solving Systems of Difference Constraints

Is this system feasible?

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?$$
\begin{aligned}
& x_{1}-x_{2} \leq 0 \\
& x_{1}-x_{5} \leq-1 \\
& x_{2}-x_{5} \leq 1 \\
& x_{3}-x_{1} \leq 5 \\
& x_{4}-x_{1} \leq 4 \\
& x_{4}-x_{3} \leq-1 \\
& x_{5}-x_{3} \leq-3 \\
& x_{5}-x_{4} \leq-3
\end{aligned}
$$

Yes: Take $x=(-5,-3,0,-1,4)$ or $x^{\prime}=(0,2,5,4,9)$.
Lemma. Let x be a solution to a system $A x \leq b$ of difference constraints, and let $d \in \mathbb{R}$. Then $x+d=\left(x_{1}+d, \ldots, x_{n}+d\right)$ is a solution, too.

Solving Systems of Difference Constraints

 Is this system feasible?

Definition. The constraint graph $G_{A, b}$ is a weighted digraph with vertex set $V_{A}=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and edge set $E_{A}=\left\{v_{i} v_{j}: x_{j}-x_{i} \leq b_{i j}\right.$ is a constraint $\} \cup$

$$
\left\{v_{0} v_{k}: 1 \leq k \leq n\right\} .
$$

The weight of $v_{i} v_{j}$ is $b_{i j}$ if $i>0$ and 0 otherwise.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles.

Now assume \exists neg. cycle and $A x \leq b$ has a solution x.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$.

Now assume \exists neg. cycle and $A x \leq b$ has a solution x.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality \Rightarrow

Now assume \exists neg. cycle and $A x \leq b$ has a solution x.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or

Now assume \exists neg. cycle and $A x \leq b$ has a solution x.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$.

Now assume \exists neg. cycle and $A x \leq b$ has a solution x.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x.

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle. =

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle. $\Rightarrow x_{2}-x_{1} \leq b_{12}$,

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle.
$\Rightarrow x_{2}-x_{1} \leq b_{12}, \quad x_{3}-x_{2} \leq b_{23}, \ldots$,

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle.
$\Rightarrow x_{2}-x_{1} \leq b_{12}, \quad x_{3}-x_{2} \leq b_{23}, \ldots, \quad x_{k}-x_{k-1} \leq b_{k-1, k}$. \Rightarrow

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle.
$\Rightarrow x_{2}-x_{1} \leq b_{12}, \quad x_{3}-x_{2} \leq b_{23}, \ldots, \quad x_{k}-x_{k-1} \leq b_{k-1, k}$. $\vec{\Sigma}$

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle, then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle.
$\Rightarrow x_{2}-x_{1} \leq b_{12}, \quad x_{3}-x_{2} \leq b_{23}, \ldots, \quad x_{k}-x_{k-1} \leq b_{k-1, k}$.
$\underset{\Sigma}{\Rightarrow} 0 \leq b_{12}+b_{23}+\cdots+b_{k-1, k}$

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle,
then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle.
$\Rightarrow x_{2}-x_{1} \leq b_{12}, \quad x_{3}-x_{2} \leq b_{23}, \ldots, \quad x_{k}-x_{k-1} \leq b_{k-1, k}$.
$\underset{\Sigma}{\Rightarrow} 0 \leq b_{12}+b_{23}+\cdots+b_{k-1, k}=w(C)$

