

Advanced Algorithms

Winter term 2019/20

Lecture 6. Approaches using Randomisation or: Color Coding and "Isolation" Lemmas

Source: [Parameterized Algorithms: §3.3, 5, 5.1, 5.2, 11.2]

(slides by Thomas van Dijk & Alexander Wolff)

Steven Chaplick and Alexander Wolff Chair for Computer Science I

In this lecture:

- Coloring \neq **Graph**coloring.
- *k*-coloring of *n* elements: label each element with one number from 1..*k*.

Randomised Algorithms

2313

 $\frac{1}{2}$

Result: YES-instance $\rightarrow Pr[YES] >$ No-instance \rightarrow Pr[YES] <

Thm: $ZPP = RP \cap co-RP$

Amplification

- $\mathcal{RP}: \begin{array}{l} \operatorname{YES-Instance} \to \Pr[\operatorname{YES}] \geq t \\ \operatorname{NO-Instance} \to \Pr[\operatorname{YES}] = 0 \end{array}$
- If an \mathcal{RP} -algorithm returns YES, it is correct
- If an \mathcal{RP} -algorithm returns NO, it is incorrect with probability $\leq 1 - t$
- Algorithm:Run the original algorithm $\lceil 1/t \rceil$ timesReturn YES if every some returns YESOtherwise NOx := 1/t

Error Probability : $(1-t)^{1/t} = (1-\frac{1}{x})^x < \frac{1}{e} < \frac{1}{2}$

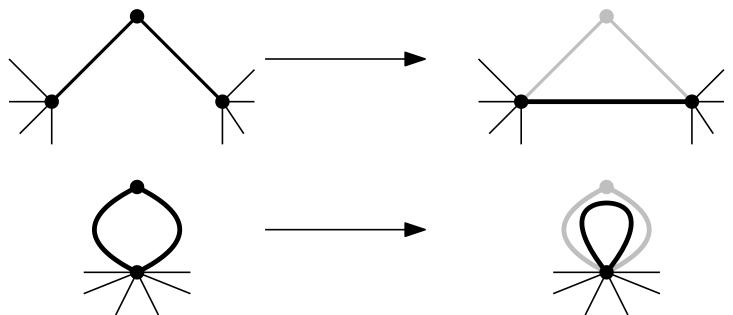
(**Obs.:** Repeating $100 \cdot t^{-1}$ times \rightsquigarrow error prob. $< 2^{-100}$.)

FEEDBACK VERTEX SET

Given:	Graph $G = (V, E)$, number k
Question:	$\exists S \subseteq V$ such that $ S \leq k$ and
	$G[V \setminus S]$ is a forest?

Reduction Rule: Delete vertices of degree < 2
Reduction Rule: "Bypass" each degree two vertex.
Reduction Rule: Put vertices incident to loops in FVS

Def.: If no rule applies, the graph is called *reduced*.



FEEDBACK VERTEX SET

Given:	Graph $G = (V, E)$, number k
Question:	$\exists S \subseteq V \text{ such that } S \leq k \text{ and}$
	$G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$. Let $E_W :=$ edges connecting vertices in W Let $E_{S,W} :=$ edges connecting S and W mindeg 3 $|W| \leq \sum_{v \in W} \deg(v) = |E_{S,W}| + 2|E_W| < |E_{S,W}| + 2|W|$

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$ (see also Lemma 5.1 in textbook)

FVS: algorithm given k

0. *S* ← ∅

1. while G is not empty: \leftarrow max k times2. Apply reduction rules3. pick a vertex v via randomized proc. on last slide4. $S \leftarrow S \cup \{v\}; G \leftarrow G \setminus v$ 5. If |S| > k: return No

6. Return YESRuntime:O(n+m)O(k(n+m))Prob. of success:>1/4>4^{-k}

Thm: FEEDBACK VERTEX SET can be solved in $O(4^k \cdot k(n+m))$ time by a randomised algorithm

Longest Path

Given: Graph G = (V, E), number k **Parameter:** k **Question:** Does G contain a length k path?

(length := # edges)

Thm: LONGEST PATH is NP-complete

Thm: LONGEST PATH can be solved in $O^*(2^n)$ time.

Special Case:

LONGEST PATH in acyclic graphs: Runtime?O(m)

Topological sort
 Let L(v) := longest path to v
 "backwards" dynamic program
 Look for v with L(v) = k

Idea. LONGEST PATH is easy on acyclic graphs **Plan:** make *G* acyclic!

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

- Result
$$\rightarrow \vec{G}$$
 (random variable!)

- **Obs.:** \exists *k*-path in $\vec{G} \rightarrow \exists$ *k*-path in *G*
- **Obs.:** Converse does not apply however ... $\exists k$ -path in $G \rightarrow \Pr[\vec{G} \text{ has } k$ -path] > 0.

Now: Randomisied algorithm? **Runtime?**

Randomised Orientation: Success Prob.

