

Advanced Algorithms

Winter term 2019/20

Lecture 6. Approaches using Randomisation or: Color Coding and "Isolation" Lemmas

Source: [Parameterized Algorithms: §3.3, 5, 5.1, 5.2, 11.2]

(slides by Thomas van Dijk & Alexander Wolff)

Steven Chaplick and Alexander Wolff

Chair for Computer Science I

In this lecture:

- Coloring \(\neq \) Graphcoloring.
- *k*-coloring of *n* elements: label each element with one number from 1..*k*.

Probabilistic Polynomial Time (PP)

Runtime: polynomial

Result: YES-instance $\rightarrow \Pr[YES] > \frac{1}{2}$

No-instance $\rightarrow \Pr[YES] \leq \frac{1}{2}$

Probabilistic Polynomial Time (PP)

Runtime: polynomial

Result: YES-instance $\rightarrow \Pr[YES] > \frac{1}{2}$ No-instance $\rightarrow \Pr[YES] \leq \frac{1}{2}$

$$\mathsf{SAT} \overset{?}{\in} \mathcal{PP}$$

Probabilistic Polynomial Time (PP)

Runtime: polynomial

Result: YES-instance $\rightarrow \Pr[YES] > \frac{1}{2}$

No-instance $\rightarrow \Pr[YES] \leq \frac{1}{2}$

$$\mathsf{SAT} \overset{?}{\in} \mathcal{PP}$$

1. Randomly assign binary values to variables. Return YES when the formula is satisfied.

Probabilistic Polynomial Time (PP)

Runtime: polynomial

Result: YES-instance $\rightarrow \Pr[YES] > \frac{1}{2}$

No-instance $\rightarrow \Pr[YES] \leq \frac{1}{2}$

$$\mathsf{SAT} \overset{?}{\in} \mathcal{PP}$$

- 1. Randomly assign binary values to variables. Return YES when the formula is satisfied.
- **2.** O.w.: answer YES or NO w/ equal probability

Probabilistic Polynomial Time (PP)

Runtime: polynomial

Result: YES-instance $\rightarrow \Pr[YES] > \frac{1}{2}$

No-instance $\rightarrow \Pr[YES] \leq \frac{1}{2}$

$$SAT \in \mathcal{PP}$$

- 1. Randomly assign binary values to variables. Return YES when the formula is satisfied.
- **2.** O.w.: answer YES or NO w/ equal probability

Thm: $NP \subseteq PP \subseteq PSPACE$

Probabilistic Polynomial Time (PP)

Runtime: polynomial

Result: YES-instance $\rightarrow \Pr[YES] > \frac{1}{2}$

No-instance $\rightarrow \Pr[YES] \leq \frac{1}{2}$

Las Vegas (\mathbb{ZPP}) , zero-error probabilistic polynomial time

Runtime: expected polynomial

Result: correct

 $\text{Lo-Instance} \rightarrow \Pr[\text{YES}] > \frac{1}{2}$ $\text{No-instance} \rightarrow \Pr[\text{YES}] \leq \frac{1}{2}$ $\text{Las Vegas } (\mathcal{ZPP}), \text{ zero-error probabilistic polynomial time}$ Runtime: expected polynomial esult: correct nte Carlo: $\text{time: polynomial time: pol$

 $\text{No-instance} \rightarrow \Pr[\text{YES}] > \frac{1}{2} \\ \text{No-instance} \rightarrow \Pr[\text{YES}] \leq \frac{1}{2}$ $\text{Las Vegas } (\mathcal{ZPP}), \text{ zero-error probabilistic polynomial} \\ \text{Runtime: expected polynomial} \\ \text{Result: correct} \\ \text{nte Carlo:} \\ \text{time: polynomial} \\ \text{lt: YES-instance} \rightarrow \Pr^{\text{TST}} \\ \text{No-instance}$

No-instance
$$\rightarrow$$
 Pr[YES] \leq

$$\frac{2}{3}$$
 $\frac{1}{2}$ 0

 $\text{No-instance} \rightarrow \Pr[\text{YES}] > \frac{1}{2} \\ \text{No-instance} \rightarrow \Pr[\text{YES}] \leq \frac{1}{2}$ $\text{Las Vegas } (\mathcal{ZPP}), \text{ zero-error probabilistic polynomial} \\ \text{Runtime: expected polynomial} \\ \text{Result: correct} \\ \text{nte Carlo:} \\ \text{vtime: polynomial} \\ \text{lt: YES-instance} \rightarrow \Pr^{\text{TST}} \\ \text{No-instance}$

No-instance
$$\rightarrow \Pr[YES] \le$$

$$\mathcal{RP}$$
 co- \mathcal{RP}

 $\text{No-instance} \rightarrow \Pr[\text{YES}] > \frac{1}{2}$ $\text{No-instance} \rightarrow \Pr[\text{YES}] \leq \frac{1}{2}$ $\text{Las Vegas } (\mathcal{ZPP}), \text{ zero-error probabilistic polynomial}$ Runtime: expected polynomial Result: correct nte Carlo: ntime: polynomial

Result: YES-instance $\rightarrow Pr[YES] >$

$$No\text{-instance} \rightarrow Pr[Yes] \le$$

2 1 3

Thm: $\mathbb{ZPP} = \mathbb{RP} \cap \text{co-}\mathbb{RP}$

 $No\text{-instance} \to \Pr[YES] > \frac{1}{2}$ $No\text{-instance} \to \Pr[YES] \leq \frac{1}{2}$ $\text{Las Vegas } (\mathcal{ZPP}), \text{ zero-error probabilistic polynomial}$ Runtime: expected polynomial Result: correct nte Carlo: ntime: polynomial

