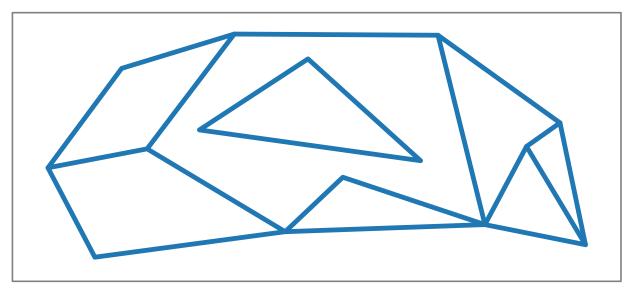
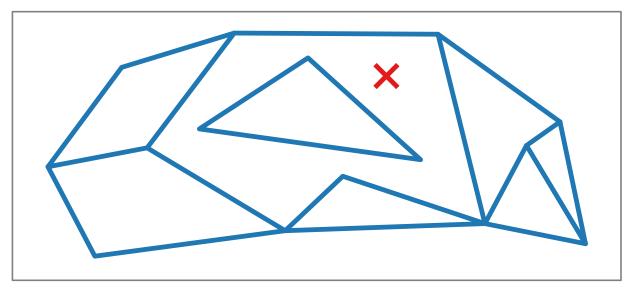


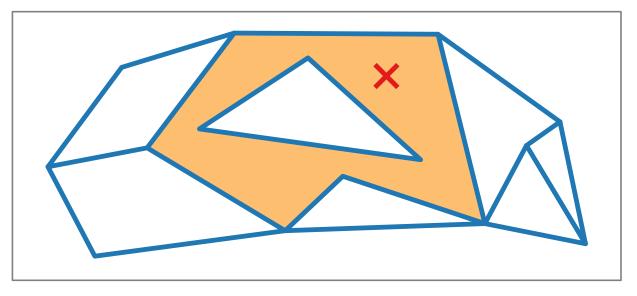
Computational Geometry

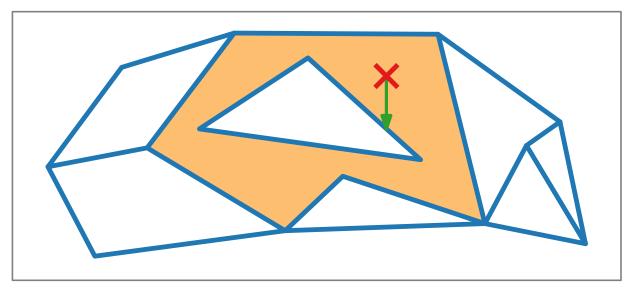
Point Localization or Where am I? Lecture #5

