
1/19

Lecture 6. Approaches using Randomisation
or: Color Coding and “Isolation” Lemmas

(slides by Thomas van Dijk & Alexander Wolff)

Steven Chaplick and Alexander Wolff Chair for Computer Science I

Advanced Algorithms

Winter term 2019/20

Source: [Parameterized Algorithms: §3.3, 5, 5.1, 5.2, 11.2]

2/19

In this lecture:

•• Coloring 6= Graphcoloring.
• k-coloring of n elements:

label each element with one number from 1..k.

WATCH YOUR STEP

!

3/19

Randomised Algorithms

Probabilistic Polynomial Time (PP)
Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

3/19

Randomised Algorithms

Probabilistic Polynomial Time (PP)

SAT
?
∈ PP

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

3/19

Randomised Algorithms

Probabilistic Polynomial Time (PP)

SAT
?
∈ PP

1. Randomly assign binary values to variables.

Return Yes when the formula is satisfied.

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

3/19

Randomised Algorithms

Probabilistic Polynomial Time (PP)

SAT
?
∈ PP

1. Randomly assign binary values to variables.

Return Yes when the formula is satisfied.

2. O.w.: answer Yes or No w/ equal probability

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

3/19

Randomised Algorithms

Probabilistic Polynomial Time (PP)

SAT
?
∈ PP

1. Randomly assign binary values to variables.

Return Yes when the formula is satisfied.

2. O.w.: answer Yes or No w/ equal probability

X

Thm: NP ⊆ PP ⊆ PSPACE

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

3/19

Randomised Algorithms

Runtime: expected polynomial
Result: correct

Las Vegas (ZPP), zero-error probabilistic polynomial time

Probabilistic Polynomial Time (PP)
Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

3/19

Randomised Algorithms

Runtime: expected polynomial
Result: correct

Las Vegas (ZPP), zero-error probabilistic polynomial time

Monte Carlo:

Probabilistic Polynomial Time (PP)

BPP

bo
un

de
d-

er
ro

r
pr

ob
.

po
ly

.
ti

m
e

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 2

3
1
2

No-instance → Pr[Yes] ≤ 1
3 0

3/19

Randomised Algorithms

Runtime: expected polynomial
Result: correct

Las Vegas (ZPP), zero-error probabilistic polynomial time

Monte Carlo:

Probabilistic Polynomial Time (PP)

BPP RP

bo
un

de
d-

er
ro

r
pr

ob
.

po
ly

.
ti

m
e

ra
nd

om
is

ed
po

ly
.

ti
m

e

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 2

3
1
2

No-instance → Pr[Yes] ≤ 1
3 0

3/19

Randomised Algorithms

Runtime: expected polynomial
Result: correct

Las Vegas (ZPP), zero-error probabilistic polynomial time

Monte Carlo:

Probabilistic Polynomial Time (PP)

BPP RP co-RP
1
1
2

bo
un

de
d-

er
ro

r
pr

ob
.

po
ly

.
ti

m
e

ra
nd

om
is

ed
po

ly
.

ti
m

e

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 2

3
1
2

No-instance → Pr[Yes] ≤ 1
3 0

3/19

Randomised Algorithms

Runtime: expected polynomial
Result: correct

Las Vegas (ZPP), zero-error probabilistic polynomial time

Monte Carlo:

Probabilistic Polynomial Time (PP)

Thm: ZPP = RP ∩ co-RP

BPP RP co-RP
1
1
2

bo
un

de
d-

er
ro

r
pr

ob
.

po
ly

.
ti

m
e

ra
nd

om
is

ed
po

ly
.

ti
m

e

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 2

3
1
2

No-instance → Pr[Yes] ≤ 1
3 0

3/19

Randomised Algorithms

Runtime: expected polynomial
Result: correct

Las Vegas (ZPP), zero-error probabilistic polynomial time

Monte Carlo:

Probabilistic Polynomial Time (PP)

Thm: ZPP = RP ∩ co-RP

BPP RP co-RP
1
1
2

bo
un

de
d-

er
ro

r
pr

ob
.

po
ly

.
ti

m
e

ra
nd

om
is

ed
po

ly
.