Result: YES-instance $\rightarrow \Pr[YES] >$

No-instance \rightarrow Pr[Yes] <

Thm: $\mathbb{ZPP} = \mathbb{RP} \cap \text{co-}\mathbb{RP}$

 $\mathcal{RP}\colon\begin{array}{ll} \text{YES-Instance}\to \text{Pr}[\text{YES}]\geq \textbf{\textit{t}}\\ \text{No-Instance}\to \text{Pr}[\text{YES}]=0 \end{array}$

 \mathcal{RP} : $egin{array}{ll} ext{YES-Instance} & ext{Pr[YES]} \geq t \\ ext{No-Instance} & ext{Pr[YES]} = 0 \end{array}$

If an \mathcal{RP} -algorithm returns Yes, it is correct

```
\mathcal{RP}: egin{array}{ll} 	ext{YES-Instance} & 	ext{Pr[YES]} \geq t \\ 	ext{No-Instance} & 	ext{Pr[YES]} = 0 \end{array}
```

If an \mathcal{RP} -algorithm returns YES, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

 \mathcal{RP} : $egin{array}{ll} ext{YES-Instance} & ext{Pr[YES]} \geq t \\ ext{No-Instance} & ext{Pr[YES]} = 0 \end{array}$

If an \mathcal{RP} -algorithm returns $Y\mathrm{ES}$, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

Algorithm: Run the original algorithm $\lceil 1/t \rceil$ times

Return Yes if every some returns Yes

Otherwise No

 \mathcal{RP} : $egin{array}{ll} ext{YES-Instance} & ext{Pr[YES]} \geq t \\ ext{No-Instance} & ext{Pr[YES]} = 0 \end{array}$

If an \mathcal{RP} -algorithm returns $Y\mathrm{ES}$, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

Algorithm: Run the original algorithm $\lceil 1/t \rceil$ times

Return $Y_{\rm ES}$ if every some returns $Y_{\rm ES}$

Otherwise No.

Error Probability:

 \mathcal{RP} : $\begin{array}{c} \text{YES-Instance} \rightarrow \text{Pr}[\text{YES}] \geq t \\ \text{No-Instance} \rightarrow \text{Pr}[\text{YES}] = 0 \end{array}$

If an \mathcal{RP} -algorithm returns $Y\mathrm{ES}$, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

Algorithm: Run the original algorithm $\lceil 1/t \rceil$ times

Return YES if every some returns YES

Otherwise No

Error Probability: $(1-t)^{1/t}$

 \mathcal{RP} : $\begin{array}{c} \text{YES-Instance} \rightarrow \text{Pr}[\text{YES}] \geq t \\ \text{No-Instance} \rightarrow \text{Pr}[\text{YES}] = 0 \end{array}$

If an \mathcal{RP} -algorithm returns $Y\mathrm{ES}$, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

Algorithm: Run the original algorithm $\lceil 1/t \rceil$ times

Return YES if every some returns YES

Otherwise No x := 1/t

Error Probability: $(1-t)^{1/t} = (1-\frac{1}{x})^x$

 \mathcal{RP} : $\begin{array}{c} \text{YES-Instance} \to \Pr[\text{YES}] \geq t \\ \text{No-Instance} \to \Pr[\text{YES}] = 0 \end{array}$

If an \mathcal{RP} -algorithm returns $Y\mathrm{ES}$, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

Algorithm: Run the original algorithm $\lceil 1/t \rceil$ times

Return $Y_{\rm ES}$ if every some returns $Y_{\rm ES}$

Otherwise No x := 1/t

Error Probability: $(1-t)^{1/t} = (1-\frac{1}{x})^x < \frac{1}{e}$

 \mathcal{RP} : $\begin{array}{c} \text{YES-Instance} \rightarrow \text{Pr}[\text{YES}] \geq t \\ \text{No-Instance} \rightarrow \text{Pr}[\text{YES}] = 0 \end{array}$

If an \mathcal{RP} -algorithm returns $Y\mathrm{ES}$, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

Algorithm: Run the original algorithm $\lceil 1/t \rceil$ times

Return YES if every some returns YES

Otherwise No x := 1/t

Error Probability: $(1-t)^{1/t}=(1-\frac{1}{x})^x<\frac{1}{e}<\frac{1}{2}$

 \mathcal{RP} : $\begin{array}{c} \text{YES-Instance} \rightarrow \text{Pr}[\text{YES}] \geq t \\ \text{No-Instance} \rightarrow \text{Pr}[\text{YES}] = 0 \end{array}$

If an \mathcal{RP} -algorithm returns $Y\mathrm{ES}$, it is correct

If an \mathcal{RP} -algorithm returns No, it is incorrect with probability $\leq 1-t$

Algorithm: Run the original algorithm $\lceil 1/t \rceil$ times

Return YES if every some returns YES

Otherwise No x := 1/t

Error Probability: $(1-t)^{1/t}=(1-\frac{1}{x})^x<\frac{1}{e}<\frac{1}{2}$

(**Obs.:** Repeating $100 \cdot t^{-1}$ times \rightsquigarrow error prob. $< 2^{-100}$.)

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$

 $G[V \setminus S]$ is a forest?

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Reduction Rule: Delete vertices of degree < 2

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Reduction Rule: Delete vertices of degree < 2

Reduction Rule: "Bypass" each degree two vertex.

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$

 $G[V \setminus S]$ is a forest?

Reduction Rule: Delete vertices of degree < 2

Reduction Rule: "Bypass" each degree two vertex.

Reduction Rule: Put vertices incident to loops in FVS

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$

 $G[V \setminus S]$ is a forest?

Reduction Rule: Delete vertices of degree < 2

Reduction Rule: "Bypass" each degree two vertex.

Reduction Rule: Put vertices incident to loops in FVS

Def.: If no rule applies, the graph is called *reduced*.