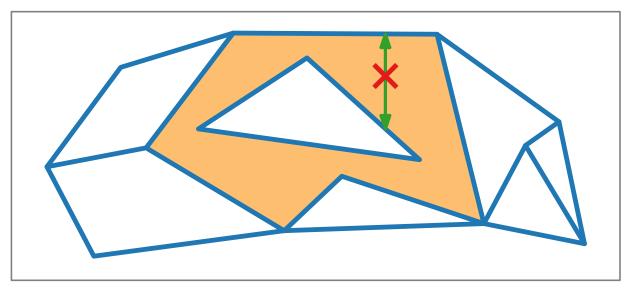
Thomas van Dijk

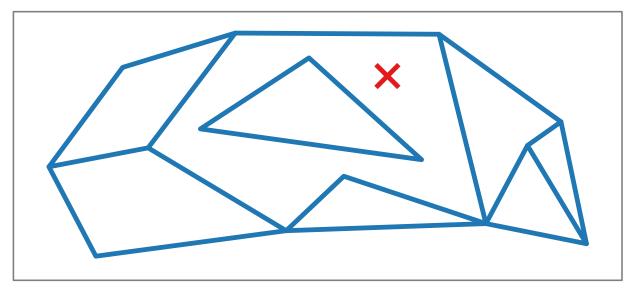

Winter Semester 2019/20

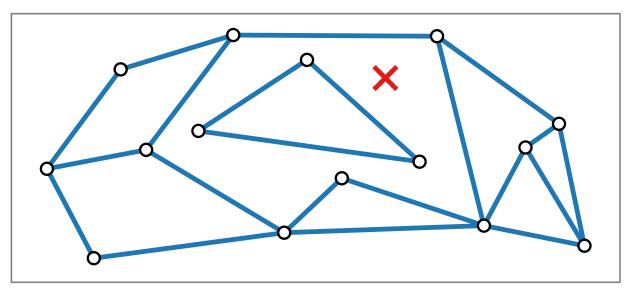


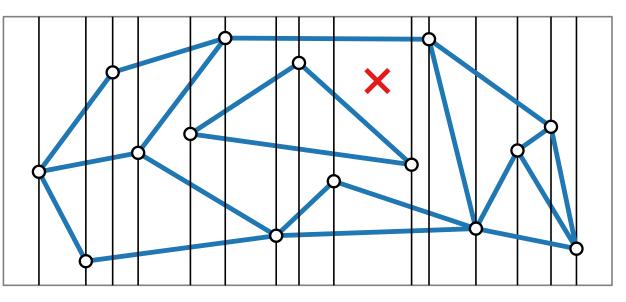

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]



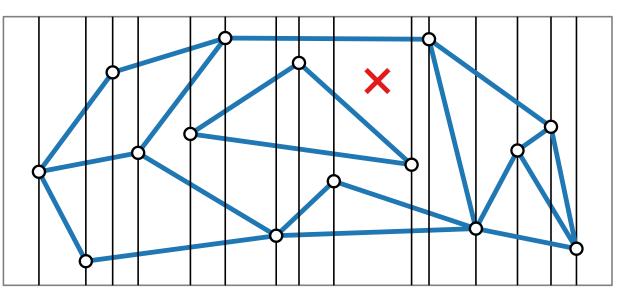

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]



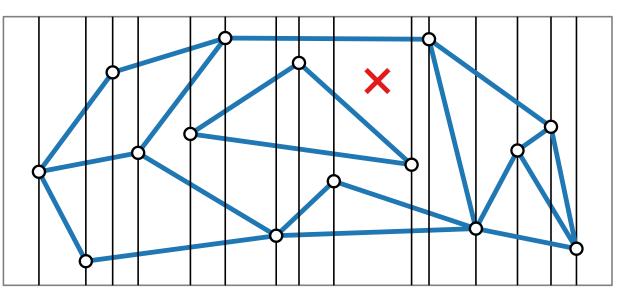




- Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!
- **Solution:** Preproc.: Partition S into slabs induced by vertices.

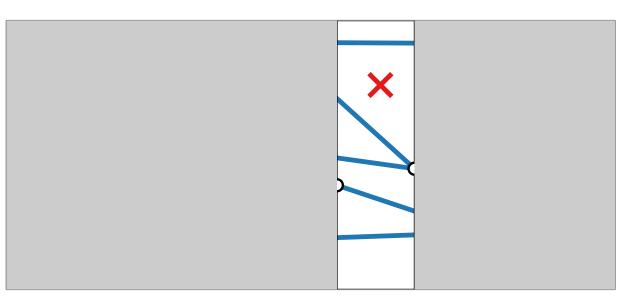


- Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!
- **Solution:** Preproc.: Partition S into slabs induced by vertices.

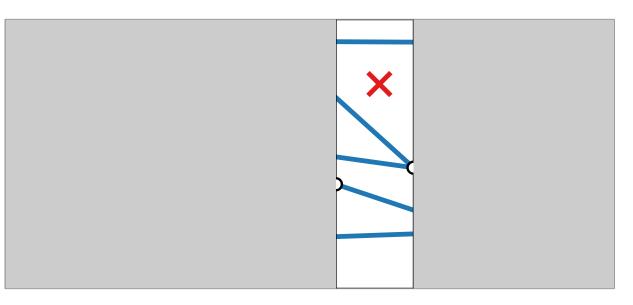


Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

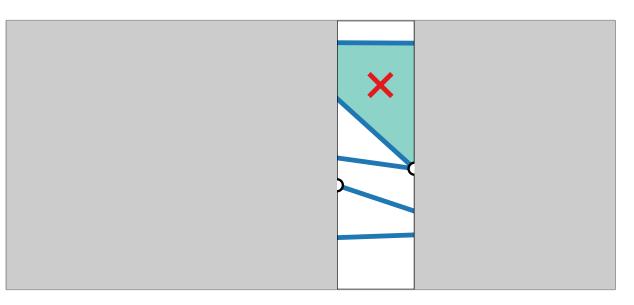


- Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!
- **Solution:** Preproc.: Partition S into slabs induced by vertices. Query:


Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

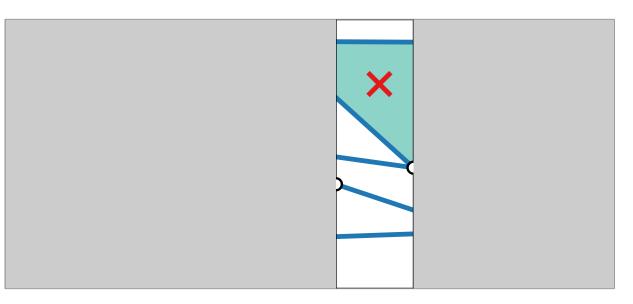
Solution: Preproc.: Partition S into slabs induced by vertices. Query: – find correct slab

Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

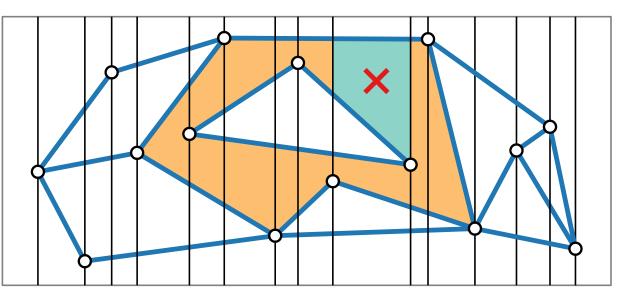

Solution: Preproc.: Partition S into slabs induced by vertices. Query: – find correct slab

Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.


Query: – find correct slab – search in slab

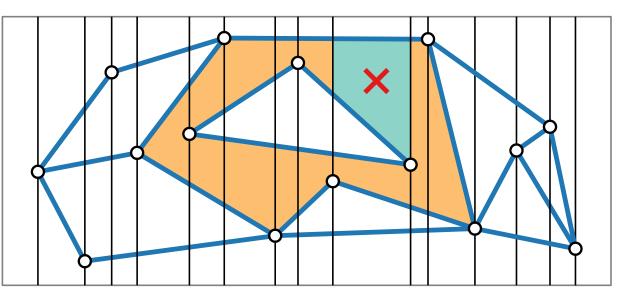
Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!


Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab – search in slab

Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

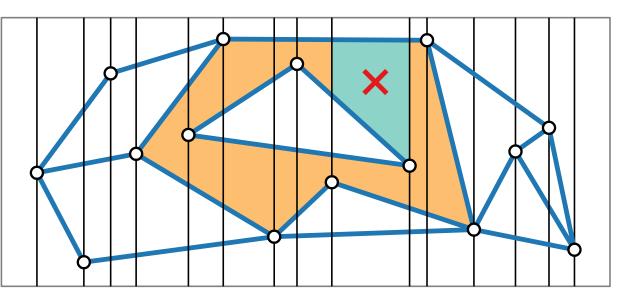
Solution: Preproc.: Partition S into slabs induced by vertices.



Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

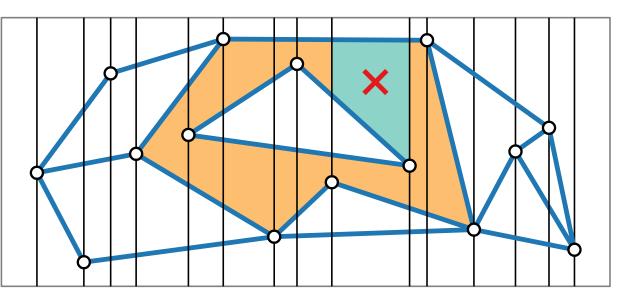
Query: – find correct slab – search in slab } 2 bin. searches!


Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab – search in slab } 2 bin. searches!

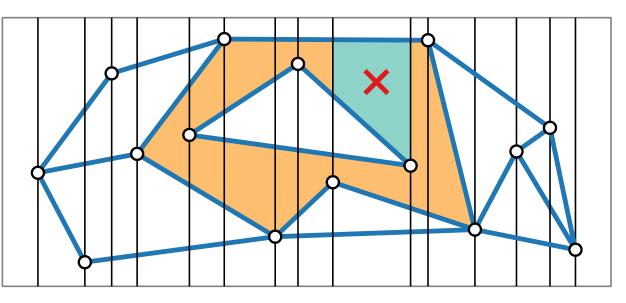
But:


Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab – search in slab } 2 bin. searches!

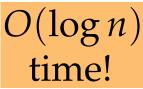
But: Space?

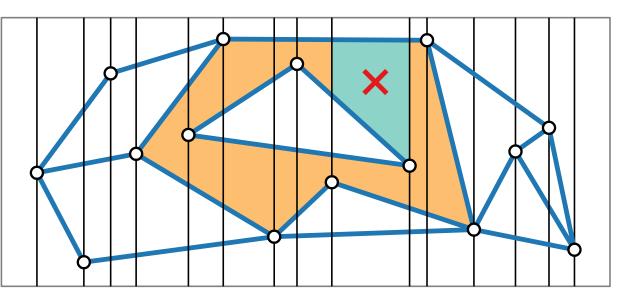

Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab – search in slab } 2 bin. searches!