Shortest Paths Do the Job

Theorem. Let $A x \leq b$ be a system of difference constraints, and let $\delta_{k}=\delta\left(v_{0}, v_{k}\right)$ be the length of a shortest $v_{0}-v_{k}$ path for $k=1, \ldots, n$.
If $G_{A, b}$ contains no negative cycles, then $x=\left(\delta_{1}, \ldots, \delta_{n}\right)$ is a feasible solution.
If $G_{A, b}$ contains a negative cycle,
then there is no feasible solution.
Proof. Assume no neg. cycles. Consider $v_{i} v_{j} \in E_{A}$ with $i>0$. Δ-inequality $\Rightarrow \delta_{j} \leq \delta_{i}+b_{i j}$, or $\delta_{j}-\delta_{i} \leq b_{i j}$. Letting $x_{i}=\delta_{i}$ and $x_{j}=\delta_{j}$ satisfies $x_{j}-x_{i} \leq b_{i j}$.
Now assume \exists neg. cycle and $A x \leq b$ has a solution x. Wlog., let $C=\left\langle v_{1}, v_{2}, \ldots, v_{k}=v_{1}\right\rangle$ be a neg. cycle.
$\Rightarrow x_{2}-x_{1} \leq b_{12}, \quad x_{3}-x_{2} \leq b_{23}, \ldots, \quad x_{k}-x_{k-1} \leq b_{k-1, k}$.
$\underset{\Sigma}{\Rightarrow} 0 \leq b_{12}+b_{23}+\cdots+b_{k-1, k}=w(C)$

Shortest Paths \& Negative Edge Weights

Ideas?

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?
What about adding the same constant c to each edge weight?

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?
What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?
What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(
Recall initialization and main subroutine of Dijkstra:

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?
What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(
Recall initialization and main subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach $u \in V$ do

$$
\begin{aligned}
& \qquad \begin{array}{l}
u . d=\infty \\
u . \pi=n i l
\end{array} \\
& \text { s. } d=0
\end{aligned}
$$

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?
What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(
Recall initialization and main subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach $u \in V$ do

$$
\begin{aligned}
& \qquad \begin{array}{l:l}
u . d=\infty \\
u . \pi=\text { estimate for } \delta(s, u) \\
s . d=0
\end{array} \\
& s,
\end{aligned}
$$

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?
What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(
Recall initialization and main subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach $u \in V$ do

$$
\begin{array}{cl}
u . d=\infty & \text { estimate for } \delta(s, u) \\
u . \pi=n i l & \begin{array}{l}
\text { pointer to predecessor } \\
\text { on some "currently" } \\
\text { shortest } s-u \text { path }
\end{array} \\
s . d=0 & \begin{array}{l}
\text { s.d }
\end{array}
\end{array}
$$

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights.
But maybe we can reduce to this problem?
What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(
Recall initialization and main subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach $u \in V$ do

$$
\begin{array}{cl}
u . d=\infty & \text { estimate for } \delta(s, u) \\
u . \pi=n i l & \begin{array}{l}
\text { pointer to predecessor } \\
\text { on some "currently" } \\
\text { shortest } s-u \text { path }
\end{array} \\
\text { s.d }=0 & \begin{array}{l}
\text { s. }
\end{array}
\end{array}
$$

Relax(vtx u, vtx v, weights w) if $v . d>u . d+w(u, v)$ then
$v . d=u . d+w(u, v)$
$v . \pi=u$
Q.DecreaseKey (v, v.d)

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights. But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(
Recall initialization and main subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach $u \in V$ do

$$
\begin{array}{ll}
u . d=\infty & \text { estimate for } \delta(s, u) \\
u . \pi=n i l & \begin{array}{l}
\text { pointer to predecessor } \\
\text { on some "currently" } \\
\text { shortest } s-u \text { path }
\end{array} \\
\text { s.d }=0 & \begin{array}{l}
\text { s. }
\end{array}
\end{array}
$$

Relax(vtx u, vtx v, weights $w)$ if $v . d>u . d+w(u, v)$ then $v . d=u . d+w(u, v)$ $v \cdot \pi=u$
Q.DecreaseKey (v, v.d)

Shortest Paths \& Negative Edge Weights

Ideas?

Dijkstra can handle only graphs with non-negative edge weights. But maybe we can reduce to this problem?