ti
m

e

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 1

2
No-instance → Pr[Yes] ≤ 1

2

Runtime: polynomial
Result: Yes-instance → Pr[Yes] > 2

3
1
2

No-instance → Pr[Yes] ≤ 1
3 0

4/19

Amplification

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

4/19

Amplification

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability :

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t = (1− 1
x)x

x := 1/t

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t = (1− 1
x)x < 1

e

x := 1/t

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t = (1− 1
x)x < 1

e < 1
2

x := 1/t

4/19

Amplification

If an RP-algorithm returns No,

Yes-Instance → Pr[Yes] ≥ t
No-Instance → Pr[Yes] = 0

RP:

If an RP-algorithm returns Yes, it is correct

it is incorrect with probability ≤ 1− t

Algorithm: Run the original algorithm d1/te times
Return Yes if every some returns Yes
Otherwise No

Error Probability : (1− t)1/t = (1− 1
x)x < 1

e < 1
2

(Obs.: Repeating 100 · t−1 times error prob. < 2−100.)

x := 1/t

5/19

Feedback Vertex Set

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Reduction Rule: Delete vertices of degree < 2

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Reduction Rule: Delete vertices of degree < 2

Reduction Rule: “Bypass” each degree two vertex.

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Reduction Rule: Delete vertices of degree < 2

Reduction Rule: “Bypass” each degree two vertex.

Reduction Rule: Put vertices incident to loops in FVS

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Reduction Rule: Delete vertices of degree < 2

Reduction Rule: “Bypass” each degree two vertex.

Def.: If no rule applies, the graph is called reduced.

Reduction Rule: Put vertices incident to loops in FVS

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v)

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v)3|W |

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v)3|W |

mindeg 3

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v) = |ES ,W |+ 2|EW |3|W |

mindeg 3

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v) = |ES ,W |+ 2|EW |3|W |

mindeg 3

<
|W
| sin

ce forest

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v) = |ES ,W |+ 2|EW |3|W |

mindeg 3

<
|W
| sin

ce forest

< |ES ,W |+ 2|W |

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v) = |ES ,W |+ 2|EW |3|W |

mindeg 3

<
|W
| sin

ce forest

< |ES ,W |+ 2|W |
?

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Let EW := edges connecting vertices in W

Let ES,W := edges connecting S and W

≤
∑
v∈W

deg(v) = |ES ,W |+ 2|EW |3|W |

mindeg 3

<
|W
| sin

ce forest

< |ES ,W |+ 2|W |

Lemma: If G is reduced, then |ES,W | ≥ |EW |

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

(see also Lemma 5.1 in textbook)

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

1. pick each e ∈ E with equal prob.

2. pick v ∈ e with equal prob.

Algorithm:

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

1. pick each e ∈ E with equal prob.

2. pick v ∈ e with equal prob.

Algorithm:

Success probability: at least

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

1. pick each e ∈ E with equal prob.

2. pick v ∈ e with equal prob.

Algorithm:

Success probability:

ES?

at least

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

1. pick each e ∈ E with equal prob.

2. pick v ∈ e with equal prob.

Algorithm:

Success probability:

> 1/2

1/2

ES?

at least

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

1. pick each e ∈ E with equal prob.

2. pick v ∈ e with equal prob.

Algorithm:

Success probability:

> 1/2

1/2

ES?

> 1/2

· 1/2 = 1/4at least

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

5/19

Feedback Vertex Set

Def.: Let G be reduced, S ⊆ V be an FVS, and W := V \ S .

Idea: Find some v ∈ S

1. pick each e ∈ E with equal prob.

2. pick v ∈ e with equal prob.

Algorithm:

Success probability:

> 1/2

1/2

ES?

> 1/2

· 1/2 = 1/4at least

Obs.: With prob. ≥ 1/4, we find a node from an (unknown)
optimal FVS

Given: Graph G = (V , E), number k
Question: ∃ S ⊆ V such that |S | ≤ k and

G [V \ S] is a forest?