But: Space? $\Theta(n^2)$

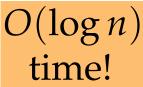


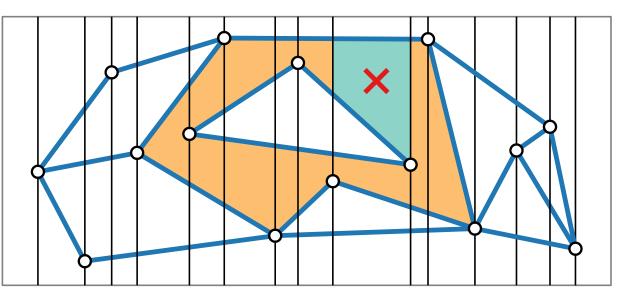

Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab – search in slab } 2 bin. searches!

But: Space? $\Theta(n^2)$ **Task:** Tight example?

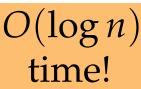



Task:Given a planar subdivision S with n segments,preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab – search in slab } 2 bin. searches!

But: Space? $\Theta(n^2)$ Preproc?



Task: Given a planar subdivision S with *n* segments, preprocess S to allow for fast pt. location queries!

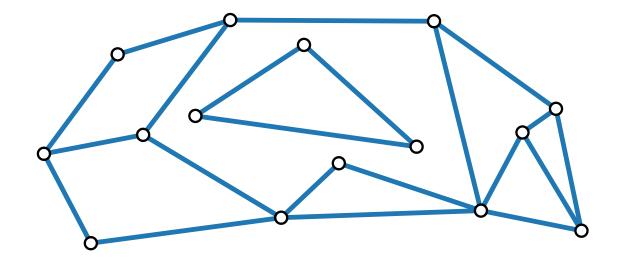
Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

Query: - find correct slab
- search in slab2 bin. searches!Space? $\Theta(n^2)$ Preproc? $O(n^2 \log n)$ $O(\log n)$
time!

But:

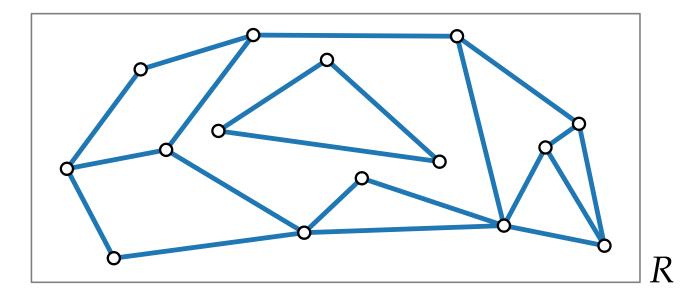
Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

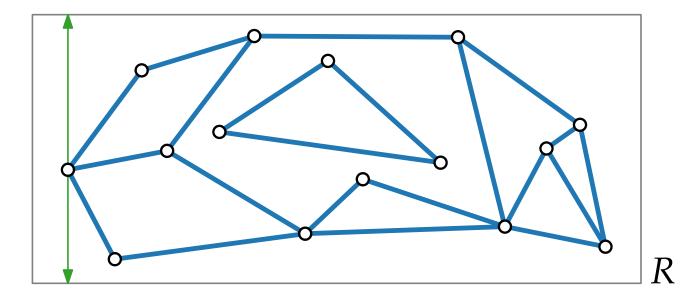

Task:Find "good" refinement of S of low complexity!

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

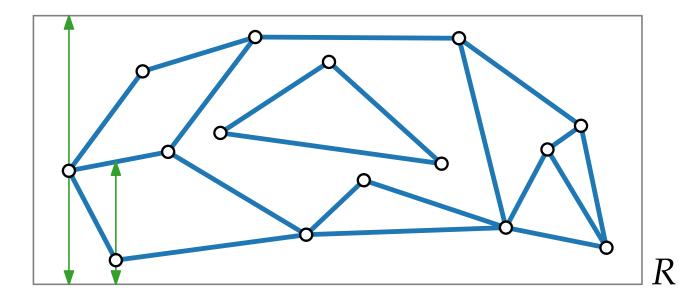
Task:Find "good" refinement of S of low complexity!


Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

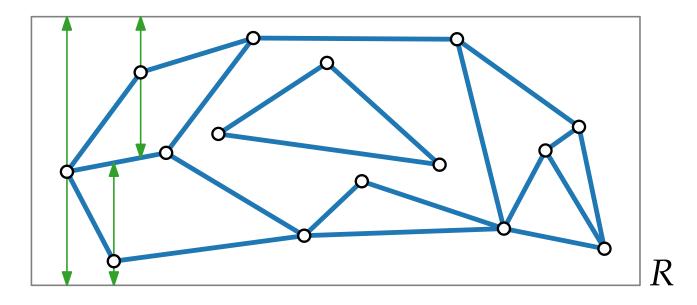
Task:Find "good" refinement of S of low complexity!


Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

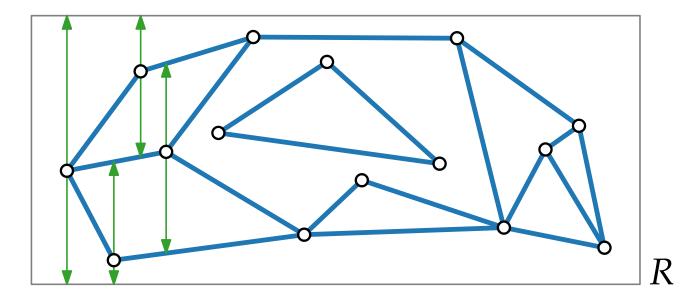
Task:Find "good" refinement of S of low complexity!


Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

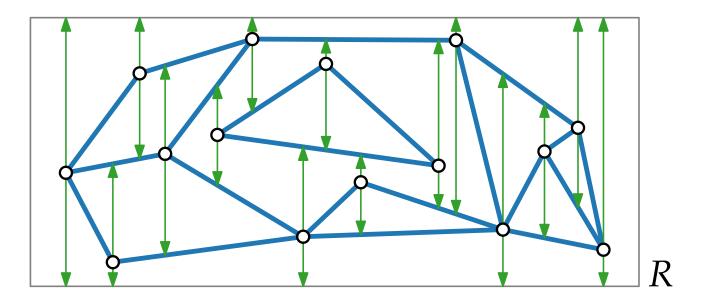
Task:Find "good" refinement of S of low complexity!


Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task:Find "good" refinement of S of low complexity!

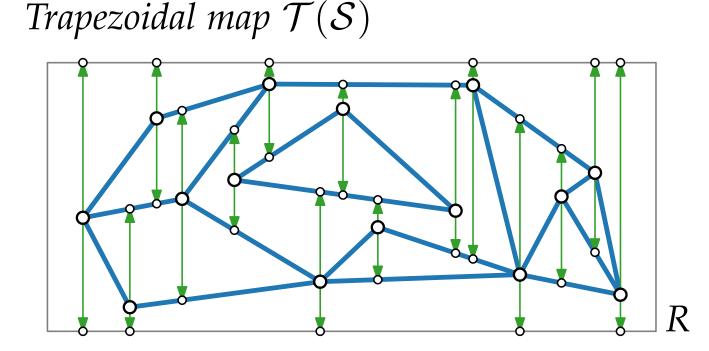

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task:Find "good" refinement of S of low complexity!


Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task:Find "good" refinement of S of low complexity!

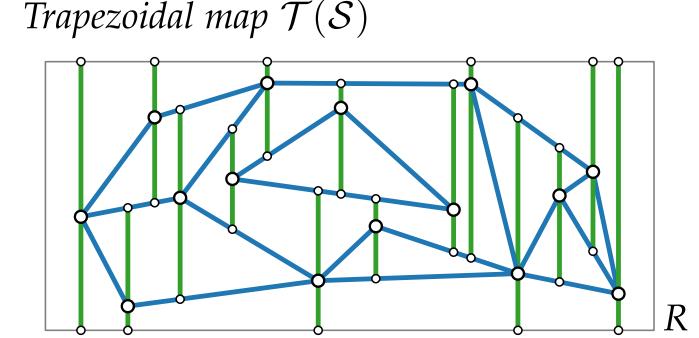
Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.


Task:Find "good" refinement of S of low complexity!

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task:Find "good" refinement of S of low complexity!

Solution:

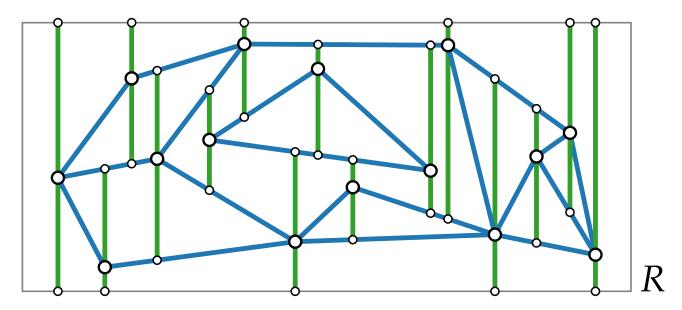


Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task:Find "good" refinement of S of low complexity!

