Chair for
 INFORMATICS I

Efficient Algorithms and

Advanced Algorithms

Winter term 2019/20
Lecture 6. Approaches using Randomisation or: Color Coding and "Isolation" Lemmas
Source: [Parameterized Algorithms: §3.3, 5, 5.1, 5.2, 11.2] (slides by Thomas van Dijk \& Alexander Wolff)
Steven Chaplick and Alexander Wolff
Chair for Computer Science I

In this lecture:

- Coloring \neq Graphcoloring.
- k-coloring of n elements:
label each element with one number from 1.. k.

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$

$$
\text { SAT } \stackrel{?}{\in} \mathcal{P} P
$$

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)

Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$

SAT $\stackrel{?}{\in} \mathcal{P} P$

1. Randomly assign binary values to variables.

Return Yes when the formula is satisfied.

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)

Runtime: polynomial
Result: \quad YES-instance $\rightarrow \operatorname{Pr}[Y E S]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$

SAT $\stackrel{?}{\in} \mathcal{P} P$

1. Randomly assign binary values to variables.

Return Yes when the formula is satisfied.
2. O.w.: answer Yes or No w/ equal probability

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad YES-instance $\rightarrow \operatorname{Pr}[\mathrm{YES}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$

SAT $\stackrel{\downarrow}{\in} \mathcal{P} P$

1. Randomly assign binary values to variables.

Return Yes when the formula is satisfied.
2. O.w.: answer Yes or No w/ equal probability

Thm: $N P \subseteq \mathcal{P P} \subseteq P S P A C E$

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$
Las Vegas (ZPP), zero-error probabilistic polynomial time Runtime: expected polynomial Result: correct

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$
Las Vegas (ZPP), zero-error probabilistic polyn dial time Runtime: expected polynomial Result: correct
Monte Carlo:
Runtime:
polynomial
Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{YeS}]$
$\begin{array}{ll}\text { Result: } & \text { Yes-instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}]> \\ & \text { No-instance } \rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq\end{array}$ BPP $\frac{2}{3}$
$\frac{1}{3}$

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$
Las Vegas (ZPP), zero-error probabilistic polyn
Runtime: expected polynomial
Result: correct
Monte Carlo:
Runtime:
polynomial
$\mathcal{B P P} \quad \mathcal{R P}$
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{YeS}] \leq$

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$
Las Vegas (ZPP), zero-error probabilistic polyn
Runtime: expected polynomial
Result: correct
Monte Carlo:
$\begin{array}{llccc}\text { Runtime: } & \text { polynomial } & \mathcal{B P P} & \mathcal{R P} & \text { co-RP } \\ \text { Result: } & \text { Yes-instance } \rightarrow \operatorname{Pr}[\mathrm{YES}]> & \frac{2}{3} & \frac{1}{2} & 1 \\ & \text { No-instance } \rightarrow \operatorname{Pr}[\mathrm{YES}] \leq & \frac{1}{3} & 0 & \frac{1}{2}\end{array}$

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$
Las Vegas (ZPP), zero-error probabilistic polyn Runtime: expected polynomial Result: correct

Monte Carlo:

Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{YeS}]>$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{YES}] \leq$

BPP $\mathcal{R P}$ co-RP

$\frac{1}{2}$
0

Thm: $\mathcal{Z P P}=\mathcal{R P} \cap \operatorname{co-RP}$

Randomised Algorithms

Probabilistic Polynomial Time ($\mathcal{P P}$)
Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{YES}]>\frac{1}{2}$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}] \leq \frac{1}{2}$
Las Vegas (ZPP), zero-error probabilistic polyn Runtime: expected polynomial Result: correct

Monte Carlo:

Runtime: polynomial
Result: \quad Yes-instance $\rightarrow \operatorname{Pr}[\mathrm{YES}]>$
No-instance $\rightarrow \operatorname{Pr}[\mathrm{YES}] \leq$
BPP $\mathcal{R P}$ co-RP
$\begin{array}{ccc}\frac{2}{3} & \frac{1}{2} & 1 \\ \frac{1}{3} & 0 & \frac{1}{2}\end{array}$

Thm: $\mathcal{Z P P}=\mathcal{R P} \cap \operatorname{co-RP}$

Amplification

$\mathcal{R P}: \begin{aligned} & \text { Yes-Instance } \rightarrow \operatorname{Pr}[\mathrm{Yes}] \geq t \\ & \text { No-Instance } \rightarrow \operatorname{Pr}[\mathrm{Yes}]=0\end{aligned}$

Amplification

$\mathcal{R P}: \begin{aligned} & \text { Yes-Instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}] \geq t \\ & \\ & \text { No-Instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}]=0\end{aligned}$
If an $\mathcal{R P}$-algorithm returns Yes, it is correct

Amplification

$\mathcal{R P}: \begin{aligned} & \text { Yes-Instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}] \geq t \\ & \text { No-Instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}]=0\end{aligned}$
If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No, it is incorrect with probability $\leq 1-t$

Amplification

$\mathcal{R P}: \begin{aligned} & \text { Yes-Instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}] \geq t \\ & \text { No-Instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}]=0\end{aligned}$
If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No,
it is incorrect with probability $\leq 1-t$
Algorithm: Run the original algorithm $\lceil 1 / t\rceil$ times Return Yes if every some returns Yes
Otherwise No