What about adding the same constant c to each edge weight?
Problem: Paths with few edges get relatively cheaper :-(
Recall initialization and main subroutine of Dijkstra:

Initialize(graph G, vtx s)
foreach $u \in V$ do

$$
\begin{array}{ll}
u . d=\infty & \text { estimate for } \delta(s, u) \\
u . \pi=n i l & \begin{array}{l}
\text { pointer to predecessor } \\
\text { on some "currently" } \\
\text { shortest } s-u \text { path }
\end{array} \\
\text { s.d }=0 & \begin{array}{l}
\text { s. }
\end{array}
\end{array}
$$

Relax(vtx u, vtx v, weights w) if $v . d>u . d+w(u, v)$ then $v . d=u . d+w(u, v)$ $v \cdot \pi=u$
[Q.DecreaseKey(v,v.d)]

The Bellman-Ford Algorithm

Dijkstra(graph G, weights w, vtx s)
Initialize (G, s)
$Q=$ new PriorityQueue(G.V,d) while not Q.Empty () do $u=Q$.ExtractMin()
foreach $v \in \operatorname{Adj}[u]$ do $\operatorname{Relax}(u, v ; w)$

The Bellman-Ford Algorithm

Dijkstra(graph G, weights w, vtx s)
Initialize (G, s)
$Q=$ new PriorityQueue(G.V, d) while not Q.Empty () do $u=Q$.ExtractMin()
foreach $v \in \operatorname{Adj}[u]$ do
$L \operatorname{Relax}(u, v ; w)$ Bellman-Ford(graph G, weights w, vtxs) Initialize (G, s)
for $i=1$ to $|G . V|-1$ do foreach $u v \in G . E$ do
$\lfloor\operatorname{Relax}(u, v ; w)$
foreach $u v \in G . E$ do
if $v . d>u . d+w(u, v)$ return false
return true

The Bellman-Ford Algorithm

Dijkstra(graph G, weights w, vtx s) runtime?
Initialize (G, s)
$Q=$ new PriorityQueue(G.V, d) while not Q.Empty() do $u=Q$.ExtractMin()
foreach $v \in \operatorname{Adj}[u]$ do
$L \operatorname{Relax}(u, v ; w)$ Bellman-Ford(graph G, weights w, vtx s) Initialize (G, s)
for $i=1$ to $|G . V|-1$ do foreach $u v \in G . E$ do
$\llcorner\operatorname{Relax}(u, v ; w)$
foreach $u v \in G . E$ do
if $v . d>u . d+w(u, v)$ return false
return true

The Bellman-Ford Algorithm

Dijkstra(graph G, weights w, vtx s) runtime? Initialize (G, s)
$Q=$ new PriorityQueue(G.V, d) while not Q.Empty () do $u=Q$.ExtractMin()
foreach $v \in \operatorname{Adj}[u]$ do
$L \operatorname{Relax}(u, v ; w)$ Bellman-Ford(graph G, weights w, vtx s) Initialize (G, s)
for $i=1$ to $|G . V|-1$ do foreach $u v \in G . E$ do
$\llcorner\operatorname{Relax}(u, v ; w)$
foreach $u v \in G . E$ do
if $v . d>u . d+w(u, v)$ return false
return true

The Bellman-Ford Algorithm

Dijkstra(graph G, weights w, vtx s) runtime? Initialize (G, s)
$Q=$ new PriorityQueue(G.V, d) while not Q.Empty() do $u=Q$.ExtractMin()
foreach $v \in \operatorname{Adj}[u]$ do
$L \operatorname{Relax}(u, v ; w)$ Bellman-Ford(graph G, weights w, vtx $s)$ Initialize(G, s)
for $i=1$ to $|G . V|-1$ do foreach $u v \in G . E$ do
$\lfloor\operatorname{Relax}(u, v ; w)$
foreach $u v \in G . E$ do
if $v . d>u . d+w(u, v)$ return false
return true