Lemma: If G is reduced, then |ES,W | ≥ |EW |

6/19

FVS: algorithm given k

1. while G is not empty:

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

S ← S ∪ {v}; G ← G \ v

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes
Runtime:

Prob. of success:

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes
Runtime:

Prob. of success:

O(n + m)

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes
Runtime:

Prob. of success:

O(n + m)

> 1/4

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes
Runtime:

Prob. of success:

O(n + m)

> 1/4

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes

← max k times

Runtime:

Prob. of success:

O(n + m)

> 1/4

O(k(n + m))

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes

← max k times

Runtime:

Prob. of success:

O(n + m)

> 1/4

O(k(n + m))

> 4−k

6/19

FVS: algorithm given k

1. while G is not empty:

2. Apply reduction rules

3. pick a vertex v via randomized proc. on last slide

4.

0. S ← ∅

5.

S ← S ∪ {v}; G ← G \ v

If |S | > k: return No

6. Return Yes

← max k times

Runtime:

Prob. of success:

O(n + m)

> 1/4

O(k(n + m))

> 4−k

Thm: Feedback Vertex Set can be solved in
O(4k · k(n + m)) time by a randomised algorithm

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k (length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k

Longest Path in acyclic graphs:
Special Case:

Runtime?

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k

Longest Path in acyclic graphs:
Special Case:

O(m)Runtime?

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k

Longest Path in acyclic graphs:
Special Case:

O(m)

1. Topological sort

Runtime?

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k

Longest Path in acyclic graphs:
Special Case:

O(m)

1. Topological sort
2. Let L(v) := longest path to v

Runtime?

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k

Longest Path in acyclic graphs:
Special Case:

O(m)

1. Topological sort
2. Let L(v) := longest path to v
3. “backwards” dynamic program

Runtime?

(length :=
edges)

7/19

Longest Path

Given: Graph G = (V , E), number k

Question: Does G contain a length k path?

Thm: Longest Path is NP-complete

Thm: Longest Path can be solved in O∗(2n) time.

Parameter: k

Longest Path in acyclic graphs:
Special Case:

O(m)

1. Topological sort
2. Let L(v) := longest path to v
3. “backwards” dynamic program
4. Look for v with L(v) = k

Runtime?

(length :=
edges)

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G

Obs.: ∃ k-path in ~G → ∃ k-path in G

(random variable!)

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G

Obs.: ∃ k-path in ~G → ∃ k-path in G

(random variable!)

Obs.: Converse does not apply however ...

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G

Obs.: ∃ k-path in ~G → ∃ k-path in G

(random variable!)

Obs.: Converse does not apply however ...
∃ k-path in G → Pr[~G has k-path] > 0.

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G

Obs.: ∃ k-path in ~G → ∃ k-path in G

(random variable!)

Obs.: Converse does not apply however ...

Randomisied algorithm?

∃ k-path in G → Pr[~G has k-path] > 0.

Now:

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G

Obs.: ∃ k-path in ~G → ∃ k-path in G

(random variable!)

Obs.: Converse does not apply however ...

Randomisied algorithm?

∃ k-path in G → Pr[~G has k-path] > 0.

Runtime?Now:

8/19

Longest Path

Idea. Longest Path is easy on acyclic graphs

Plan: make G acyclic!

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G

Obs.: ∃ k-path in ~G → ∃ k-path in G

(random variable!)

Obs.: Converse does not apply however ...

Randomisied algorithm?

∃ k-path in G → Pr[~G has k-path] > 0.

Runtime?Now:

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Obs.: Order of vertices 6∈ p is irrelevant

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof: Consider perm. π, but ignore the elements of p π/p

π: 1 4 2 6 8 5 3 7

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof: Consider perm. π, but ignore the elements of p π/p

π: 1 4 2 6 8 5 3 7

p: (5, 3, 6)

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof: Consider perm. π, but ignore the elements of p π/p

1 4 2 × 8 × × 7

π: 1 4 2 6 8 5 3 7

π/p:

p: (5, 3, 6)

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Consider perm. π, but ignore the elements of p π/p

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Consider perm. π, but ignore the elements of p π/p

All have equal probability.

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Consider perm. π, but ignore the elements of p π/p

All have equal probability.

For two of them, p is a path in ~G (two correct)

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Consider perm. π, but ignore the elements of p π/p

All have equal probability.