Amplification

$\mathcal{R P}$:

$$
\begin{aligned}
& \text { Yes-Instance } \rightarrow \operatorname{Pr}[\mathrm{YES}] \geq t \\
& \text { No-Instance } \rightarrow \operatorname{Pr}[\mathrm{Yes}]=0
\end{aligned}
$$

If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No,
it is incorrect with probability $\leq 1-t$
Algorithm: Run the original algorithm $\lceil 1 / t\rceil$ times Return Yes if every some returns Yes Otherwise No

Error Probability :

Amplification

$\mathcal{R P}$:

$$
\begin{aligned}
& \text { Yes-Instance } \rightarrow \operatorname{Pr}[\mathrm{YeS}] \geq t \\
& \text { No-Instance } \rightarrow \operatorname{Pr}[\mathrm{Yes}]=0
\end{aligned}
$$

If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No,
it is incorrect with probability $\leq 1-t$
Algorithm: Run the original algorithm $\lceil 1 / t\rceil$ times Return Yes if every some returns Yes Otherwise No

Error Probability :

$$
(1-t)^{1 / t}
$$

Amplification

$\mathcal{R P}$:

> Yes-Instance $\rightarrow \operatorname{Pr}[\mathrm{YeS}] \geq t$
> No-Instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]=0$

If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No,
it is incorrect with probability $\leq 1-t$
Algorithm: Run the original algorithm $\lceil 1 / t\rceil$ times Return Yes if every some returns Yes
Otherwise No

$$
x:=1 / t
$$

Error Probability :

$$
(1-t)^{1 / t}=\left(1-\frac{1}{x}\right)^{x}
$$

Amplification

$\mathcal{R P}$:

> Yes-Instance $\rightarrow \operatorname{Pr}[\mathrm{YeS}] \geq t$
> No-Instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]=0$

If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No,
it is incorrect with probability $\leq 1-t$
Algorithm: Run the original algorithm $\lceil 1 / t\rceil$ times Return Yes if every some returns Yes
Otherwise No

$$
x:=1 / t
$$

Error Probability :

$$
(1-t)^{1 / t}=\left(1-\frac{1}{x}\right)^{x}<\frac{1}{e}
$$

Amplification

$\mathcal{R P}$:

> Yes-Instance $\rightarrow \operatorname{Pr}[\mathrm{YeS}] \geq t$
> No-Instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]=0$

If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No,
it is incorrect with probability $\leq 1-t$
Algorithm: Run the original algorithm $\lceil 1 / t\rceil$ times Return Yes if every some returns Yes
Otherwise No

$$
x:=1 / t
$$

Error Probability :

$$
(1-t)^{1 / t}=\left(1-\frac{1}{x}\right)^{x}<\frac{1}{e}<\frac{1}{2}
$$

Amplification

$\mathcal{R P}$:

> Yes-Instance $\rightarrow \operatorname{Pr}[\mathrm{YES}] \geq t$
> No-Instance $\rightarrow \operatorname{Pr}[\mathrm{Yes}]=0$

If an $\mathcal{R P}$-algorithm returns Yes, it is correct
If an $\mathcal{R P}$-algorithm returns No,
it is incorrect with probability $\leq 1-t$
Algorithm: Run the original algorithm $\lceil 1 / t\rceil$ times Return Yes if every some returns Yes Otherwise No $\quad x:=1 / t$

Error Probability :

$$
(1-t)^{1 / t}=\left(1-\frac{1}{x}\right)^{x}<\frac{1}{e}<\frac{1}{2}
$$

(Obs.: Repeating $100 \cdot t^{-1}$ times \rightsquigarrow error prob. $<2^{-100}$.)

Feedback Vertex Set

Given: $\quad G r a p h ~ G=(V, E)$, number k Question: $\exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k Question: $\exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Reduction Rule: Delete vertices of degree <2

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k Question: $\exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?
Reduction Rule: Delete vertices of degree <2
Reduction Rule: "Bypass" each degree two vertex.

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k Question: $\exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?
Reduction Rule: Delete vertices of degree <2
Reduction Rule: "Bypass" each degree two vertex.
Reduction Rule: Put vertices incident to loops in FVS

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k Question: $\exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Reduction Rule: Delete vertices of degree <2
Reduction Rule: "Bypass" each degree two vertex.
Reduction Rule: Put vertices incident to loops in FVS
Def.: If no rule applies, the graph is called reduced.

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W

$$
\leq \sum_{v \in W} \operatorname{deg}(v)
$$

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W

$$
3|W| \leq \sum_{v \in W} \operatorname{deg}(v)
$$

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W mindeg 3
$3|W| \leq \sum_{v \in W} \operatorname{deg}(v)$

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W mindeg 3
$3|W| \leq \sum_{v \in W} \operatorname{deg}(v)=\left|E_{S, W}\right|+2\left|E_{W}\right|$

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W mindeg 3

$$
3|W| \leq \sum_{v \in W} \operatorname{deg}(v)=\left|E_{S, W}\right|+2\left|E_{W}\right|
$$

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W mindeg 3

$$
3|W| \leq \sum_{v \in W} \operatorname{deg}(v)=\left|E_{S, W}\right|+2\left|E_{W}\right|<\left|E_{S, W}\right|+2|W|
$$