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Let $E_W :=$ edges connecting vertices in W

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$. Let $E_W :=$ edges connecting vertices in W

$$\leq \sum_{v \in W} \deg(v)$$

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$. Let $E_W :=$ edges connecting vertices in W

$$3|W| \leq \sum_{v \in W} \deg(v)$$

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$. Let $E_W :=$ edges connecting vertices in WLet $E_{S,W} :=$ edges connecting S and W

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$. Let $E_W :=$ edges connecting vertices in WLet $E_{S,W} :=$ edges connecting S and W

mindeg 3

$$3|W| \le \sum_{v \in W} \deg(v) = |E_{S,W}| + 2|E_{W}|$$

Given: Graph G = (V, E), number k

 $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$ Question:

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$. Let $E_W :=$ edges connecting vertices in W _ W/ since forest Let $E_{S,W} :=$ edges connecting S and W

mindeg 3 $3|W| \leq \sum \deg(v) = |E_{S,W}| + 2|E_W|$ $v \in W$

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Let $E_W :=$ edges connecting vertices in W

mindeg 3
$$\downarrow W | \leq \sum_{v \in W} \deg(v) = |E_{S,W}| + 2|E_{W}| < |E_{S,W}| + 2|W|$$

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Let $E_W :=$ edges connecting vertices in W

mindeg 3
$$|W| \leq \sum_{v \in W} \deg(v) = |E_{S,W}| + 2|E_{W}| < |E_{S,W}| + 2|W|$$

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Let $E_W :=$ edges connecting vertices in W

Let $E_{S,W} :=$ edges connecting S and W

$$|S|W| \le \sum_{v \in W} \deg(v) = |E_{S,W}| + 2|E_{W}| < |E_{S,W}| + 2|W|$$

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$

(see also Lemma 5.1 in textbook)

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$

Idea: Find some $v \in S$

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$

Idea: Find some $v \in S$

Algorithm: 1. pick each $e \in E$ with equal prob.

2. pick $v \in e$ with equal prob.

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V$ such that $|S| \leq k$ and

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$

Idea: Find some $v \in S$

Algorithm: 1. pick each $e \in E$ with equal prob.

2. pick $v \in e$ with equal prob.

Success probability: at least

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$

 E_S ?

Idea: Find some $v \in S$

Algorithm:

- **1.** pick each $e \in E$ with equal prob.
- **2.** pick $v \in e$ with equal prob.

Success probability: at least

Given: Graph G = (V, E), number k

Question: $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \ge |E_W|$

 E_S ?

Idea: Find some $v \in S$

Algorithm:

1. pick each $e \in E$ with equal prob.

> 1/2

2. pick $v \in e$ with equal prob.

Success probability: at least 1/2

Given: Graph G = (V, E), number k

 $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$ Question:

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \geq |E_W|$

 E_S ?

Idea: Find some $v \in S$

Algorithm:

1. pick each $e \in E$ with equal prob.

> 1/2

2. pick $v \in e$ with equal prob.

> 1/2

Success probability: at least

 $1/2 \cdot 1/2 = 1/4$

Given: Graph G = (V, E), number k

 $\exists S \subseteq V \text{ such that } |S| \leq k \text{ and }$ Question:

 $G[V \setminus S]$ is a forest?

Def.: Let G be reduced, $S \subseteq V$ be an FVS, and $W := V \setminus S$.

Lemma: If G is reduced, then $|E_{S,W}| \geq |E_W|$

 E_S ?

Idea: Find some $v \in S$

Algorithm:

1. pick each $e \in E$ with equal prob.

> 1/2

2. pick $v \in e$ with equal prob.

> 1/2

Success probability: at least $1/2 \cdot 1/2 = 1/4$

Obs.: With prob. $\geq 1/4$, we find a node from an (unknown) optimal FVS

1. while G is not empty:

- **1.** while G is not empty:
 - 2. Apply reduction rules

- **1.** while G is not empty:
 - 2. Apply reduction rules
 - **3.** pick a vertex *v* via randomized proc. on last slide

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:
 - 2. Apply reduction rules
 - 3. pick a vertex v via randomized proc. on last slide
 - **4.** $S \leftarrow S \cup \{v\}$; $G \leftarrow G \setminus v$

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:
 - 2. Apply reduction rules
 - 3. pick a vertex v via randomized proc. on last slide
 - **4.** $S \leftarrow S \cup \{v\}$; $G \leftarrow G \setminus v$
 - **5.** If |S| > k: return No

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:
 - 2. Apply reduction rules
 - **3.** pick a vertex *v* via randomized proc. on last slide
 - **4.** $S \leftarrow S \cup \{v\}; \ G \leftarrow G \setminus v$
 - **5.** If |S| > k: return No
- **6.** Return YES

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:
 - 2. Apply reduction rules
 - 3. pick a vertex v via randomized proc. on last slide
 - **4.** $S \leftarrow S \cup \{v\}$; $G \leftarrow G \setminus v$
 - **5.** If |S| > k: return No
- **6.** Return YES

Runtime:

Prob. of success:

- **0.** $S \leftarrow \varnothing$
- **1.** while G is not empty:
 - 2. Apply reduction rules
 - **3.** pick a vertex v via randomized proc. on last slide
 - **4.** $S \leftarrow S \cup \{v\}; G \leftarrow G \setminus v$
 - **5.** If |S| > k: return No
- **6.** Return YES

Runtime: O(n+m)

Prob. of success:

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:
 - 2. Apply reduction rules
 - **3.** pick a vertex *v* via randomized proc. on last slide

4.
$$S \leftarrow S \cup \{v\}$$
; $G \leftarrow G \setminus v$

- **5.** If |S| > k: return No
- **6.** Return YES

Runtime: O(n+m)