For two of them, p is a path in ~G

Thus Pr[p ∈ ~G | π/p] = 2
(k+1)!

(two correct)

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Consider perm. π, but ignore the elements of p π/p

All have equal probability.

For two of them, p is a path in ~G

Thus Pr[p ∈ ~G | π/p] = 2
(k+1)!

 Pr[p ∈ ~G] =

(two correct)

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Consider perm. π, but ignore the elements of p π/p

All have equal probability.

For two of them, p is a path in ~G

Thus Pr[p ∈ ~G | π/p] = 2
(k+1)!

 Pr[p ∈ ~G] = 2
(k+1)!

(two correct)

(indep. sum over π/p)

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

9/19

Randomised Orientation: Success Prob.

Lemma: Let p be a k-path in G . Then Pr[p ∈ ~G] =

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Consider perm. π, but ignore the elements of p π/p

All have equal probability.

For two of them, p is a path in ~G

Thus Pr[p ∈ ~G | π/p] = 2
(k+1)!

 Pr[p ∈ ~G] = 2
(k+1)!

2
(k+1)!

(two correct)

(indep. sum over π/p)

1. pick random permutation π of V

2. orient edges {u, v} from u to v when π(u) < π(v)

Result ~G (random variable!)

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

3. p ← longest path in ~G

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

3. p ← longest path in ~G

4. If |p| ≥ k, return Yes.

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

3. p ← longest path in ~G

4. If |p| ≥ k, return Yes.

5. Return No

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

3. p ← longest path in ~G

4. If |p| ≥ k, return Yes.

5. Return No

Runtime: O∗(k!) iterations

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

3. p ← longest path in ~G

4. If |p| ≥ k, return Yes.

5. Return No

Runtime: O∗(k!) iterations each O(m) time

10/19

Randomised Orientation: Algorithm

Algorithm

1. Repeat (k + 1)!/2 times:

2. ~G ← random acyclic orientation of G

3. p ← longest path in ~G

4. If |p| ≥ k, return Yes.

5. Return No

Runtime: O∗(k!) iterations each O(m) time

Thm: A randomised algorithm can solve Longest Path in
O∗(k! · n) time

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Def.: A path is colorful, when each vertex has a different color.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Def.: A path is colorful, when each vertex has a different color.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

Obs.: Colorful paths are “easy”

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Def.: A path is colorful, when each vertex has a different color.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

Obs.: Colorful paths are “easy”

Part 1: Finding a colorful path is easy

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Def.: A path is colorful, when each vertex has a different color.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

Obs.: Colorful paths are “easy”

Part 1: Finding a colorful path is easy

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Def.: A path is colorful, when each vertex has a different color.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

Obs.: Colorful paths are “easy”

Part 1: Finding a colorful path is easy FPT in k .

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!

11/19

Longest Path : attempt 2

Obs. Longest Path is easy on acyclic graphs.

Def.: A path is colorful, when each vertex has a different color.

Color vertices with (k + 1) colors
6= Graphcoloring!

vertices with equal color
might not be adjacent

Obs.: Colorful paths are “easy”

Part 1: Finding a colorful path is easy FPT in k .

Part 2: ∃ k-path in G → good prob. of a colorful path

(k-path has k + 1 vertices)
WATCH YOUR

STEP

!

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof: Consider perm. π, but ignore the elements of p π/p

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof: Fix the colors of the nodes outside of p

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

There are (k + 1)! ways to complete π/p to some π′.

Fix the colors of the nodes outside of p

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof: Fix the colors of the nodes outside of p

We get kk different colorings of p

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

Fix the colors of the nodes outside of p

We get kk different colorings of p

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

For two of them, p is a path in ~G

Fix the colors of the nodes outside of p

We get kk different colorings of p

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

Fix the colors of the nodes outside of p

We get kk different colorings of p

Of these, k! are colorful

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

Fix the colors of the nodes outside of p

We get kk different colorings of p

Of these, k! are colorful

Thus Pr[p is colorful] =

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

Fix the colors of the nodes outside of p

We get kk different colorings of p

Of these, k! are colorful

Thus Pr[p is colorful] = k!
kk

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

Fix the colors of the nodes outside of p

We get kk different colorings of p

Of these, k! are colorful

Thus Pr[p is colorful] = k!
kk >

(
k
e

)k
/kk

Stirling:
k! ≥

√
2πkk+ 1

2 e−k

12/19

Random Coloring: Success Prob.