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W mindeg 3

$$
3|W| \leq \sum_{v \in W} \operatorname{deg}(v)=\left|E_{S, W}\right|+2\left|E_{W}\right|<\left|E_{S, W}\right|+2|W|
$$

Feedback Vertex Set

Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Let $E_{W}:=$ edges connecting vertices in W Let $E_{S, W}:=$ edges connecting S and W mindeg 3

$$
3|W| \leq \sum_{v \in W} \operatorname{deg}(v)=\left|E_{S, W}\right|+2\left|E_{W}\right|<\left|E_{S, W}\right|+2|W|
$$

Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
(see also Lemma 5.1 in textbook)

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k
Question: $\exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$. Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$

Feedback Vertex Set

Given: $\quad G r a p h ~ G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and $G[V \backslash S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$.
Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
Idea: Find some $v \in S$

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k
Question: $\exists S \subseteq V$ such that $|S| \leq k$ and
$G[V \backslash S]$ is a forest?
Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$.
Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
Idea: Find some $v \in S$
Algorithm:

1. pick each $e \in E$ with equal prob.
2. pick $v \in e$ with equal prob.

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k
Question: $\exists S \subseteq V$ such that $|S| \leq k$ and
$G[V \backslash S]$ is a forest?
Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$.
Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
Idea: Find some $v \in S$
Algorithm: 1. pick each $e \in E$ with equal prob.
2. pick $v \in e$ with equal prob.

Success probability: at least

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k
Question: $\exists S \subseteq V$ such that $|S| \leq k$ and
$G[V \backslash S]$ is a forest?
Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$.
Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
E_{S} ?
Idea: Find some $v \in S$
Algorithm:

1. pick each $e \in E$ with equal prob.
2. pick $v \in e$ with equal prob.

Success probability: at least

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and
$G[V \backslash S]$ is a forest?
Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$.
Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
E_{S} ?
Idea: Find some $v \in S$
Algorithm:

1. pick each $e \in E$ with equal prob. $>1 / 2$
2. pick $v \in e$ with equal prob.

Success probability:
 at least
 $1 / 2$

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k
Question: $\exists S \subseteq V$ such that $|S| \leq k$ and
$G[V \backslash S]$ is a forest?
Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$.
Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
E_{S} ?
Idea: Find some $v \in S$
Algorithm:

1. pick each $e \in E$ with equal prob. $>1 / 2$
2. pick $v \in e$ with equal prob.
$>1 / 2$
Success probability: at least $\quad 1 / 2 \cdot 1 / 2=1 / 4$

Feedback Vertex Set
Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \exists S \subseteq V$ such that $|S| \leq k$ and
$G[V \backslash S]$ is a forest?
Def.: Let G be reduced, $S \subseteq V$ be an FVS , and $W:=V \backslash S$.
Lemma: If G is reduced, then $\left|E_{S, W}\right| \geq\left|E_{W}\right|$
E_{S} ?
Idea: Find some $v \in S$
Algorithm:

1. pick each $e \in E$ with equal prob. $>1 / 2$
2. pick $v \in e$ with equal prob.
$>1 / 2$
Success probability: at least $\quad 1 / 2 \cdot 1 / 2=1 / 4$
Obs.: With prob. $\geq 1 / 4$, we find a node from an (unknown) optimal FVS

FVS: algorithm given k

1. while G is not empty:

FVS: algorithm given k

1. while G is not empty:
2. Apply reduction rules

FVS: algorithm given k

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide

FVS: algorithm given k

0. $S \leftarrow \varnothing$

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide 4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$

FVS: algorithm given k

0. $S \leftarrow \varnothing$

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
5. If $|S|>k$: return No

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide 4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
4. If $|S|>k$: return No
5. Return Yes

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
5. If $|S|>k$: return No
6. Return Yes

Runtime:
Prob. of success:

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
5. If $|S|>k$: return No
6. Return Yes

Runtime: $O(n+m)$
Prob. of success:

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
5. If $|S|>k$: return No
6. Return Yes

Runtime: $O(n+m)$
Prob. of success: $>1 / 4$

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide 4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
4. If $|S|>k$: return No
5. Return Yes

Runtime: $O(n+m)$
Prob. of success: $>1 / 4$

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
$\leftarrow \max k$ times
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
5. If $|S|>k$: return No
6. Return Yes

Runtime: $O(n+m) \quad O(k(n+m))$
Prob. of success: $>1 / 4$

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
$\leftarrow \max k$ times
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
5. If $|S|>k$: return No
6. Return Yes

Runtime: $O(n+m) \quad O(k(n+m))$
Prob. of success: $>1 / 4>4^{-k}$

FVS: algorithm given k
0. $S \leftarrow \varnothing$

1. while G is not empty:
$\leftarrow \max k$ times
2. Apply reduction rules
3. pick a vertex v via randomized proc. on last slide
4. $S \leftarrow S \cup\{v\} ; G \leftarrow G \backslash v$
5. If $|S|>k$: return No
6. Return Yes

Runtime: $O(n+m) \quad O(k(n+m))$
Prob. of success: $>1 / 4>4^{-k}$
Thm: Feedback Vertex Set can be solved in $O\left(4^{k} \cdot k(n+m)\right)$ time by a randomised algorithm

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Question: Does G contain a length k path?
(length := \# edges)

Longest Path

Given: \quad Graph $G=(V, E)$, number k
(length :=
Question: Does G contain a length k path? \# edges)

Thm: Longest Path is NP-complete

Longest Path

Given: \quad Graph $G=(V, E)$, number k

Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Parameter: k
Question: Does G contain a length k path? \# edges)
Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Parameter: k
Question: Does G contain a length k path? \# edges)
Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Special Case:

Longest Path in acyclic graphs: Runtime?