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:
 - 2. Apply reduction rules
 - 3. pick a vertex v via randomized proc. on last slide
 - **4.** $S \leftarrow S \cup \{v\}$; $G \leftarrow G \setminus v$
 - **5.** If |S| > k: return No
- **6.** Return YES

Runtime: O(n+m)

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:

 \leftarrow max k times

- 2. Apply reduction rules
- **3.** pick a vertex v via randomized proc. on last slide
- **4.** $S \leftarrow S \cup \{v\}; G \leftarrow G \setminus v$
- **5.** If |S| > k: return No
- **6.** Return YES

$$O(n+m)$$

Runtime:
$$O(n+m)$$
 $O(k(n+m))$

- **0.** $S \leftarrow \emptyset$
- **1.** while G is not empty:

 \leftarrow max k times

- 2. Apply reduction rules
- **3.** pick a vertex v via randomized proc. on last slide
- **4.** $S \leftarrow S \cup \{v\}; G \leftarrow G \setminus v$
- **5.** If |S| > k: return No
- **6.** Return YES

$$O(n+m)$$

Runtime:
$$O(n+m)$$
 $O(k(n+m))$

$$> 4^{-k}$$

0.
$$S \leftarrow \emptyset$$

1. while G is not empty:

 \leftarrow max k times

- 2. Apply reduction rules
- **3.** pick a vertex v via randomized proc. on last slide
- **4.** $S \leftarrow S \cup \{v\}; G \leftarrow G \setminus v$
- **5.** If |S| > k: return No
- **6.** Return YES

Runtime:
$$O(n+m)$$
 $O(k(n+m))$

Prob. of success:
$$> 1/4$$

$$> 1/4$$
 $> 4^{-k}$

Thm: FEEDBACK VERTEX SET can be solved in $O(4^k \cdot k(n+m))$ time by a randomised algorithm

Given: Graph G = (V, E), number k

Question: Does G contain a length k path?

(length :=
edges)

Given: Graph G = (V, E), number k

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Given: Graph G = (V, E), number k

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: LONGEST PATH can be solved in $O^*(2^n)$ time.

Given: Graph G = (V, E), number k

Parameter: *k*

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in $O^*(2^n)$ time.

Given: Graph G = (V, E), number k

Parameter: *k*

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in $O^*(2^n)$ time.

Special Case:

Longest Path in acyclic graphs: Runtime?

Given: Graph G = (V, E), number k

Parameter: *k*

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in $O^*(2^n)$ time.

Special Case:

Given: Graph G = (V, E), number k

Parameter: *k*

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in $O^*(2^n)$ time.

Special Case:

LONGEST PATH in acyclic graphs: Runtime? O(m)

1. Topological sort

Given: Graph G = (V, E), number k

Parameter: *k*

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in $O^*(2^n)$ time.

Special Case:

- 1. Topological sort
- **2.** Let L(v) :=longest path to v

Given: Graph G = (V, E), number k

Parameter: *k*

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in $O^*(2^n)$ time.

Special Case:

- 1. Topological sort
- **2.** Let L(v) :=longest path to v
- 3. "backwards" dynamic program

Given: Graph G = (V, E), number k

Parameter: *k*

Question: Does G contain a length k path?

(length :=
edges)

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in $O^*(2^n)$ time.

Special Case:

- 1. Topological sort
- **2.** Let L(v) :=longest path to v
- 3. "backwards" dynamic program
- **4.** Look for v with L(v) = k

Idea. Longest Path is easy on acyclic graphs

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

1. pick random permutation π of V

LONGEST PATH

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

— Result $\longrightarrow \vec{G}$ (random variable!)

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

— Result $\longrightarrow \vec{G}$ (random variable!)

Obs.: \exists k-path in $\vec{G} \rightarrow \exists$ k-path in G

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

— Result $\longrightarrow \vec{G}$ (random variable!)

Obs.: \exists k-path in $\vec{G} \rightarrow \exists$ k-path in G

Obs.: Converse does not apply however ...

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

— Result $\longrightarrow \vec{G}$ (random variable!)

Obs.: \exists k-path in $\vec{G} \rightarrow \exists$ k-path in G

Obs.: Converse does not apply however ...

 \exists k-path in $G \rightarrow \Pr[\vec{G} \text{ has } k\text{-path}] > 0.$

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

— Result $\longrightarrow \vec{G}$ (random variable!)

Obs.: \exists k-path in $\vec{G} \rightarrow \exists$ k-path in G

Obs.: Converse does not apply however ...

 \exists k-path in $G \rightarrow \Pr[\mathring{G} \text{ has } k\text{-path}] > 0.$

Now: Randomisied algorithm?

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

— Result $\longrightarrow \vec{G}$ (random variable!)

Obs.: \exists k-path in $\vec{G} \rightarrow \exists$ k-path in G

Obs.: Converse does not apply however ...

 \exists k-path in $G \rightarrow \Pr[\dot{G} \text{ has } k\text{-path}] > 0.$

Now: Randomisied algorithm? Runtime?

Idea. Longest Path is easy on acyclic graphs

Plan: make *G* acyclic!

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

— Result $\longrightarrow \vec{G}$ (random variable!)

Obs.: \exists k-path in $\vec{G} \rightarrow \exists$ k-path in G

Obs.: Converse does not apply however ...

 \exists k-path in $G \rightarrow \Pr[\dot{G} \text{ has } k\text{-path}] > 0$.

Now: Randomisied algorithm? Runtime?