Lemma: Let c be a random k-coloring of V , and
p be a (k − 1)-path.

Then Pr[p is coloful] >

Proof:

Each with equal probability

Fix the colors of the nodes outside of p

We get kk different colorings of p

Of these, k! are colorful

Thus Pr[p is colorful] = k!
kk >

(
k
e

)k
/kk = e−k

e−k

Stirling:
k! ≥

√
2πkk+ 1

2 e−k

13/19

Finding Colorful Paths

Approach 1: dynamic program

Given c colored graph G

13/19

Finding Colorful Paths

Approach 1: dynamic program

Table entries:

Given c colored graph G

13/19

Finding Colorful Paths

Approach 1: dynamic program

Table entries:

For a subset S of our colors, and vertex u:
Path(S , u) = true if and only if there is an
S-colorful path ending at u

Given c colored graph G

13/19

Finding Colorful Paths

Approach 1: dynamic program

Table entries:

For a subset S of our colors, and vertex u:
Path(S , u) = true if and only if there is an
S-colorful path ending at u

Recurrence:

Given c colored graph G

13/19

Finding Colorful Paths

Approach 1: dynamic program

Table entries:

For a subset S of our colors, and vertex u:
Path(S , u) = true if and only if there is an
S-colorful path ending at u

Recurrence:

Path(S , u) =

Given c colored graph G

13/19

Finding Colorful Paths

Approach 1: dynamic program

Table entries:

For a subset S of our colors, and vertex u:
Path(S , u) = true if and only if there is an
S-colorful path ending at u

Recurrence:

Path(S , u) =

∨
uv∈E(G) Path(S \ c(u), v), if c(u) ∈ S

false, otherwise

Given c colored graph G

13/19

Finding Colorful Paths

Approach 1: dynamic program

Runtime?

Table entries:

For a subset S of our colors, and vertex u:
Path(S , u) = true if and only if there is an
S-colorful path ending at u

Recurrence:

Path(S , u) =

∨
uv∈E(G) Path(S \ c(u), v), if c(u) ∈ S

false, otherwise

Given c colored graph G

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

How big is this graph?

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

How big is this graph? O(2k · n) vertices O(2k ·m) edges

Runtime:

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

How big is this graph? O(2k · n) vertices O(2k ·m) edges

Runtime: O(2k ·m) since...

13/19

Finding Colorful Paths

RGB RB GB B

RG R G ∅

Approach 2: For each subset S of the colors, create a copy GS

where GS contains the vertices colored S and the edges are ...

How big is this graph? O(2k · n) vertices O(2k ·m) edges

Runtime: O(2k ·m) since... graph is acyclic :)

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

3. If there is a colorful path, return Yes

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

3. If there is a colorful path, return Yes

4. Return No

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

let us recall the
purpose of this

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

14/19

Longest Path: colorful algorithm

Algorithm

1. repeat ek times:

2. pick a random k-coloring c of V

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

let us recall the
purpose of this

guarantees (randomised):
k-path in G → c colorful path

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

14/19

Longest Path: colorful algorithm

Algorithm

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

1. repeat for each coloring c ∈ C:

|C|

14/19

Longest Path: colorful algorithm

Algorithm

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

1. repeat for each coloring c ∈ C:

What property of C do we need?

|C|

14/19

Longest Path: colorful algorithm

Algorithm

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

1. repeat for each coloring c ∈ C:

What property of C do we need?

sufficient: ∀S ⊆ V with |S | = k : ∃c ∈ C : S is colorful

|C|

14/19

Longest Path: colorful algorithm

Algorithm

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

1. repeat for each coloring c ∈ C:

What property of C do we need?

sufficient: ∀S ⊆ V with |S | = k : ∃c ∈ C : S is colorful

|C|

deterministic

14/19

Longest Path: colorful algorithm

Algorithm

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

1. repeat for each coloring c ∈ C:

What property of C do we need?

sufficient: ∀S ⊆ V with |S | = k : ∃c ∈ C : S is colorful

|C|

deterministic

Thm [§5.6]: There is C with this
property and |C| ∈ 2O(k) log n so that
C can be produced in O(|C|) time.