The Bellman-Ford Algorithm

Dijkstra(graph G, weights w, vtx s) runtime? Initialize (G, s)
$Q=$ new PriorityQueue(G.V, d) while not Q.Empty() do $u=Q$.ExtractMin()
foreach $v \in \operatorname{Adj}[u]$ do
$L \operatorname{Relax}(u, v ; w)$ Bellman-Ford(graph G, weights w, vtx $s)$ Initialize(G, s)
for $i=1$ to $|G . V|-1$ do foreach $u v \in G . E$ do
$\lfloor\operatorname{Relax}(u, v ; w)$
foreach $u v \in G . E$ do
if $v . d>u . d+w(u, v)$ return false
return true

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true. Suppose v is reachable from s.

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true. Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$. After initialization,

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.
Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$.

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.
Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$.

Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.

$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$.
$\Rightarrow v_{i} . d \leq \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)=$
Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.

$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$.
$\Rightarrow v_{i} \cdot d \leq \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)=\delta\left(s, v_{i}\right)$
Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.

$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$. $\Rightarrow v_{i} \cdot d \leq \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)=\delta\left(s, v_{i}\right) \underset{\text { Reap. }}{\Rightarrow} v_{i} \cdot d=\delta\left(s, v_{i}\right)$.
Suppose v is not reachable from s.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.

$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$. $\Rightarrow v_{i} \cdot d \leq \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)=\delta\left(s, v_{i}\right) \underset{\text { Reap. }}{\Rightarrow} v_{i} \cdot d=\delta\left(s, v_{i}\right)$.
Suppose v is not reachable from $s . \Rightarrow$ Initially, v.d $=\infty$

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.

Suppose v is reachable from s.

$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$. $\Rightarrow v_{i} \cdot d \leq \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)=\delta\left(s, v_{i}\right) \underset{\text { Reap. }}{\Rightarrow} v_{i} \cdot d=\delta\left(s, v_{i}\right)$.
Suppose v is not reachable from $s . \Rightarrow$ Initially, $v . d=\infty$
\Rightarrow During execution, $v . d$ remains ∞ (otherwise $\exists s-v$ path)

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.
Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$. $\Rightarrow v_{i} \cdot d \leq \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)=\delta\left(s, v_{i}\right) \underset{\text { Reap. }}{\Rightarrow} v_{i} \cdot d=\delta\left(s, v_{i}\right)$.
Suppose v is not reachable from $s . \Rightarrow$ Initially, $v . d=\infty$
\Rightarrow During execution, $v . d$ remains ∞ (otherwise $\exists s-v$ path)
\Rightarrow At termination, v.d $=\infty=\delta(s, v)$.

Correctness of Bellman-Ford

If G contains no neg. cycle reachable from s, after the for- i loop, for every vertex $v, v . d=\delta(s, v)$ and Bellman-Ford returns true.
Suppose v is reachable from s.
$\Rightarrow \exists$ shortest $s-v$ path $\delta=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$.
G has no negative cycle, δ shortest path \Rightarrow length $k \leq n-1$.
After initialization, $v_{0} . d=\delta\left(s, v_{0}\right)=0$.
In phase i of the alg., $v_{i-1} v_{i}$ is relaxed.
$\Rightarrow v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. By induction, $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$.
$\Rightarrow v_{i} \cdot d \leq \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)=\delta\left(s, v_{i}\right) \underset{\text { Reap. }}{\Rightarrow} v_{i} \cdot d=\delta\left(s, v_{i}\right)$.
Suppose v is not reachable from $s . \Rightarrow$ Initially, $v . d=\infty$
\Rightarrow During execution, $v . d$ remains ∞ (otherwise $\exists s-v$ path)
\Rightarrow At termination, v.d $=\infty=\delta(s, v)$.