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\Pr[p \in \vec{G}] =$

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Obs.: Order of vertices $\not\in p$ is irrelevant

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

```
Result \longrightarrow \vec{G} (random variable!)
```

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

 π : 1 4 2 6 8 5 3 7

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

```
Result \longrightarrow \vec{G} (random variable!)
```

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

```
\pi: 1 4 2 6 8 5 3 7
```

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

```
Result \longrightarrow \vec{G} (random variable!)
```

Lemma: Let p be a k-path in G. Then $\Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

```
\pi: 1 4 2 6 8 5 3 7
```

$$\pi_{/p}$$
: 1 4 2 × 8 × × 7

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$. There are (k+1)! ways to complete $\pi_{/p}$ to some π' .

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$. There are (k+1)! ways to complete $\pi_{/p}$ to some π' . All have equal probability.

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

There are (k+1)! ways to complete $\pi_{/p}$ to some π' .

All have equal probability.

For two of them, p is a path in \vec{G} (two correct)

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

There are (k+1)! ways to complete $\pi_{/p}$ to some π' .

All have equal probability.

For two of them, p is a path in \vec{G} (two correct)

Thus $\Pr[p \in \vec{G} \mid \pi_{/p}] = \frac{2}{(k+1)!}$

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

There are (k+1)! ways to complete $\pi_{/p}$ to some π' .

All have equal probability.

For two of them, p is a path in \vec{G} (two correct)

Thus
$$\Pr[p \in \vec{G} \mid \pi_{/p}] = \frac{2}{(k+1)!}$$

$$\rightsquigarrow \Pr[p \in \vec{G}] =$$

- **1.** pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $Pr[p \in \vec{G}] =$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

There are (k+1)! ways to complete $\pi_{/p}$ to some π' .

All have equal probability.

For two of them, p is a path in \vec{G} (two correct)

Thus $\Pr[p \in \vec{G} \mid \pi_{/p}] = \frac{2}{(k+1)!}$

 $ightarrow \Pr[p \in \vec{G}] = \frac{2}{(k+1)!}$ (indep. sum over $\pi_{/p}$)

- 1. pick random permutation π of V
- **2.** orient edges $\{u, v\}$ from u to v when $\pi(u) < \pi(v)$

Result $\longrightarrow \vec{G}$ (random variable!)

Lemma: Let p be a k-path in G. Then $\Pr[p \in \vec{G}] = \frac{2}{(k+1)!}$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

There are (k+1)! ways to complete $\pi_{/p}$ to some π' .

All have equal probability.

For two of them, p is a path in \vec{G} (two correct)

Thus
$$\Pr[p \in \vec{G} \mid \pi_{/p}] = \frac{2}{(k+1)!}$$

$$ightarrow \Pr[p \in \vec{G}] = \frac{2}{(k+1)!}$$
 (indep. sum over $\pi_{/p}$)

Algorithm

1. Repeat (k + 1)!/2 times:

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G
 - **3.** $p \leftarrow \text{longest path in } \vec{G}$

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G
 - **3.** $p \leftarrow \text{longest path in } \vec{G}$
 - **4.** If $|p| \ge k$, return YES.

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G
 - **3.** $p \leftarrow \text{longest path in } \vec{G}$
 - **4.** If $|p| \ge k$, return YES.
- **5.** Return No

Algorithm

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G
 - **3.** $p \leftarrow \text{longest path in } \vec{G}$
 - **4.** If $|p| \ge k$, return YES.

5. Return No

Runtime: $O^*(k!)$ iterations

Algorithm

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G
 - **3.** $p \leftarrow \text{longest path in } \vec{G}$
 - **4.** If $|p| \ge k$, return YES.

5. Return No

Runtime: $O^*(k!)$ iterations each O(m) time

Algorithm

- **1.** Repeat (k + 1)!/2 times:
 - **2.** $\vec{G} \leftarrow$ random acyclic orientation of G
 - **3.** $p \leftarrow \text{longest path in } \vec{G}$
 - **4.** If $|p| \ge k$, return YES.
- **5.** Return No

Runtime: $O^*(k!)$ iterations each O(m) time

Thm: A randomised algorithm can solve LONGEST PATH in $O^*(k! \cdot n)$ time

Obs. Longest Path is easy on acyclic graphs.

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k + 1) colors (k-path has k + 1 vertices)

≠ **Graph**coloring! vertices with equal color might not be adjacent

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k + 1) colors (k-path has k + 1 vertices)

≠ Graphcoloring!

vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k + 1) colors (k-path has k + 1 vertices)

≠ Graphcoloring! vertices with equal color might not be adjacent

Def.: A path is *colorful*, when each vertex has a different color.

Obs.: Colorful paths are "easy"

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k + 1) colors (k-path has k + 1 vertices)

≠ Graphcoloring!

vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"

Part 1: Finding a colorful path is easy

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k+1) colors (k-path has k+1 vertices)

≠ Graphcoloring!

vertices with equal color might not be adjacent

Def.: A path is *colorful*, when each vertex has a different color.

Obs.: Colorful paths are "easy"

Part 1: Finding a colorful path is e

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k+1) colors (k-path has k+1 vertices)

≠ Graphcoloring!

vertices with equal color might not be adjacent

Def.: A path is *colorful*, when each vertex has a different color.

Obs.: Colorful paths are "easy"

Part 1: Finding a colorful path is easy FPT in k.

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k + 1) colors (k-path has k + 1 vertices)

≠ Graphcoloring!

vertices with equal color might not be adjacent

Def.: A path is colorful, when each vertex has a different color.

Obs.: Colorful paths are "easy"

Part 1: Finding a colorful path is easy FPT in k.

Part 2: \exists *k*-path in $G \rightarrow \text{good prob.}$ of a colorful path

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then Pr[p is coloful] >

Proof:

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then $\Pr[p \text{ is coloful}] >$

Proof: Consider perm. π , but ignore the elements of $p \rightsquigarrow \pi_{/p}$

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then Pr[p is coloful] >

Proof: Fix the colors of the nodes outside of *p*

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then Pr[p is coloful] >

Proof: Fix the colors of the nodes outside of *p*

There are (k+1)! ways to complete $\pi_{/p}$ to some π' .

