1/19

Julius-Maximilians- Chair for Y .
UNIVERSITAT ~ INFORMATICS | I U I | f |
WURZBURG Efficient Algorithms and

Knowledge-Based Systems

Institute for Informatics

Advanced Algorithms

Winter term 2019/20

Lecture 6. Approaches using Randomisation
or: Color Coding and “Isolation” Lemmas

Source: [Parameterized Algorithms: §3.3, 5, 5.1, 5.2, 11.2]

Steven Chaplick and Alexander WolfF Chair for Computer Science |

/N

WATCH YOUR STEP

In this lecture:

e Coloring # Graphcoloring.
e k-coloring of n elements:
label each element with one number from 1..k.

3/19

Randomised Algorithms

Z
Probabilistic Polynomial Time (PP) S
Runtime: polynomial N
Result: YEs-instance — Pr[YES] > % Y 'S
No-instance — Pr[YES| < % L ~
§ 5
S Q.

Las Vegas (ZPP), zero-error probabilistic polyn (gcmial tie

Runtime: expected polynomial X é‘\i’b
Result: correct RS S
Monte Carlo: § G’Q
Runtime: polynomial BPP 'RP co-RP
Result: YEs-instance — Pr[YES] > £ 3 1
No-instance — Pr[YEs| < % 0 !

Thm: ZPP = RP N co-RP

4/19

Amplification

YES-Instance — Pr[YES] > t

RP: NoO-Instance — Pr[YES| =0
If an RP-algorithm returns YES, it is correct

If an RP-algorithm returns NO,
it Is incorrect with probability <1 —t

Algorithm: Run the original algorithm [1/t] times
Return YES if every some returns YES
Otherwise NO x:=1/t

Error Probability : (1-t)t=1-31 <1 <3

(Obs.: Repeating 100 - t—! times ~ error prob. < 27100)

5/19

T

L

FEEDBACK VERTEX S

Given: Graph G = (V/, E), number k
Question: 3 S C V such that |S| < k and
G[V \ S] is a forest?
Reduction Rule: Delete vertices of degree < 2
Reduction Rule: “Bypass’ each degree two vertex.

Reduction Rule: Put vertices incident to loops in FVS

L

Def.: If no rule applies, the graph is called reduced.
5/\§ S o

5/19

B

Given: Graph G = (V/, E), number k
Question: 3 S C V such that |S| < k and
G[V \ S] is a forest?

EDBACK VERTEX S

L

&

T

Def.: Let G be reduced, S C V be an FVS, and W := V' \ S.
et E\ := edges connecting vertices in W

et Es yy := edges connecting S and W e;\o@c’&
e
mindeg 3 \5\(\
\ N
B|W < > deg(v) =|Eswl|+2|Ew| K|Esw|F2W]|
velW

Lemma: If G is reduced, then |Es w| > |Ew/|
(see also Lemma 5.1 in textbook)

FVS: algorithm given k

0.5+ o
1. while G is not empty: < max k times
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. S+ SU{v}; G+ G\ v
5. If |S| > k: return NO

6. Return YES Runtime: O(n+ m) O(k(n+ m))

Prob. of success: > 1/4 > 4k

Thm: FEEDBACK VERTEX SET can be solved in
O(4% - k(n+ m)) time by a randomised algorithm

LLONGEST PATH

Given: Graph G = (V/, E), number k

Parameter: k (length :=
Question: Does G contain a length k path? # edges)

Thm: LONGEST PATH is NP-complete

Thm: LONGEST PATH can be solved in O*(2") time.

Special Case:
LONGEST PATH in acyclic graphs: Runtime? O(m)

1. Topological sort
2. Let L(v) := longest path to v

3. “backwards” dynamic program
4. Look for v with L(v) = k

LLONGEST PATH

Idea. LONGEST PATH Is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation 7 of V

2. orient edges {u, v} from u to v when 7(u) < w(v)

—

Result G (random variable!)

Obs.: 3 k-path in G — 3 k-path in G

Obs.: Converse does not apply however ...
1 k-path in G — Pr[G has k-path] > 0.

Now: Randomisied algorithm? Runtime?

8/19

9/19

Randomised Orientation: Success Prob.