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Parameter: k
Question: Does G contain a length k path? \# edges)
Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Special Case:

Longest Path in acyclic graphs: Runtime? $O(m)$

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Parameter: k
Question: Does G contain a length k path? \# edges)
Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Special Case:

Longest Path in acyclic graphs: Runtime? $O(m)$

1. Topological sort

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Parameter: k
Question: Does G contain a length k path? \# edges)
Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Special Case:

Longest Path in acyclic graphs: Runtime? $O(m)$

1. Topological sort
2. Let $L(v):=$ longest path to v

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Parameter: k (length :=
Question: Does G contain a length k path? \# edges)
Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Special Case:

Longest Path in acyclic graphs: Runtime? $O(m)$

1. Topological sort
2. Let $L(v):=$ longest path to v
3. "backwards" dynamic program

Longest Path

Given: \quad Graph $G=(V, E)$, number k
Parameter: k (length :=
Question: Does G contain a length k path? \# edges)
Thm: Longest Path is NP-complete
Thm: Longest Path can be solved in $O^{*}\left(2^{n}\right)$ time.

Special Case:

Longest Path in acyclic graphs: Runtime? $O(m)$

1. Topological sort
2. Let $L(v):=$ longest path to v
3. "backwards" dynamic program
4. Look for v with $L(v)=k$

LONGEST PATH

Idea. Longest Path is easy on acyclic graphs

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

1. pick random permutation π of V

Longest Path

Idea. Longest Path is easy on acyclic graphs Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Longest Path

Idea. Longest Path is easy on acyclic graphs Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$
\square Result $\rightarrow \vec{G}$ (random variable!)

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Obs.: $\exists k$-path in $\vec{G} \rightarrow \exists k$-path in G

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Obs.: $\exists k$-path in $\vec{G} \rightarrow \exists k$-path in G
Obs.: Converse does not apply however ...

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Obs.: $\exists k$-path in $\vec{G} \rightarrow \exists k$-path in G
Obs.: Converse does not apply however ...
$\exists k$-path in $G \rightarrow \operatorname{Pr}[\vec{G}$ has k-path $]>0$.

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Obs.: $\exists k$-path in $\vec{G} \rightarrow \exists k$-path in G
Obs.: Converse does not apply however ...
$\exists k$-path in $G \rightarrow \operatorname{Pr}[\vec{G}$ has k-path $]>0$.
Now: Randomisied algorithm?

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Obs.: $\exists k$-path in $\vec{G} \rightarrow \exists k$-path in G
Obs.: Converse does not apply however ...
$\exists k$-path in $G \rightarrow \operatorname{Pr}[\vec{G}$ has k-path $]>0$.
Now: Randomisied algorithm? Runtime?

Longest Path

Idea. Longest Path is easy on acyclic graphs
Plan: make G acyclic!

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Obs.: $\exists k$-path in $\vec{G} \rightarrow \exists k$-path in G
Obs.: Converse does not apply however ...
$\exists k$-path in $G \rightarrow \operatorname{Pr}[\vec{G}$ has k-path $]>0$.
Now: Randomisied algorithm? Runtime?

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\Rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\Rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Obs.: Order of vertices $\notin p$ is irrelevant

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$

$$
\pi: \quad 14268537
$$

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$

$$
\begin{array}{lllllllll}
\pi: & 1 & 4 & 2 & 6 & 8 & 5 & 3 & 7 \\
\mathrm{p}: & (5,3, & 6) & & & &
\end{array}
$$

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$

$$
\begin{array}{rllllll}
\pi: & 14 & 4 & 6 & 8 & 5 & 3
\end{array} 7
$$

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\Rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$ There are $(k+1)$! ways to complete π / p to some π^{\prime}.

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$ There are $(k+1)$! ways to complete $\pi_{/ p}$ to some π^{\prime}. All have equal probability.

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$ There are $(k+1)$! ways to complete $\pi_{/ p}$ to some π^{\prime}. All have equal probability.
For two of them, p is a path in \vec{G} (two correct)

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$ There are $(k+1)$! ways to complete π / p to some π^{\prime}. All have equal probability.
For two of them, p is a path in \vec{G} (two correct)
Thus $\operatorname{Pr}\left[p \in \vec{G} \mid \pi_{/ p}\right]=\frac{2}{(k+1)!}$

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$ There are $(k+1)$! ways to complete π / p to some π^{\prime}. All have equal probability.
For two of them, p is a path in \vec{G} (two correct)
Thus $\operatorname{Pr}\left[p \in \vec{G} \mid \pi_{/ p}\right]=\frac{2}{(k+1)!}$
$\rightsquigarrow \operatorname{Pr}[p \in \vec{G}]=$

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi_{/ p}$ There are $(k+1)$! ways to complete π / p to some π^{\prime}. All have equal probability.
For two of them, p is a path in \vec{G} (two correct)
Thus $\operatorname{Pr}[p \in \vec{G} \mid \pi / p]=\frac{2}{(k+1)!}$
$\rightsquigarrow \operatorname{Pr}[p \in \vec{G}]=\frac{2}{(k+1)!} \quad\left(\right.$ indep. sum over $\left.\pi_{/ p}\right)$

Randomised Orientation: Success Prob.