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then Pr[p is coloful] >

Proof: Fix the colors of the nodes outside of p. We get k^k different colorings of p.

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then $\Pr[p \text{ is coloful}] >$

Proof: Fix the colors of the nodes outside of p We get k^k different colorings of p Each with equal probability

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then $\Pr[p \text{ is coloful}] >$

Proof: Fix the colors of the nodes outside of p We get k^k different colorings of p Each with equal probability

For two of them, p is a path in \vec{G}

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then $\Pr[p \text{ is coloful}] >$

Proof: Fix the colors of the nodes outside of p We get k^k different colorings of p Each with equal probability

Of these, k! are colorful

```
Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then \Pr[p \text{ is coloful}] >
```

Proof: Fix the colors of the nodes outside of p We get k^k different colorings of p Each with equal probability

Of these, k! are colorful

Thus Pr[p] is colorful] =

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then Pr[p is coloful] >

Proof: Fix the colors of the nodes outside of p We get k^k different colorings of p Each with equal probability

Of these, k! are colorful

Thus $Pr[p \text{ is colorful}] = \frac{k!}{k^k}$

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then Pr[p is coloful] >

Proof: Fix the colors of the nodes outside of p We get k^k different colorings of p Each with equal probability Of these, k! are colorful Thus $Pr[p \text{ is colorful}] = \frac{k!}{k^k} > (\frac{k}{e})^k / k^k$

Stirling:
$$k! \ge \sqrt{2\pi} k^{k+\frac{1}{2}} e^{-k}$$

Lemma: Let c be a random k-coloring of V, and p be a (k-1)-path.

Then $Pr[p \text{ is coloful}] > e^{-k}$

Proof: Fix the colors of the nodes outside of *p*

We get k^k different colorings of p

Each with equal probability

Of these, k! are colorful

Thus
$$\Pr[p \text{ is colorful}] = \frac{k!}{k^k} > \left(\frac{k}{e}\right)^k / k^k = e^{-k}$$

Stirling:

$$k! \ge \sqrt{2\pi} k^{k+\frac{1}{2}} e^{-k}$$

Approach 1: dynamic program

Given c colored graph G

Approach 1: dynamic program

Given c colored graph G

Table entries:

Approach 1: dynamic program

Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u: Path(S, u) = true if and only if there is an S-colorful path ending at u

Approach 1: dynamic program

Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u: Path(S, u) = true if and only if there is an S-colorful path ending at u

Recurrence:

Approach 1: dynamic program

Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u: Path(S, u) = true if and only if there is an S-colorful path ending at u

Recurrence:

$$Path(S, u) =$$

Approach 1: dynamic program

Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u: Path(S, u) = true if and only if there is an S-colorful path ending at u

Recurrence:

Path
$$(S, u) = \bigvee_{uv \in E(G)} \text{Path}(S \setminus c(u), v), \text{ if } c(u) \in S$$
 false, otherwise

Approach 1: dynamic program

Given c colored graph G

Table entries:

For a subset S of our colors, and vertex u: Path(S, u) = true if and only if there is an S-colorful path ending at u

Recurrence:

Path
$$(S, u) = \bigvee_{uv \in E(G)} \text{Path}(S \setminus c(u), v), \text{ if } c(u) \in S$$
 false, otherwise

Runtime?

Approach 2: For each subset S of the colors, create a copy G_S where G_S contains the vertices colored S and the edges are ...

How big is this graph?

Approach 2: For each subset S of the colors, create a copy G_S where G_S contains the vertices colored S and the edges are ...

How big is this graph? $O(2^k \cdot n)$ vertices $O(2^k \cdot m)$ edges **Runtime:**

Approach 2: For each subset S of the colors, create a copy G_S where G_S contains the vertices colored S and the edges are ...

How big is this graph? $O(2^k \cdot n)$ vertices $O(2^k \cdot m)$ edges **Runtime:** $O(2^k \cdot m)$ since...

Approach 2: For each subset S of the colors, create a copy G_S where G_S contains the vertices colored S and the edges are ...

How big is this graph? $O(2^k \cdot n)$ vertices $O(2^k \cdot m)$ edges **Runtime:** $O(2^k \cdot m)$ since... graph is acyclic :)

Algorithm

1. repeat e^k times:

Algorithm

- 1. repeat e^k times:
 - **2.** pick a random k-coloring c of V

Algorithm

- 1. repeat e^k times:
 - **2.** pick a random k-coloring c of V
 - 3. If there is a colorful path, return YES

Algorithm

- 1. repeat e^k times:
 - **2.** pick a random k-coloring c of V
 - 3. If there is a colorful path, return YES
- 4. Return No

Algorithm

- 1. repeat e^k times:
 - **2.** pick a random k-coloring c of V
 - 3. If there is a colorful path, return YES
- 4. Return No

Runtime: e^k iterations each $O(2^k \cdot m)$ time

Algorithm

- 1. repeat e^k times:
 - **2.** pick a random k-coloring c of V
 - 3. If there is a colorful path, return YES
- 4. Return No.

Runtime: e^k iterations each $O(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

- 1. repeat e^k times:
 - **2.** pick a random k-coloring c of V
 - 3. If there is a colorful path, return YES
- **4.** Return No

Runtime: e^k iterations each $O(2^k \cdot m)$ time total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Thm: There is a randomised algorithm that solves LONGEST PATH in $O^*(5.44^k \cdot m)$ time.

Algorithm

let us recall the purpose of this

- 1. repeat e^k times:
 - **2.** pick a random k-coloring c of V
 - 3. If there is a colorful path, return YES
- 4. Return No.