1. pick random permutation 7 of V

2. orient edges {u, v} from u to v when 7w(u) < w(v)

Result G (random variable!)
Lemma: Let p be a k-path in G. Then Pr[p € é] = ﬁ

Proof: Consider perm. 7, but ignore the elements of p ~~ 7/,
There are (k + 1)! ways to complete 7/, to some 7.
All have equal probability.

—

For two of them, p is a path in G (two correct)

ThUS Pr[pE G | 7T/p] — m

~ Pr[p € G] =

(indep. sum over 7,,)

(k+4)' 0

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:
2. G + random acyclic orientation of G
3. p + longest path in G
4. If |p| > k, return YES.

5. Return NO

Runtime: O*(k!) iterations each O(m) time

Thm: A randomised algorithm can solve LONGEST PATH in
O*(k! - n) time

11/19

LONGEST PATH : attempt 2

Obs. LONGEST PATH is easy on acyclic graphs.

= Graphcoloring!
Color vertices with (k + 1) colors vertices with equal color || wa#ERVOUR

. might not be adjacent STEP
(k-path has k + 1 vertices)
Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are “easy”

Part 1: Finding a colorful path is ¢ FPT in k.

Part 2: J k-path in G — good prob. of a colorful path

12/19

Random Coloring: Success Prob.

Lemma: Let ¢ be a random k-coloring of V/, and
p be a (k — 1)-path.

Then Pr|[p is coloful] > e™*
Proof: Fix the colors of the nodes outside of p
We get kX different colorings of p

Each with equal probability

Of these, k! are colorful
Thus Pr[p is colorful] = 5 > (g)k/k" — e K

O

Stirling:
k! > \/2mkkt3e—k

13/19

Finding Colorful Paths

Approach 1: dynamic program
Given ¢ colored graph G
Table entries:

For a subset S of our colors, and vertex u:
Path(S, u) = true if and only if there is an
S-colorful path ending at v

Recurrence:

Path(S, u) — \/uveE(G) Path(S\ c(u),v), if c(u) € S
false, otherwise

Runtime?

14/19

LONGEST PATH: colortul algorithm deterministic

Algorithm What property of C do we need?
1. repeat for each coloring ¢ € C:
sufficient: VS C V with |S| = k: dc € C: S is colorful

3. If there is a colorful path, return YES

4. Return NoO Thm [§5.6]: There is C with this
property and |C| € 2°(%) log n so that
C| C can be produced in O(|C]|) time.
Runtime:)(iterations each O(2% - m) time
total: O(o X-m logn) | time

Thm: There is an La@®erised algorithm that solves LONGEST
PaTH in O*(o ¥ - m log n) time

Color Coding: User's Guide

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| =

Randomly color vertices

Show that Pr|[copy of H is colorful] > 1/f(k)
Find colorful copy of H in FPT-time

repeat O(f(k)) times

o & W b =

Derandomise)

15/19

16/19

LONGEST PATH: Approach 3 (sketch)

#MULTILABELED WALKS
Given: Graph G = (V/, E), vertex v € V, number k,
edge labels A\(e) € N = {1..k}
Question: How many walks in G start at v, have
length k, but don’'t use an edge label twice?

Algorithm: dynamic program
Recurrence: A(S, u) with SC A ueV
Runtime: O(2%n?)

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k
2. a + number of multilabeled k-walks
3. If ais odd, return YES < correct!

4. Otherwise: return NO

Lemma: Non-simple walks are counted evenly.

Problem: What happens if the number of k-paths is even?

18/19

An “lsolation” Lemma Parameterized Algorithms
Lemma 11.5

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x € U weight w(x) from {1..N}

1/2
with probabilty at least 1 —/n/N we have: L2

argming r E w(v) is unique.
veS

not exam material

19/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k
2. a + number of multilabeled k-walks
3. If ais odd, return YES < correct!

4. Otherwise: return NO

Lemma: Non-simple walks are counted evenly.

Problem: What happens if the number of k-paths is even?

Solution: Isolation Lemma gives edge weights (with F =
k-paths in G), such that a k-path of minimum weight is
unique. Then we just expand DP to count weighted
multilabled walks.

	Titel
	Random Coloring: Success Prob.
	\longp{}: colorful algorithm