1. pick random permutation π of V
2. orient edges $\{u, v\}$ from u to v when $\pi(u)<\pi(v)$

Result $\rightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\operatorname{Pr}[p \in \vec{G}]=\frac{2}{(k+1)!}$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi / p$ There are $(k+1)$! ways to complete π / p to some π^{\prime}. All have equal probability.
For two of them, p is a path in \vec{G} (two correct)
Thus $\operatorname{Pr}[p \in \vec{G} \mid \pi / p]=\frac{2}{(k+1)!}$
$\rightsquigarrow \operatorname{Pr}[p \in \vec{G}]=\frac{2}{(k+1)!} \quad\left(\right.$ indep. sum over $\left.\pi_{/ p}\right)$
\square

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)$!/2 times:

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)!/ 2$ times:
2. $\vec{G} \leftarrow$ random acyclic orientation of G

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)!/ 2$ times:
2. $\vec{G} \leftarrow$ random acyclic orientation of G
3. $p \leftarrow$ longest path in \vec{G}

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)!/ 2$ times:
2. $\vec{G} \leftarrow$ random acyclic orientation of G
3. $p \leftarrow$ longest path in \vec{G}
4. If $|p| \geq k$, return Yes.

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)!/ 2$ times:
2. $\vec{G} \leftarrow$ random acyclic orientation of G
3. $p \leftarrow$ longest path in \vec{G}
4. If $|p| \geq k$, return Yes.
5. Return No

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)!/ 2$ times:
2. $\vec{G} \leftarrow$ random acyclic orientation of G
3. $p \leftarrow$ longest path in \vec{G}
4. If $|p| \geq k$, return Yes.
5. Return No

Runtime: $O^{*}(k!)$ iterations

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)!/ 2$ times:
2. $\vec{G} \leftarrow$ random acyclic orientation of G
3. $p \leftarrow$ longest path in \vec{G}
4. If $|p| \geq k$, return Yes.
5. Return No

Runtime: $O^{*}(k!)$ iterations each $O(m)$ time

Randomised Orientation: Algorithm

Algorithm

1. Repeat $(k+1)$!/2 times:
2. $\vec{G} \leftarrow$ random acyclic orientation of G
3. $p \leftarrow$ longest path in \vec{G}
4. If $|p| \geq k$, return Yes.
5. Return No

Runtime: $O^{*}(k!)$ iterations each $O(m)$ time
Thm: A randomised algorithm can solve Longest Path in $O^{*}(k!\cdot n)$ time

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.
Color vertices with $(k+1)$ colors (k-path has $k+1$ vertices)
\neq Graphcoloring!
vertices with equal color might not be adjacent

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.
Color vertices with $(k+1)$ colors (k-path has $k+1$ vertices)
\neq Graphcoloring!
vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.
Color vertices with $(k+1)$ colors (k-path has $k+1$ vertices)
\neq Graphcoloring!
vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.
Color vertices with $(k+1)$ colors (k-path has $k+1$ vertices)
\neq Graphcoloring!
vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"
Part 1: Finding a colorful path is easy

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.
Color vertices with $(k+1)$ colors (k-path has $k+1$ vertices)
\neq Graphcoloring!
vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"
Part 1: Finding a colorful path is ey

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.
Color vertices with $(k+1)$ colors (k-path has $k+1$ vertices)
\neq Graphcoloring!
vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"
Part 1: Finding a colorful path is FPT in k.

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.
Color vertices with $(k+1)$ colors (k-path has $k+1$ vertices)
\neq Graphcoloring!
vertices with equal color
might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"
Part 1: Finding a colorful path is ay FPT in k.
Part 2: $\exists k$-path in $G \rightarrow$ good prob. of a colorful path

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a $(k-1)$-path.
Then $\operatorname{Pr}[p$ is coloful $]>$

Proof:

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a $(k-1)$-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Consider perm. π, but ignore the elements of $p \rightsquigarrow \pi / p$

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a $(k-1)$-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a $(k-1)$-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p
There are $(k+1)$! ways to complete $\pi_{/ p}$ to some π^{\prime}.

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a $(k-1)$-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p We get k^{k} different colorings of p

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a ($k-1$)-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p
We get k^{k} different colorings of p
Each with equal probability

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a ($k-1$)-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p
We get k^{k} different colorings of p
Each with equal probability
For two of them, p is a path in \vec{G}

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a ($k-1$)-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p
We get k^{k} different colorings of p
Each with equal probability
Of these, k ! are colorful

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a ($k-1$)-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p
We get k^{k} different colorings of p
Each with equal probability
Of these, k ! are colorful
Thus $\operatorname{Pr}[p$ is colorful $]=$

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a ($k-1$)-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p
We get k^{k} different colorings of p
Each with equal probability
Of these, k ! are colorful
Thus $\operatorname{Pr}[p$ is colorful $]=\frac{k!}{k^{k}}$

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a ($k-1$)-path.
Then $\operatorname{Pr}[p$ is coloful $]>$
Proof: Fix the colors of the nodes outside of p
We get k^{k} different colorings of p
Each with equal probability
Of these, k ! are colorful
Thus $\operatorname{Pr}[p$ is colorful $]=\frac{k!}{k^{k}}>\left(\frac{k}{e}\right)^{k} / k^{k}$