Runtime: e^k iterations each $O(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

1. repeat e^k times:

- let us recall the purpose of this
- **2.** pick a random k-coloring c of V
- 3. If there is a colorful path, return YES
- 4. Return No

guarantees (randomised): k-path in $G \rightarrow c$ colorful path

Runtime: e^k iterations each $O(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

1. repeat for each coloring $c \in \mathcal{C}$:

- 3. If there is a colorful path, return YES
- 4. Return No

 $|\mathcal{C}|$

Runtime: $(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

What property of C do we need?

1. repeat for each coloring $c \in \mathcal{C}$:

- 3. If there is a colorful path, return YES
- 4. Return No

 $|\mathcal{C}|$

Runtime: ** iterations

each $O(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

What property of C do we need?

1. repeat for each coloring $c \in C$:

sufficient: $\forall S \subseteq V$ with |S| = k: $\exists c \in C$: S is colorful

- 3. If there is a colorful path, return YES
- 4. Return No.

 $|\mathcal{C}|$

Runtime: iterations

each $O(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

What property of C do we need?

1. repeat for each coloring $c \in C$:

sufficient: $\forall S \subseteq V$ with |S| = k: $\exists c \in C$: S is colorful

- 3. If there is a colorful path, return YES
- 4. Return No.

 $|\mathcal{C}|$

Runtime: iterations

each $O(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

What property of C do we need?

1. repeat for each coloring $c \in C$:

sufficient: $\forall S \subseteq V$ with |S| = k: $\exists c \in C$: S is colorful

- 3. If there is a colorful path, return YES
- 4. Return No.

Thm [§**5.6**]: There is \mathcal{C} with this property and $|\mathcal{C}| \in 2^{O(k)} \log n$ so that \mathcal{C} can be produced in $O(|\mathcal{C}|)$ time.

 $|\mathcal{C}|$

Runtime: iterations

each $O(2^k \cdot m)$ time

total: $O((2e)^k \cdot m) \subset O(5.43657^k \cdot m)$ time

Algorithm

What property of C do we need?

1. repeat for each coloring $c \in \mathcal{C}$:

sufficient: $\forall S \subseteq V$ with |S| = k: $\exists c \in C$: S is colorful

- 3. If there is a colorful path, return YES
- **4.** Return No.

Thm [\S **5.6**]: There is \mathcal{C} with this property and $|\mathcal{C}| \in 2^{O(k)} \log n$ so that \mathcal{C} can be produced in $O(|\mathcal{C}|)$ time.

Runtime: \mathcal{K} iterations each $O(2^k \cdot m)$ time

total: $O(\alpha^{k} \cdot m \log n)$

time

Algorithm

What property of C do we need?

1. repeat for each coloring $c \in \mathcal{C}$:

sufficient: $\forall S \subseteq V$ with |S| = k: $\exists c \in C$: S is colorful

- 3. If there is a colorful path, return YES
- **4.** Return No.

Thm [\S **5.6**]: There is \mathcal{C} with this property and $|\mathcal{C}| \in 2^{O(k)} \log n$ so that \mathcal{C} can be produced in $O(|\mathcal{C}|)$ time.

Runtime: \mathcal{M} iterations each $O(2^k \cdot m)$ time

total: $O(\alpha^{k} \cdot m \log n)$

time

Thm: There is an randomised algorithm that solves LONGEST Path in $O^*(\alpha^k \cdot m \log n)$ time

Given: Graph *G*

Given: Graph *G*

Question: Is H a(n induced) subgraph of G (graph H, |H| = I

1. Randomly color vertices

Given: Graph *G*

- 1. Randomly color vertices
- **2.** Show that $Pr[copy of H is colorful] <math>\geq 1/f(k)$

Given: Graph *G*

- 1. Randomly color vertices
- **2.** Show that $Pr[copy of H is colorful] <math>\geq 1/f(k)$
- **3.** Find colorful copy of *H* in FPT-time

Given: Graph *G*

- 1. Randomly color vertices
- **2.** Show that $Pr[copy of H is colorful] <math>\geq 1/f(k)$
- **3.** Find colorful copy of *H* in FPT-time
- **4.** repeat O(f(k)) times

Given: Graph *G*

- 1. Randomly color vertices
- **2.** Show that $Pr[copy of H is colorful] <math>\geq 1/f(k)$
- **3.** Find colorful copy of *H* in FPT-time
- **4.** repeat O(f(k)) times
- (**5.** Derandomise)

#Multilabeled Walks

Given: Graph G = (V, E), vertex $v \in V$, number k,

edge labels $\lambda(e) \in \Lambda = \{1..k\}$

Question: How many walks in G start at v, have

length k, but don't use an edge label twice?

#Multilabeled Walks

Given: Graph G = (V, E), vertex $v \in V$, number k,

edge labels $\lambda(e) \in \Lambda = \{1..k\}$

Question: How many walks in G start at v, have

length k, but don't use an edge label twice?

Algorithm:

#Multilabeled Walks

Given: Graph G = (V, E), vertex $v \in V$, number k,

edge labels $\lambda(e) \in \Lambda = \{1..k\}$

Question: How many walks in G start at v, have

length k, but don't use an edge label twice?

Algorithm: dynamic program

Recurrence:

#Multilabeled Walks

Given: Graph G = (V, E), vertex $v \in V$, number k,

edge labels $\lambda(e) \in \Lambda = \{1..k\}$

Question: How many walks in G start at v, have

length k, but don't use an edge label twice?

Algorithm: dynamic program

Recurrence: A(S, u) with $S \subseteq \Lambda$, $u \in V$

Runtime:

#Multilabeled Walks

Given: Graph G = (V, E), vertex $v \in V$, number k,

edge labels $\lambda(e) \in \Lambda = \{1..k\}$

Question: How many walks in G start at v, have

length k, but don't use an edge label twice?