14/19

Longest Path: colorful algorithm

Algorithm

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

1. repeat for each coloring c ∈ C:

What property of C do we need?

sufficient: ∀S ⊆ V with |S | = k : ∃c ∈ C : S is colorful

|C|

deterministic

Thm [§5.6]: There is C with this
property and |C| ∈ 2O(k) log n so that
C can be produced in O(|C|) time.

log n)α

14/19

Longest Path: colorful algorithm

Algorithm

3. If there is a colorful path, return Yes

4. Return No

Runtime: ek iterations each O(2k ·m) time

total: O((2e)k ·m) ⊂ O(5.43657k ·m) time

Thm: There is a randomised algorithm that solves Longest
Path in O∗(5.44k ·m) time.

1. repeat for each coloring c ∈ C:

What property of C do we need?

sufficient: ∀S ⊆ V with |S | = k : ∃c ∈ C : S is colorful

|C|

deterministic

Thm [§5.6]: There is C with this
property and |C| ∈ 2O(k) log n so that
C can be produced in O(|C|) time.

log n)

log n)α

α
n

time

15/19

Color Coding: User’s Guide

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| = k)

15/19

Color Coding: User’s Guide

1. Randomly color vertices

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| = k)

15/19

Color Coding: User’s Guide

1. Randomly color vertices

2. Show that Pr[copy of H is colorful] ≥ 1/f (k)

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| = k)

15/19

Color Coding: User’s Guide

1. Randomly color vertices

2. Show that Pr[copy of H is colorful] ≥ 1/f (k)

3. Find colorful copy of H in FPT-time

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| = k)

15/19

Color Coding: User’s Guide

1. Randomly color vertices

2. Show that Pr[copy of H is colorful] ≥ 1/f (k)

3. Find colorful copy of H in FPT-time

4. repeat O(f (k)) times

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| = k)

15/19

Color Coding: User’s Guide

1. Randomly color vertices

2. Show that Pr[copy of H is colorful] ≥ 1/f (k)

3. Find colorful copy of H in FPT-time

4. repeat O(f (k)) times

5. Derandomise)(

Given: Graph G
Question: Is H a(n induced) subgraph of G (graph H, |H| = k)

16/19

Longest Path: Approach 3 (sketch)

#Multilabeled Walks
Given: Graph G = (V , E), vertex v ∈ V , number k ,

edge labels λ(e) ∈ Λ = {1..k}
Question: How many walks in G start at v , have

length k, but don’t use an edge label twice?

16/19

Longest Path: Approach 3 (sketch)

#Multilabeled Walks
Given: Graph G = (V , E), vertex v ∈ V , number k ,

edge labels λ(e) ∈ Λ = {1..k}
Question: How many walks in G start at v , have

length k, but don’t use an edge label twice?

Algorithm:

16/19

Longest Path: Approach 3 (sketch)

#Multilabeled Walks
Given: Graph G = (V , E), vertex v ∈ V , number k ,

edge labels λ(e) ∈ Λ = {1..k}
Question: How many walks in G start at v , have

length k, but don’t use an edge label twice?

Algorithm:

Recurrence:

dynamic program

16/19

Longest Path: Approach 3 (sketch)

#Multilabeled Walks
Given: Graph G = (V , E), vertex v ∈ V , number k ,

edge labels λ(e) ∈ Λ = {1..k}
Question: How many walks in G start at v , have

length k, but don’t use an edge label twice?

Algorithm:

Recurrence:

Runtime:

dynamic program

A(S , u) with S ⊆ Λ, u ∈ V

16/19

Longest Path: Approach 3 (sketch)

#Multilabeled Walks
Given: Graph G = (V , E), vertex v ∈ V , number k ,

edge labels λ(e) ∈ Λ = {1..k}
Question: How many walks in G start at v , have

length k, but don’t use an edge label twice?

Algorithm:

Recurrence:

Runtime:

dynamic program

A(S , u) with S ⊆ Λ, u ∈ V

O(2k n2)

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

?!