Stirling:

$$
k!\geq \sqrt{2 \pi} k^{k+\frac{1}{2}} e^{-k}
$$

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a $(k-1)$-path.
Then $\operatorname{Pr}[p$ is coloful $]>e^{-k}$
Proof: Fix the colors of the nodes outside of p
We get k^{k} different colorings of p
Each with equal probability
Of these, k ! are colorful
Thus $\operatorname{Pr}[p$ is colorful $]=\frac{k!}{k^{k}}>\left(\frac{k}{e}\right)^{k} / k^{k}=e^{-k}$

Finding Colorful Paths

Approach 1: dynamic program
Given c colored graph G

Finding Colorful Paths

Approach 1: dynamic program
Given c colored graph G
Table entries:

Finding Colorful Paths

Approach 1: dynamic program
Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u : $\operatorname{Path}(S, u)=$ true if and only if there is an S-colorful path ending at u

Finding Colorful Paths

Approach 1: dynamic program
Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u : $\operatorname{Path}(S, u)=$ true if and only if there is an S-colorful path ending at u
Recurrence:

Finding Colorful Paths

Approach 1: dynamic program
Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u :
$\operatorname{Path}(S, u)=$ true if and only if there is an S-colorful path ending at u
Recurrence:
$\operatorname{Path}(S, u)=$

Finding Colorful Paths

Approach 1: dynamic program
Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u :
$\operatorname{Path}(S, u)=$ true if and only if there is an
S-colorful path ending at u
Recurrence:

$$
\operatorname{Path}(S, u)=\bigvee_{u v \in E(G)} \operatorname{Path}(S \backslash c(u), v) \text {, if } c(u) \in S
$$

Finding Colorful Paths

Approach 1: dynamic program
Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u :
$\operatorname{Path}(S, u)=$ true if and only if there is an
S-colorful path ending at u
Recurrence:

$$
\operatorname{Path}(S, u)=\bigvee_{u v \in E(G)} \operatorname{Path}(S \backslash c(u), v) \text {, if } c(u) \in S
$$

Runtime?

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

How big is this graph?

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

How big is this graph? $O\left(2^{k} \cdot n\right)$ vertices $O\left(2^{k} \cdot m\right)$ edges Runtime:

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

How big is this graph? $O\left(2^{k} \cdot n\right)$ vertices $O\left(2^{k} \cdot m\right)$ edges
Runtime: $O\left(2^{k} \cdot m\right)$ since...

Finding Colorful Paths

Approach 2: For each subset S of the colors, create a copy G_{S} where G_{S} contains the vertices colored S and the edges are ...

How big is this graph? $O\left(2^{k} \cdot n\right)$ vertices $O\left(2^{k} \cdot m\right)$ edges Runtime: $O\left(2^{k} \cdot m\right)$ since... graph is acyclic:)

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
2. pick a random k-coloring c of V

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
2. pick a random k-coloring c of V
3. If there is a colorful path, return Yes

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
2. pick a random k-coloring c of V
3. If there is a colorful path, return YeS
4. Return No

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
2. pick a random k-coloring c of V
3. If there is a colorful path, return Yes
4. Return No

Runtime: e^{k} iterations each $O\left(2^{k} \cdot m\right)$ time

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
2. pick a random k-coloring c of V
3. If there is a colorful path, return Yes
4. Return No

Runtime: e^{k} iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
2. pick a random k-coloring c of V
3. If there is a colorful path, return Yes
4. Return No

Runtime: e^{k} iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
let us recall the purpose of this
2. pick a random k-coloring c of V
3. If there is a colorful path, return Yes
4. Return No

Runtime: e^{k} iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

Longest Path: colorful algorithm

Algorithm

1. repeat e^{k} times:
let us recall the purpose of this
2. pick a random k-coloring c of V
3. If there is a colorful path, return Yes
4. Return No

> guarantees (randomised): k-path in $G \rightarrow c$ colorful path

Runtime: e^{k} iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

Longest Path: colorful algorithm

Algorithm

1. repeat for each coloring $c \in \mathcal{C}$:
2. If there is a colorful path, return YES
3. Return No

$$
|\mathcal{C}|
$$

Runtime: $\boldsymbol{\chi}^{k}$ iterations each $O\left(2^{k} \cdot m\right)$ time

$$
\text { total: } O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right) \text { time }
$$

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

Longest Path: colorful algorithm

Algorithm
What property of \mathcal{C} do we need?

1. repeat for each coloring $c \in \mathcal{C}$:
2. If there is a colorful path, return YES
3. Return No

$$
|\mathcal{C}|
$$

Runtime: $\boldsymbol{\chi}^{k}$ iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

Longest Path: colorful algorithm

Algorithm
What property of \mathcal{C} do we need?

1. repeat for each coloring $c \in \mathcal{C}$:
sufficient: $\forall S \subseteq V$ with $|S|=k: \exists c \in \mathcal{C}: S$ is colorful
2. If there is a colorful path, return Yes
3. Return No

$$
|\mathcal{C}|
$$

Runtime: \boldsymbol{x}^{k} iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

LONGEST Path: colorful algorithm deterministic

Algorithm
What property of \mathcal{C} do we need?