Algorithm: dynamic program

Recurrence: A(S, u) with $S \subseteq \Lambda$, $u \in V$

Runtime: $O(2^k n^2)$

1. Copy each edge k times and apply labels 1..k

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES ?!
- **4.** Otherwise: return No

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES
- **4.** Otherwise: return No

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES
- **4.** Otherwise: return No

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES
- **4.** Otherwise: return No

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES
- **4.** Otherwise: return No

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES \leftarrow correct!
- **4.** Otherwise: return No

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES \leftarrow correct!
- **4.** Otherwise: return No

Lemma: Non-simple walks are counted evenly.

Problem: What happens if the number of *k*-paths is even?

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U| = n.

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U|=n. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1..N\}$

An "Isolation" Lemma Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U|=n. Indep. at random, assign each $x\in U$ weight $\omega(x)$ from $\{1..N\}$ with probabilty at least 1-n/N we have: $\arg\min_{x\in\mathcal{T}}\sum \omega(x)$ is unique.

 $\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$ is unique.

Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U|=n. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1..N\}$ with probabilty at least 1-n/N we have:

$$\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$$
 is unique.

not exam material

Proof: Let
$$\alpha(x) = \min_{S \in \mathcal{F}, x \notin S} \omega(S) - \min_{S \in \mathcal{F}, x \in S} \omega(S \setminus \{x\})$$

Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U|=n. Indep. at random, assign each $x\in U$ weight $\omega(x)$ from $\{1..N\}$ with probabilty at least 1-n/N we have:

$$\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$$
 is unique.

not exam material

Proof: Let
$$\alpha(x) = \min_{S \in \mathcal{F}, x \notin S} \omega(S) - \min_{S \in \mathcal{F}, x \in S} \omega(S \setminus \{x\})$$

since $\alpha(x)$ does not depend on $\omega(x)$: $\Pr[\alpha(x) = \omega(x)] \leq 1/N$.

Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U|=n. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1..N\}$ with probabilty at least 1-n/N we have:

$$\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$$
 is unique.

not exam material

Proof: Let $\alpha(x) = \min_{S \in \mathcal{F}, x \notin S} \omega(S) - \min_{S \in \mathcal{F}, x \in S} \omega(S \setminus \{x\})$

since $\alpha(x)$ does not depend on $\omega(x)$: $\Pr[\alpha(x) = \omega(x)] \leq 1/N$.

Thus: $\Pr[\exists x \in U : \alpha(x) = \omega(x)] \leq n/N$.

Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U| = n.

Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1..N\}$

with probabilty at least 1 - n/N we have:

$$\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$$
 is unique.

not exam material

Proof: Let $\alpha(x) = \min_{S \in \mathcal{F}, x \notin S} \omega(S) - \min_{S \in \mathcal{F}, x \in S} \omega(S \setminus \{x\})$

since $\alpha(x)$ does not depend on $\omega(x)$: $\Pr[\alpha(x) = \omega(x)] \leq 1/N$.

Thus: $\Pr[\exists x \in U : \alpha(x) = \omega(x)] \leq n/N$.

Suppose that $A \neq B \in \mathcal{F}$ are both minimum.

Now $\exists x \in U : \alpha(x) = \omega(B) - (\omega(A) - \omega(x)) = \omega(x)$.

Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U| = n. Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1..N\}$

with probabilty at least 1 - n/N we have:

$$\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$$
 is unique.

not exam material

Proof: Let $\alpha(x) = \min_{S \in \mathcal{F}, x \notin S} \omega(S) - \min_{S \in \mathcal{F}, x \in S} \omega(S \setminus \{x\})$

since $\alpha(x)$ does not depend on $\omega(x)$: $\Pr[\alpha(x) = \omega(x)] \leq 1/N$.

Thus: $\Pr[\exists x \in U : \alpha(x) = \omega(x)] \leq n/N$.

Suppose that $A \neq B \in \mathcal{F}$ are both minimum.

Now
$$\exists x \in U : \alpha(x) = \omega(B) - (\omega(A) - \omega(x)) = \omega(x)$$
.

This has probability at most n/N.

Parameterized Algorithms Lemma 11.5

Lemma: Let \mathcal{F} be a family of subsets of U, with |U| = n.

Indep. at random, assign each $x \in U$ weight $\omega(x)$ from $\{1..N\}$ with probabilty at least 1 - n/N we have:

$$\operatorname{argmin}_{S \in \mathcal{F}} \sum_{v \in S} \omega(v)$$
 is unique.

not exam material

Proof: Let $\alpha(x) = \min_{S \in \mathcal{F}, x \notin S} \omega(S) - \min_{S \in \mathcal{F}, x \in S} \omega(S \setminus \{x\})$

since $\alpha(x)$ does not depend on $\omega(x)$: $\Pr[\alpha(x) = \omega(x)] \leq 1/N$.

Thus: $\Pr[\exists x \in U : \alpha(x) = \omega(x)] \leq n/N$.

Suppose that $A \neq B \in \mathcal{F}$ are both minimum.

Now
$$\exists x \in U : \alpha(x) = \omega(B) - (\omega(A) - \omega(x)) = \omega(x)$$
.

This has probability at most n/N.

- 1. Copy each edge k times and apply labels 1..k
- **2.** $a \leftarrow$ number of multilabeled k-walks
- **3.** If a is odd, return YES \leftarrow correct!
- **4.** Otherwise: return No

Lemma: Non-simple walks are counted evenly.

Problem: What happens if the number of k-paths is even?

Solution: Isolation Lemma gives edge weights (with $\mathcal{F} = k$ -paths in G), such that a k-path of minimum weight is unique. Then we just expand DP to count weighted multilabled walks.