Solution:



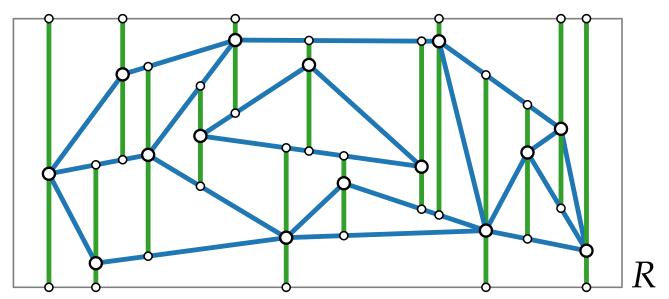
Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task:Find "good" refinement of S of low complexity!

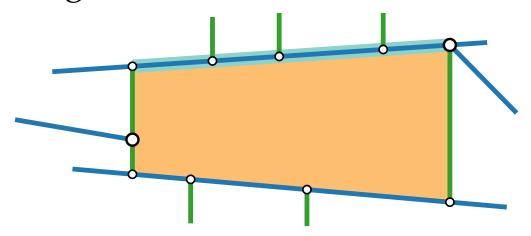
Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Assumption: S is in *general position*, that is, no two vertices have the same *x*-coordinates.

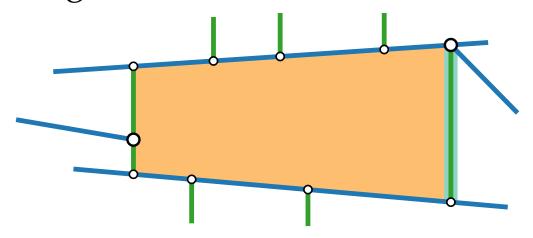

Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

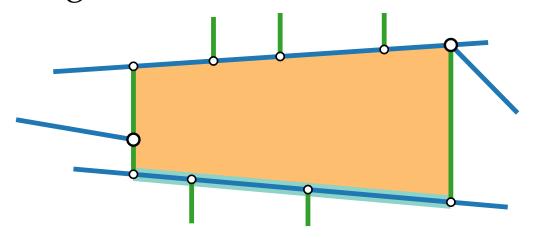
Task:Find "good" refinement of S of low complexity!

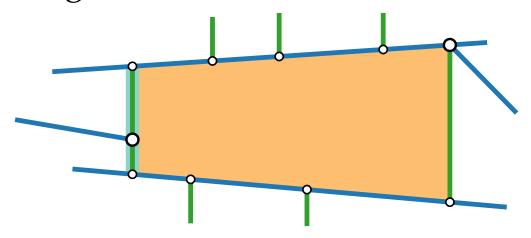

Solution: *Trapezoidal map* $\mathcal{T}(\mathcal{S})$

See Comp. Geom. A&A Ch. 6.3

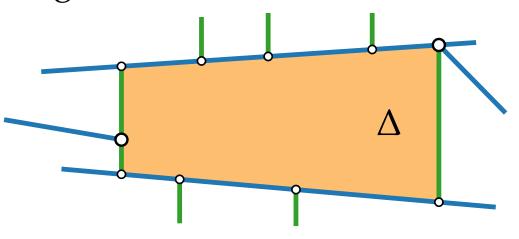


Assumption: S is in *general position*, that is, no two vertices have the same *x*-coordinates.


Definition:


Definition:

Definition:

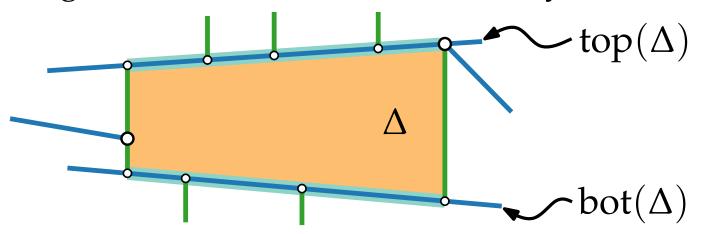


Definition:

Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

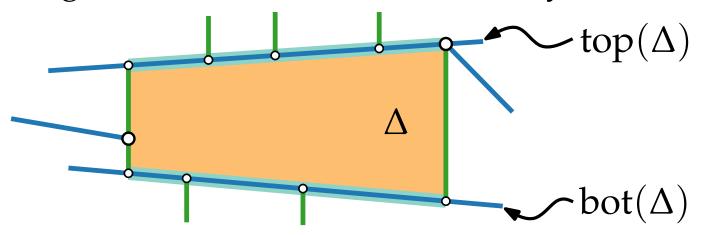
Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:


Definition:

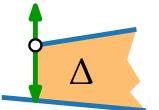
Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides

Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

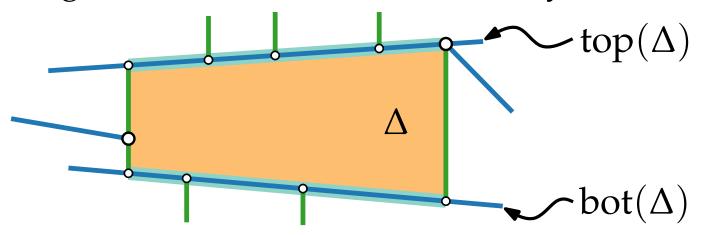

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides – exactly 2 non-vertical sides

Definition:

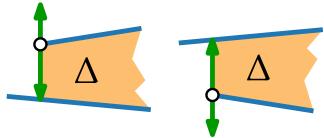

Left side:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

4 - 8

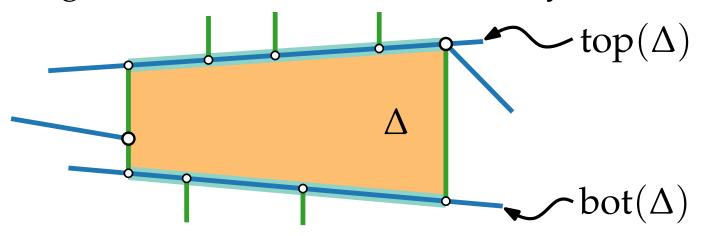


Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides – exactly 2 non-vertical sides

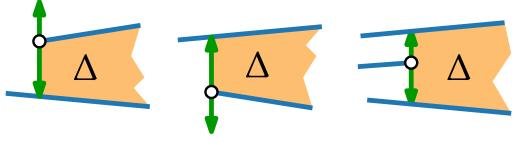


Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

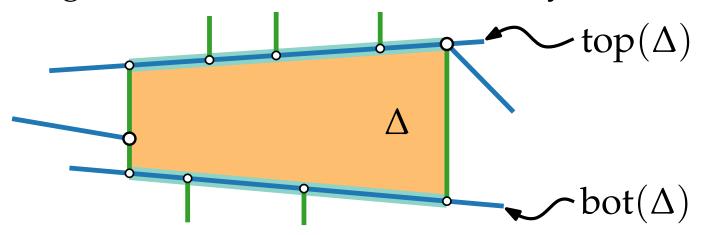


Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides – exactly 2 non-vertical sides

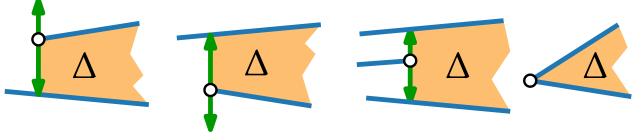


Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

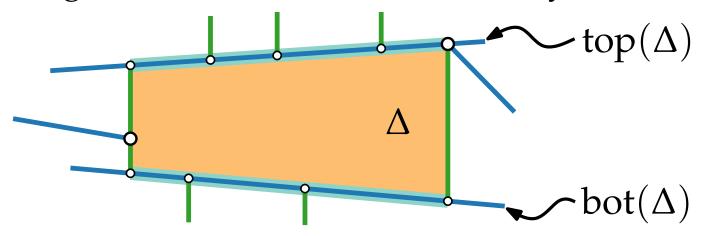


Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides – exactly 2 non-vertical sides

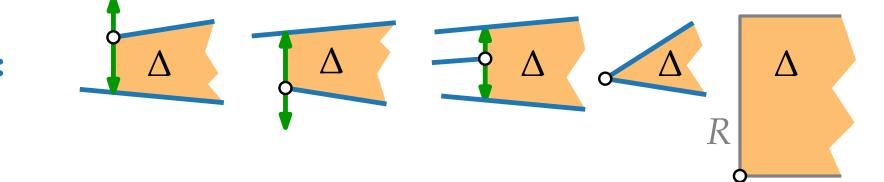


Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

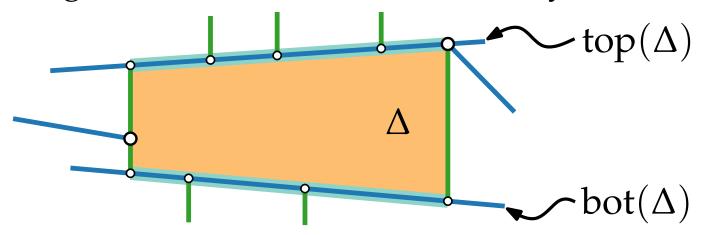


Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides – exactly 2 non-vertical sides