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!) **Lemma:** Let p be a k-path in G. Then $\Pr[p \in \vec{G}] = \frac{2}{(k+1)!}$ **Proof:** Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$ There are (k + 1)! ways to complete $\pi_{/p}$ to some π' . All have equal probability. For two of them, p is a path in \vec{G} (two correct) Thus $\Pr[p \in \vec{G} \mid \pi_{/p}] = \frac{2}{(k+1)!}$ $ightarrow \mathsf{Pr}[p \in ec{G}] = rac{2}{(k+1)!}$ (indep. sum over $\pi_{/p}$)

Randomised Orientation: Algorithm

Algorithm

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G
 - **3.** $p \leftarrow \text{longest path in } \vec{G}$
 - **4.** If $|p| \ge k$, return YES.

5. Return No

Runtime: $O^*(k!)$ iterations each O(m) time

Thm: A randomised algorithm can solve LONGEST PATH in $O^*(k! \cdot n)$ time

Longest Path : attempt 2

Obs. LONGEST PATH is easy on acyclic graphs.

Color vertices with (k + 1) colors (k-path has k + 1 vertices)

 \neq **Graph**coloring!

vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"

Part 1: Finding a colorful path is easy FPT in k.

Part 2: \exists *k*-path in $G \rightarrow$ good prob. of a colorful path

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path. Then $\Pr[p \text{ is coloful}] > e^{-k}$ **Proof**: Fix the colors of the nodes outside of p We get k^k different colorings of p Each with equal probability Of these, k! are colorful Thus $\Pr[p \text{ is colorful}] = \frac{k!}{k^k} > \left(\frac{k}{e}\right)^k / k^k = e^{-k}$ Stirling: $\int k! > \sqrt{2\pi} k^{k+\frac{1}{2}} e^{-k}$

Finding Colorful Paths

Approach 1: dynamic program

Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u: Path(S, u) = true if and only if there is an S-colorful path ending at u

Recurrence:

 $\begin{aligned} \textbf{Path}(S, u) &= \bigvee_{uv \in E(G)} \textbf{Path}(S \setminus c(u), v), \text{ if } c(u) \in S \\ \text{ false, otherwise} \end{aligned}$

Runtime?

LONGEST PATH: colorful algorithm deterministic

Algorithm

What property of C do we need?

1. repeat for each coloring $c \in C$:

sufficient: $\forall S \subseteq V$ with $|S| = k : \exists c \in C : S$ is colorful

3. If there is a colorful path, return $\rm YES$

4. Return No**Thm [§5.6]:** There is C with this
property and $|C| \in 2^{O(k)} \log n$ so that
C can be produced in O(|C|) time.**Runtime:** iterationseach $O(2^k \cdot m)$ time
total: $O(\alpha^{-k} \cdot m \log n)$

Thm: There is an randomised algorithm that solves LONGEST PATH in $O^*(\alpha^k \cdot m \log n)$ time

Color Coding: User's Guide

Given: Graph G **Question:** Is H a(n induced) subgraph of G (graph H, |H| = I

- **1.** Randomly color vertices
- **2.** Show that $\Pr[\text{copy of } H \text{ is colorful}] \ge 1/f(k)$
- **3.** Find colorful copy of *H* in FPT-time
- 4. repeat O(f(k)) times
- (5. Derandomise)

LONGEST PATH: Approach 3 (sketch)

#Multilabeled Walks

- **Given:** Graph G = (V, E), vertex $v \in V$, number k, edge labels $\lambda(e) \in \Lambda = \{1..k\}$
- **Question:** How many walks in G start at v, have length k, but don't use an edge label twice?
- Algorithm: dynamic program
- **Recurrence:** A(S, u) with $S \subseteq A, u \in V$
- **Runtime:** $O(2^k n^2)$

Counting Multilabeled Walks: Algorithm

- **1.** Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled *k*-walks
- **3.** If *a* is odd, return YES \leftarrow correct!
- **4.** Otherwise: return NO
- Lemma: Non-simple walks are counted evenly.
- **Problem:** What happens if the number of *k*-paths is even?

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U| = n.

Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1..N\}$ with probability at least 1 - n/N we have: 1..2n

$$\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$$
 is unique.

Proof: Let $\alpha(x) = \min_{S \in \mathcal{F}, x \notin S} \omega(S) - \min_{S \in \mathcal{F}, x \in S} \omega(S \setminus \{x\})$ since $\alpha(x)$ does not depend on $\omega(x)$: $\Pr[\alpha(x) = \omega(x)] \le 1/N$. Thus: $\Pr[\exists x \in U : \alpha(x) = \omega(x)] \le n/N$. Suppose that $A \neq B \in \mathcal{F}$ are both minimum. Now $\exists x \in U : \alpha(x) = \omega(B) - (\omega(A) - \omega(x)) = \omega(x)$. This has probability at most n/N.

Counting Multilabeled Walks: Algorithm

- **1.** Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled *k*-walks
- **3.** If *a* is odd, return YES \leftarrow correct!
- **4.** Otherwise: return NO
- Lemma: Non-simple walks are counted evenly.

Problem: What happens if the number of *k*-paths is even?

Solution: Isolation Lemma gives edge weights (with $\mathcal{F} = k$ -paths in G), such that a k-path of minimum weight is unique. Then we just expand DP to count weighted multilabled walks.