The Bellman-Ford Algorithm (overview)

Initialize(graph G, vtx s)
foreach $u \in V$ do

$$
\begin{aligned}
& u . d=\infty \\
& u \cdot \pi=n i l
\end{aligned}
$$

$$
s . d=0
$$

Relax(vtx u, vtx v, weights w)

$$
\begin{aligned}
& \text { if } v . d>u \cdot d+w(u, v) \text { then } \\
& \qquad \begin{array}{l}
v . d=u \cdot d+w(u, v) \\
v . \pi=u
\end{array}
\end{aligned}
$$

Bellman-Ford(graph G, weights w, vtx s)
Initialize (G, s)
for $i=1$ to $|G . V|-1$ do foreach $u v \in G . E$ do $\operatorname{Relax}(u, v ; w)$
foreach $u v \in G . E$ do
if $v . d>u . d+w(u, v)$ return false
return true

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.
\Rightarrow

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.

$$
\Rightarrow v_{1} \cdot d \leq v_{0} \cdot d+w\left(v_{0}, v_{1}\right), \ldots,
$$

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.
$\Rightarrow v_{1} \cdot d \leq v_{0} \cdot d+w\left(v_{0}, v_{1}\right), \ldots, v_{k} \cdot d \leq v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$,
\Rightarrow

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.
$\Rightarrow v_{1} \cdot d \leq v_{0} \cdot d+w\left(v_{0}, v_{1}\right), \ldots, v_{k} \cdot d \leq v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$,
$\vec{\Sigma}$

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.

$$
\begin{aligned}
& \Rightarrow v_{1} \cdot d \leq v_{0} \cdot d+w\left(v_{0}, v_{1}\right), \ldots, v_{k} \cdot d \leq v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right), \\
& \underset{\Sigma}{\Rightarrow} 0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=
\end{aligned}
$$

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.
$\Rightarrow v_{1} \cdot d \leq v_{0} \cdot d+w\left(v_{0}, v_{1}\right), \ldots, v_{k} \cdot d \leq v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$,
$\underset{\Sigma}{\Rightarrow} 0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(C) \zeta$

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.
$\Rightarrow v_{1} \cdot d \leq v_{0} . d+w\left(v_{0}, v_{1}\right), \ldots, v_{k} \cdot d \leq v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$,
$\underset{\Sigma}{\Rightarrow} 0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(C) \zeta$
For this implication we additionally need that $\sum_{i} v_{i} . d<\infty$.

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.
$\Rightarrow v_{1} \cdot d \leq v_{0} \cdot d+w\left(v_{0}, v_{1}\right), \ldots, v_{k} \cdot d \leq v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$,
$\underset{\Sigma}{\Rightarrow} 0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(C) \zeta$
For this implication we additionally need that $\sum_{i} v_{i} . d<\infty$.
(True since C is reachable from s, plus the previous proof.)

Correctness (cont'd)

If G contains a negative cycle that is reachable from s, then Bellman-Ford returns false.

Let $C=\left\langle v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right\rangle$ be such a negative cycle.
Assume that Bellman-Ford returns true.
$\Rightarrow v_{1} \cdot d \leq v_{0} \cdot d+w\left(v_{0}, v_{1}\right), \ldots, v_{k} \cdot d \leq v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$,
$\underset{\Sigma}{\Rightarrow} 0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(C) \zeta$
For this implication we additionally need that $\sum_{i} v_{i} . d<\infty$.
(True since C is reachable from s, plus the previous proof.)
Improvement: $O(\sqrt{V} E \log W)$, where $W=\max _{u v \in E} w(u, v)$. [Goldberg, SIAM J. Comput. 1995]

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$.

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.

Then $\ell_{i j}^{(0)}=$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{cases}$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$.
Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$.