1. repeat for each coloring $c \in \mathcal{C}$:
sufficient: $\forall S \subseteq V$ with $|S|=k: \exists c \in \mathcal{C}: S$ is colorful
2. If there is a colorful path, return Yes
3. Return No
$|\mathcal{C}|$
Runtime: \boldsymbol{x}^{k} iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

LONGEST Path: colorful algorithm deterministic

Algorithm
What property of \mathcal{C} do we need?

1. repeat for each coloring $c \in \mathcal{C}$:
sufficient: $\forall S \subseteq V$ with $|S|=k: \exists c \in \mathcal{C}: S$ is colorful
2. If there is a colorful path, return YES
3. Return No

Thm [§5.6]: There is \mathcal{C} with this property and $|\mathcal{C}| \in 2^{O(k)} \log n$ so that $|\mathcal{C}| \quad \mathcal{C}$ can be produced in $O(|\mathcal{C}|)$ time.
Runtime: \boldsymbol{x}^{k} iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left((2 e)^{k} \cdot m\right) \subset O\left(5.43657^{k} \cdot m\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

LONGEST Path: colorful algorithm deterministic

Algorithm
What property of \mathcal{C} do we need?

1. repeat for each coloring $c \in \mathcal{C}$:
sufficient: $\forall S \subseteq V$ with $|S|=k: \exists c \in \mathcal{C}: S$ is colorful
2. If there is a colorful path, return YES
3. Return No

Thm [§5.6]: There is \mathcal{C} with this property and $|\mathcal{C}| \in 2^{O(k)} \log n$ so that $|\mathcal{C}| \quad \mathcal{C}$ can be produced in $O(|\mathcal{C}|)$ time.
Runtime: $\mathbb{*}^{k}$ iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left(\alpha^{k} \cdot m \log n\right)$ time

Thm: There is a randomised algorithm that solves LONGEST Path in $O^{*}\left(5.44^{k} \cdot m\right)$ time.

LONGEST Path: colorful algorithm deterministic

Algorithm
What property of \mathcal{C} do we need?

1. repeat for each coloring $c \in \mathcal{C}$:
sufficient: $\forall S \subseteq V$ with $|S|=k: \exists c \in \mathcal{C}: S$ is colorful
2. If there is a colorful path, return YES
3. Return No

Thm [§5.6]: There is \mathcal{C} with this property and $|\mathcal{C}| \in 2^{O(k)} \log n$ so that $|\mathcal{C}| \quad \mathcal{C}$ can be produced in $O(|\mathcal{C}|)$ time.
Runtime: $\mathbb{*}^{k}$ iterations each $O\left(2^{k} \cdot m\right)$ time total: $O\left(\alpha^{k} \cdot m \log n\right)$ time

Thm: There is an algorithm that solves LONGEST Path in $O^{*}\left(\alpha^{k} \cdot m \log n\right)$ time

Color Coding: User's Guide

Given: Graph G

Question: Is H a(n induced) subgraph of G (graph $H,|H|=$,

Color Coding: User's Guide

Given: Graph G

Question: Is H a(n induced) subgraph of G (graph $H,|H|=$,

1. Randomly color vertices

Color Coding: User's Guide

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph $H,|H|=$,

1. Randomly color vertices
2. Show that $\operatorname{Pr}[$ copy of H is colorful $] \geq 1 / f(k)$

Color Coding: User's Guide

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph $H,|H|=$,

1. Randomly color vertices
2. Show that $\operatorname{Pr}[$ copy of H is colorful $] \geq 1 / f(k)$
3. Find colorful copy of H in FPT-time

Color Coding: User's Guide

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph $H,|H|=$,

1. Randomly color vertices
2. Show that $\operatorname{Pr}[$ copy of H is colorful $] \geq 1 / f(k)$
3. Find colorful copy of H in FPT-time
4. repeat $O(f(k))$ times

Color Coding: User's Guide

Given: Graph G

Question: Is H a(n induced) subgraph of G (graph $H,|H|=$,

1. Randomly color vertices
2. Show that $\operatorname{Pr}[$ copy of H is colorful $] \geq 1 / f(k)$
3. Find colorful copy of H in FPT-time
4. repeat $O(f(k))$ times
(5. Derandomise)

Longest Path: Approach 3 (sketch)

\#Multilabeled Walks
Given: Graph $G=(V, E)$, vertex $v \in V$, number k, edge labels $\lambda(e) \in \Lambda=\{1 . . k\}$
Question: How many walks in G start at v, have length k, but don't use an edge label twice?

Longest Path: Approach 3 (sketch)

\#Multilabeled Walks
Given: Graph $G=(V, E)$, vertex $v \in V$, number k, edge labels $\lambda(e) \in \Lambda=\{1 . . k\}$
Question: How many walks in G start at v, have length k, but don't use an edge label twice?

Algorithm:

Longest Path: Approach 3 (sketch)

\#Multilabeled Walks
Given: Graph $G=(V, E)$, vertex $v \in V$, number k, edge labels $\lambda(e) \in \Lambda=\{1 . . k\}$
Question: How many walks in G start at v, have length k, but don't use an edge label twice?

Algorithm: dynamic program
Recurrence:

Longest Path: Approach 3 (sketch)

\#Multilabeled Walks
Given: $\quad G r a p h ~ G=(V, E)$, vertex $v \in V$, number k, edge labels $\lambda(e) \in \Lambda=\{1 . . k\}$
Question: How many walks in G start at v, have length k, but don't use an edge label twice?