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

← correct!

17/19

Counting Multilabeled Walks: Algorithm

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

← correct!

Problem: What happens if the number of k-paths is even?

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

with probabilty at least 1− n/N we have:

argminS∈F
∑
v∈S

ω(v) is unique.

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

with probabilty at least 1− n/N we have:

argminS∈F
∑
v∈S

ω(v) is unique.

Let α(x) = min
S∈F ,x 6∈S

ω(S)− min
S∈F ,x∈S

ω(S \ {x})Proof:

not exam material

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

with probabilty at least 1− n/N we have:

argminS∈F
∑
v∈S

ω(v) is unique.

Let α(x) = min
S∈F ,x 6∈S

ω(S)− min
S∈F ,x∈S

ω(S \ {x})Proof:

since α(x) does not depend on ω(x): Pr[α(x) = ω(x)] ≤ 1/N.

not exam material

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

with probabilty at least 1− n/N we have:

argminS∈F
∑
v∈S

ω(v) is unique.

Let α(x) = min
S∈F ,x 6∈S

ω(S)− min
S∈F ,x∈S

ω(S \ {x})Proof:

since α(x) does not depend on ω(x): Pr[α(x) = ω(x)] ≤ 1/N.

Thus: Pr[∃x ∈ U : α(x) = ω(x)] ≤ n/N.

not exam material

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

with probabilty at least 1− n/N we have:

argminS∈F
∑
v∈S

ω(v) is unique.

Let α(x) = min
S∈F ,x 6∈S

ω(S)− min
S∈F ,x∈S

ω(S \ {x})Proof:

since α(x) does not depend on ω(x): Pr[α(x) = ω(x)] ≤ 1/N.

Thus: Pr[∃x ∈ U : α(x) = ω(x)] ≤ n/N.

Suppose that A 6= B ∈ F are both minimum.
Now ∃x ∈ U : α(x) = ω(B)− (ω(A)− ω(x)) = ω(x).

not exam material

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

with probabilty at least 1− n/N we have:

argminS∈F
∑
v∈S

ω(v) is unique.

Let α(x) = min
S∈F ,x 6∈S

ω(S)− min
S∈F ,x∈S

ω(S \ {x})Proof:

since α(x) does not depend on ω(x): Pr[α(x) = ω(x)] ≤ 1/N.

Thus: Pr[∃x ∈ U : α(x) = ω(x)] ≤ n/N.

Suppose that A 6= B ∈ F are both minimum.
Now ∃x ∈ U : α(x) = ω(B)− (ω(A)− ω(x)) = ω(x).

This has probability at most n/N.

not exam material

Parameterized Algorithms
Lemma 11.5

18/19

An “Isolation” Lemma

Lemma: Let F be a family of subsets of U, with |U| = n.

Indep. at random, assign each x ∈ U weight ω(x) from {1..N}

with probabilty at least 1− n/N we have:

argminS∈F
∑
v∈S

ω(v) is unique.

Let α(x) = min
S∈F ,x 6∈S

ω(S)− min
S∈F ,x∈S

ω(S \ {x})Proof:

since α(x) does not depend on ω(x): Pr[α(x) = ω(x)] ≤ 1/N.

Thus: Pr[∃x ∈ U : α(x) = ω(x)] ≤ n/N.

Suppose that A 6= B ∈ F are both minimum.
Now ∃x ∈ U : α(x) = ω(B)− (ω(A)− ω(x)) = ω(x).

This has probability at most n/N.

1..2n1/2

not exam material

Parameterized Algorithms
Lemma 11.5

19/19

Counting Multilabeled Walks: Algorithm

Solution: Isolation Lemma gives edge weights (with F =
k-paths in G), such that a k-path of minimum weight is
unique. Then we just expand DP to count weighted
multilabled walks.

1. Copy each edge k times and apply labels 1..k

2. a← number of multilabeled k-walks

3. If a is odd, return Yes

4. Otherwise: return No

Lemma: Non-simple walks are counted evenly.

← correct!

Problem: What happens if the number of k-paths is even?

	Titel
	Random Coloring: Success Prob.
	\longp{}: colorful algorithm