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$.
Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$.
$\Rightarrow \delta(i, j)=$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$. $\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$.
$\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$.
$\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\ldots$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$.
$\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\ldots \begin{aligned} & \text { since shortest paths are simple } \\ & \text { (if there are no neg. cycles)! }\end{aligned}$

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$.
$\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\ldots \begin{aligned} & \text { since shortest paths are simple } \\ & \text { (if there are no neg. cycles)! }\end{aligned}$
Extend-Shortest-Paths (L, W)
$L^{\prime}=\left(\ell_{i j}^{\prime}=\infty\right)$ new $n \times n$ matrix
for $i=1$ to n do

$$
\text { for } j=1 \text { to } n \text { do }
$$

for $k=1$ to n do
$\left\lfloor\ell_{i j}^{\prime}=\min \left\{\ell_{i j}^{\prime}, \ell_{i k}+w_{k j}\right\}\right.$
return L^{\prime}

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$. $\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\ldots \begin{aligned} & \text { since shortest paths are simple } \\ & \text { (if there are no neg. cycles)! }\end{aligned}$
Extend-Shortest-Paths (L, W) Slow-All-Pairs-SP(W) $L^{\prime}=\left(\ell_{i j}^{\prime}=\infty\right)$ new $n \times n$ matrix for $i=1$ to n do

$$
\text { for } j=1 \text { to } n \text { do }
$$

for $k=1$ to n do
$\left\lfloor\ell_{i j}^{\prime}=\min \left\{\ell_{i j}^{\prime}, \ell_{i k}+w_{k j}\right\}\right.$
return L^{\prime}

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$. $\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\ldots \begin{aligned} & \text { since shortest paths are simple } \\ & \text { (if there are no neg. cycles)! }\end{aligned}$

Extend-Shortest-Paths(L, W) $L^{\prime}=\left(\ell_{i j}^{\prime}=\infty\right)$ new $n \times n$ matrix for $i=1$ to n do for $j=1$ to n do for $k=1$ to n do
$\left\lfloor\ell_{i j}^{\prime}=\min \left\{\ell_{i j}^{\prime}, \ell_{i k}+w_{k j}\right\}\right.$

Slow-All-Pairs-SP(W) $L^{(1)}=W$
for $m=2$ to $n-1$ do
$L^{(m)}=$ new matrix
$L^{(m)}=\operatorname{ESP}\left(L^{(m-1)}, W\right)$
return $L^{(n-1)}$
return L^{\prime}

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$. $\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\ldots \begin{aligned} & \text { since shortest paths are simple } \\ & \text { (if there are no neg. cycles)! }\end{aligned}$

Extend-Shortest-Paths(L, W) $L^{\prime}=\left(\ell_{i j}^{\prime}=\infty\right)$ new $n \times n$ matrix for $i=1$ to n do for $j=1$ to n do for $k=1$ to n do
$\left\lfloor\ell_{i j}^{\prime}=\min \left\{\ell_{i j}^{\prime}, \ell_{i k}+w_{k j}\right\}\right.$ return L^{\prime}

Slow-All-Pairs-SP(W) $L^{(1)}=W$
for $m=2$ to $n-1$ do
$L^{(m)}=$ new matrix
$L^{(m)}=\operatorname{ESP}\left(L^{(m-1)}, W\right)$
return $L^{(n-1)}$

Runtime:

All-Pairs Shortest Paths

Assume that the graph is given by a matrix $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$. Let $\ell_{i j}^{(m)}$ be the length of a shortest $i-j$ path with $\leq m$ edges.
Then $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0 & \text { if } i=j \\ \infty & \text { otherwise }\end{array}\right\}$ and $\ell_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}$. $\Rightarrow \delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\ldots \begin{aligned} & \text { since shortest paths are simple } \\ & \text { (if there are no neg. cycles)! }\end{aligned}$

Extend-Shortest-Paths(L, W) $L^{\prime}=\left(\ell_{i j}^{\prime}=\infty\right)$ new $n \times n$ matrix for $i=1$ to n do for $j=1$ to n do for $k=1$ to n do
$\left\lfloor\ell_{i j}^{\prime}=\min \left\{\ell_{i j}^{\prime}, \ell_{i k}+w_{k j}\right\}\right.$
return L^{\prime}