Algorithm: dynamic program
Recurrence: $A(S, u)$ with $S \subseteq \Lambda, u \in V$
Runtime:

Longest Path: Approach 3 (sketch)

\#Multilabeled Walks
Given: \quad Graph $G=(V, E)$, vertex $v \in V$, number k, edge labels $\lambda(e) \in \Lambda=\{1 . . k\}$
Question: How many walks in G start at v, have length k, but don't use an edge label twice?

Algorithm: dynamic program
Recurrence: $A(S, u)$ with $S \subseteq \Lambda, u \in V$
Runtime: $O\left(2^{k} n^{2}\right)$

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes ?!
4. Otherwise: return No

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes
4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes
4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes
4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes
4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes
\leftarrow correct!
4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes
\leftarrow correct!
4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.
Problem: What happens if the number of k-paths is even?

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$.

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1 . . N\}$

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1 . . N\}$ with probabilty at least $1-n / N$ we have:

$$
\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v) \text { is unique. }
$$

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1 . . N\}$ with probabilty at least $1-n / N$ we have:

$$
\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v) \text { is unique. }
$$

Proof: Let $\alpha(x)=\min _{S \in \mathcal{F}, x \notin S} \omega(S)-\min _{S \in \mathcal{F}, x \in S} \omega(S \backslash\{x\})$

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1$.. $N\}$ with probabilty at least $1-n / N$ we have:

$$
\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v) \text { is unique. }
$$

Proof: Let $\alpha(x)=\min _{S \in \mathcal{F}, x \notin S} \omega(S)-\min _{S \in \mathcal{F}, x \in S} \omega(S \backslash\{x\})$
since $\alpha(x)$ does not depend on $\omega(x): \operatorname{Pr}[\alpha(x)=\omega(x)] \leq 1 / N$.

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1 . . N\}$ with probabilty at least $1-n / N$ we have:

$$
\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v) \text { is unique. }
$$

Proof: Let $\alpha(x)=\min _{S \in \mathcal{F}, x \notin S} \omega(S)-\min _{S \in \mathcal{F}, x \in S} \omega(S \backslash\{x\})$
since $\alpha(x)$ does not depend on $\omega(x): \operatorname{Pr}[\alpha(x)=\omega(x)] \leq 1 / N$.
Thus: $\operatorname{Pr}[\exists x \in U: \alpha(x)=\omega(x)] \leq n / N$.

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5
Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1 . . N\}$ with probabilty at least $1-n / N$ we have:

$$
\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v) \text { is unique. }
$$

Proof: Let $\alpha(x)=\min _{S \in \mathcal{F}, x \notin S} \omega(S)-\min _{S \in \mathcal{F}, x \in S} \omega(S \backslash\{x\})$
since $\alpha(x)$ does not depend on $\omega(x): \operatorname{Pr}[\alpha(x)=\omega(x)] \leq 1 / N$.
Thus: $\operatorname{Pr}[\exists x \in U: \alpha(x)=\omega(x)] \leq n / N$.
Suppose that $A \neq B \in \mathcal{F}$ are both minimum. Now $\exists x \in U: \alpha(x)=\omega(B)-(\omega(A)-\omega(x))=\omega(x)$.

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5
Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1 . . N\}$ with probabilty at least $1-n / N$ we have:

$$
\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v) \text { is unique. }
$$

Proof: Let $\alpha(x)=\min _{S \in \mathcal{F}, x \notin S} \omega(S)-\min _{S \in \mathcal{F}, x \in S} \omega(S \backslash\{x\})$
since $\alpha(x)$ does not depend on $\omega(x): \operatorname{Pr}[\alpha(x)=\omega(x)] \leq 1 / N$.
Thus: $\operatorname{Pr}[\exists x \in U: \alpha(x)=\omega(x)] \leq n / N$.
Suppose that $A \neq B \in \mathcal{F}$ are both minimum. Now $\exists x \in U: \alpha(x)=\omega(B)-(\omega(A)-\omega(x))=\omega(x)$.

This has probability at most n / N. \square

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5
Lemma: Let \mathcal{F} be a family of subsets of U, with $|U|=n$. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1$.. $N\}$ with probabilty at least $1-\frac{1 / 2}{n} / N$ we have:

$$
\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v) \text { is unique. }
$$

Proof: Let $\alpha(x)=\min _{S \in \mathcal{F}, x \notin S} \omega(S)-\min _{S \in \mathcal{F}, x \in S} \omega(S \backslash\{x\})$
since $\alpha(x)$ does not depend on $\omega(x): \operatorname{Pr}[\alpha(x)=\omega(x)] \leq 1 / N$.
Thus: $\operatorname{Pr}[\exists x \in U: \alpha(x)=\omega(x)] \leq n / N$.
Suppose that $A \neq B \in \mathcal{F}$ are both minimum. Now $\exists x \in U: \alpha(x)=\omega(B)-(\omega(A)-\omega(x))=\omega(x)$.

This has probability at most n / N. \square

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels $1 . . k$
2. $a \leftarrow$ number of multilabeled k-walks
3. If a is odd, return Yes
\leftarrow correct!
4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.
Problem: What happens if the number of k-paths is even?
Solution: Isolation Lemma gives edge weights (with $\mathcal{F}=$ k-paths in G), such that a k-path of minimum weight is unique. Then we just expand DP to count weighted multilabled walks.

