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Lecture 6. Approaches using Randomisation
or: Color Coding and “Isolation” Lemmas

(slides by Thomas van Dijk & Alexander Wolff)

Steven Chaplick and Alexander Wolff Chair for Computer Science I

Advanced Algorithms

Winter term 2019/20

Source: [Parameterized Algorithms: §3.3, 5, 5.1, 5.2, 11.2]
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In this lecture:

•• Coloring 6= Graphcoloring.
• k-coloring of n elements:

label each element with one number from 1..k.

WATCH YOUR STEP

!
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Randomised Algorithms

Probabilistic Polynomial Time (PP)
Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2
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Randomised Algorithms

Probabilistic Polynomial Time (PP)

SAT
?
∈ PP

1. Randomly assign binary values to variables.

Return Yes when the formula is satisfied.

2. O.w.: answer Yes or No w/ equal probability

X

Thm: NP ⊆ PP ⊆ PSPACE

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2
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Result: correct

Las Vegas (ZPP), zero-error probabilistic polynomial time
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Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t = (1− 1
x )x < 1
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x := 1/t
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Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t = (1− 1
x )x < 1

e < 1
2

x := 1/t
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Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t = (1− 1
x )x < 1

e < 1
2

( Obs.: Repeating 100 · t−1 times  error prob. < 2−100. )

x := 1/t
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Feedback Vertex Set

Given: Graph G = (V , E ), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S ] is a forest?
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Feedback Vertex Set

Reduction Rule: Delete vertices of degree < 2

Reduction Rule: “Bypass” each degree two vertex.

Def.: If no rule applies, the graph is called reduced.

Reduction Rule: Put vertices incident to loops in FVS

Given: Graph G = (V , E ), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S ] is a forest?
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Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

Given: Graph G = (V , E ), number k
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Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v) = |ES ,W |+ 2|EW |3|W |

mindeg 3

<
|W
| sin

ce forest

< |ES ,W |+ 2|W |

Lemma: If G is reduced, then |ES,W | ≥ |EW |

Given: Graph G = (V , E ), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S ] is a forest?

(see also Lemma 5.1 in textbook)
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Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

1. pick each e ∈ E with equal prob.

2. pick v ∈ e with equal prob.

Algorithm:

Success probability:

> 1/2

1/2

ES?

> 1/2

· 1/2 = 1/4at least

Obs.: With prob. ≥ 1/4, we find a node from an (unknown)
optimal FVS

Given: Graph G = (V , E ), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S ] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |
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If |S | > k: return No

6. Return Yes
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FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes

← max k times

Runtime:

Prob. of success:

O(n + m)

> 1/4

O(k(n + m))

> 4−k

Thm: Feedback Vertex Set can be solved in
O(4k · k(n + m)) time by a randomised algorithm
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Longest Path

Given: Graph G = (V , E ), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k

Longest Path in acyclic graphs:
Special Case:

O(m)

1. Topological sort
2. Let L(v) := longest path to v
3. “backwards” dynamic program
4. Look for v with L(v) = k

Runtime?

(length :=
# edges)
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Idea. Longest Path is easy on acyclic graphs
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Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

3. p ← longest path in ~G

4. If |p| ≥ k, return Yes.

5. Return No

Runtime: O∗(k!) iterations each O(m) time

Thm: A randomised algorithm can solve Longest Path in
O∗(k! · n) time
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Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Def.: A path is colorful, when each vertex has a different color.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

Obs.: Colorful paths are “easy”

Part 1: Finding a colorful path is easy FPT in k .

Part 2: ∃ k-path in G → good prob. of a colorful path

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!
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p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

Fix the colors of the nodes outside of p

We get kk different colorings of p

Of these, k! are colorful

Thus Pr[p is colorful] = k!
kk >

(
k
e

)k
/kk = e−k

e−k

Stirling:
k! ≥

√
2πkk+ 1

2 e−k
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Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

How big is this graph? O(2k · n) vertices O(2k ·m) edges

Runtime: O(2k ·m) since... graph is acyclic :)
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4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O( (2e)k ·m ) ⊂ O(5.43657k ·m) time

let us recall the
purpose of this

guarantees (randomised):
k-path in G → c colorful path

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.
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3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time
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1. Randomly color vertices

2. Show that Pr[copy of H is colorful] ≥ 1/f (k)

3. Find colorful copy of H in FPT-time

4. repeat O( f (k) ) times

5. Derandomise )(

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| = k)
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#Multilabeled Walks
Given: Graph G = (V , E ), vertex v ∈ V , number k ,

edge labels λ(e) ∈ Λ = {1..k}
Question: How many walks in G start at v , have

length k, but don’t use an edge label twice?

Algorithm:

Recurrence:

Runtime:

dynamic program

A(S , u) with S ⊆ Λ, u ∈ V

O(2k n2)
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1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

← correct!

Problem: What happens if the number of k-paths is even?
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Counting Multilabeled Walks: Algorithm

Solution: Isolation Lemma gives edge weights (with F =
k-paths in G ), such that a k-path of minimum weight is
unique. Then we just expand DP to count weighted
multilabled walks.

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

← correct!

Problem: What happens if the number of k-paths is even?
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