Slow-All-Pairs-SP(W) $L^{(1)}=W$
for $m=2$ to $n-1$ do
$L^{(m)}=$ new matrix
$L^{(m)}=\operatorname{ESP}\left(L^{(m-1)}, W\right)$
return $L^{(n-1)}$
Runtime: $O\left(n^{4}\right)$

Faster APSP

Faster-All-Pairs-SP $(n \times n$ matrix $W)$
$L^{(1)}=W$
$m=1$
while $m<n-1$ do
$L \quad=$ new $n \times n$ matrix
$L=$ Extend-Shortest-Path(
$m=$
return $L^{(m)}$
Runtime: $O\left(n^{3} \log n\right)$

Faster APSP

Faster-All-Pairs-SP $(n \times n$ matrix $W)$
$L^{(1)}=W$
$m=1$
while $m<n-1$ do
$L^{(2 m)}=$ new $n \times n$ matrix $L^{(2 m)}=$ Extend-Shortest-Path $\left(L^{(m)}, L^{(m)}\right)$ $m=2 m$
return $L^{(m)}$
Runtime: $O\left(n^{3} \log n\right)$

The Floyd-Warshall Algorithm [W., J. ACM 1962]

The Floyd-Warshall Algorithm

The Floyd-Warshall Algorithm

The Floyd-Warshall Algorithm

The Floyd-Warshall Algorithm

$$
d_{i j}^{(0)}=w_{i j} ; \text { if } k>0 \text { then }
$$

The Floyd-Warshall Algorithm

$$
\begin{aligned}
& d_{i j}^{(0)}=w_{i j} ; \text { if } k>0 \text { then } \\
& d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
\end{aligned}
$$

The Floyd-Warshall Algorithm

$$
\begin{aligned}
& d_{i j}^{(0)}=w_{i j} ; \text { if } k>0 \text { then } \\
& d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
\end{aligned}
$$

Floyd-Warshall $(n \times n$ matrix W)
$D^{(0)}=W$
for $k=1$ to n do
$D^{(k)}=$ new $n \times n$ matrix
for $i=1$ to n do
for $j=1$ to n do

$$
\left\lfloor d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}\right.
$$

return $D^{(n)}$

The Floyd-Warshall Algorithm

$$
\begin{aligned}
& d_{i j}^{(0)}=w_{i j} ; \text { if } k>0 \text { then } \\
& d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
\end{aligned}
$$

Floyd-Warshall $(n \times n$ matrix W)
$D^{(0)}=W$
for $k=1$ to n do
$D^{(k)}=$ new $n \times n$ matrix
for $i=1$ to n do
for $j=1$ to n do

$$
L d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
$$

Runtime:
return $D^{(n)}$

The Floyd-Warshall Algorithm

$$
\begin{aligned}
& d_{i j}^{(0)}=w_{i j} ; \text { if } k>0 \text { then } \\
& d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
\end{aligned}
$$

Floyd-Warshall $(n \times n$ matrix W)
$D^{(0)}=W$
for $k=1$ to n do
$D^{(k)}=$ new $n \times n$ matrix
for $i=1$ to n do
for $j=1$ to n do
$\left\lfloor d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}\right.$
return $D^{(n)}$
Runtime:
$O\left(n^{3}\right)$

The Floyd-Warshall Algorithm

$$
\begin{aligned}
& d_{i j}^{(0)}=w_{i j} ; \text { if } k>0 \text { then } \\
& d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
\end{aligned}
$$

Floyd-Warshall $(n \times n$ matrix W)

$$
D^{(0)}=W
$$

for $k=1$ to n do
$D^{(k)}=$ new $n \times n$ matrix
for $i=1$ to n do
for $j=1$ to n do
$\left\lfloor d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}\right.$
return $D^{(n)}$
Runtime:
$O\left(n^{3}\right)$