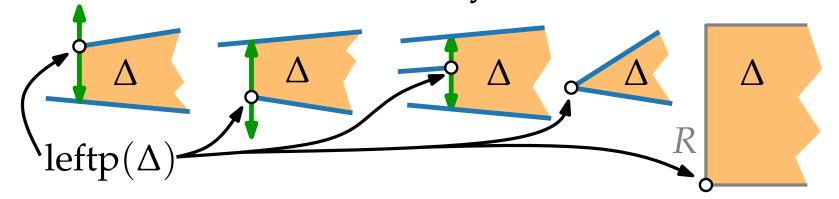


Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

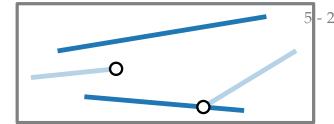


Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides – exactly 2 non-vertical sides

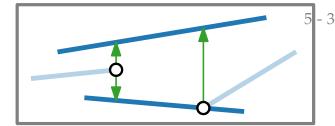


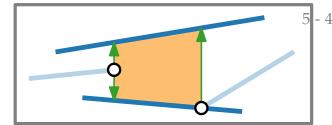
Definition:

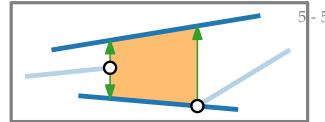
A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.



Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has: – one or two vertical sides – exactly 2 non-vertical sides


Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

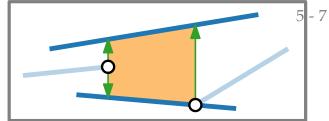

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.


Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

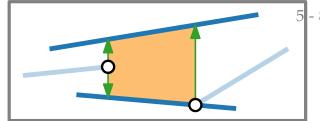
Lemma.S planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(S)$ has \leq vtc and \leq trapezoids.



Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow T(S)$ has \leq vtc and \leq trapezoids.

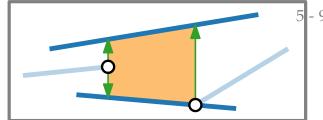
Proof.	The vertices of $\mathcal{T}(S)$ are
--------	--------------------------------------


– endpts of segments in \mathcal{S}

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow T(S)$ has \leq vtc and \leq trapezoids.

- *Proof.* The vertices of $\mathcal{T}(S)$ are
 - endpts of segments in $S \leq 2n$

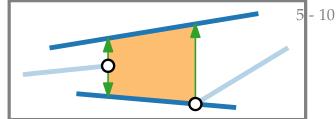


Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow T(S)$ has \leq vtc and \leq trapezoids.

Proof.

- The vertices of $\mathcal{T}(S)$ are
 - endpts of segments in $S \leq 2n$
 - endpts of vertical extensions


Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

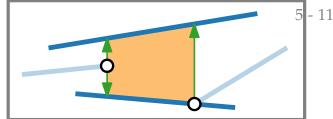
Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow T(S)$ has \leq vtc and \leq trapezoids.

Proof.

The vertices of $\mathcal{T}(S)$ are

- endpts of segments in $S \leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.


Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(S)$ has \leq vtc and \leq trapezoids.

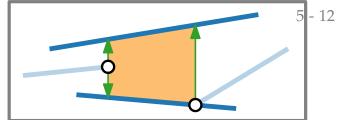
Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

- endpts of segments in $S \leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$

- vertices of R

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.


Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow T(S)$ has \leq vtc and \leq trapezoids.

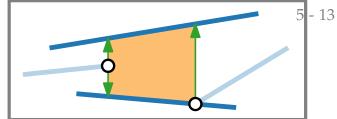
Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

- endpts of segments in $S \leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$

- vertices of R

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

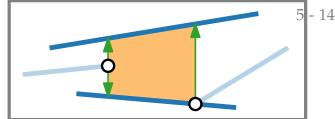

Lemma. *S* planar subdivision in gen. pos. with *n* segments vtc and \leq $\Rightarrow \mathcal{T}(\mathcal{S})$ has \leq trapezoids.

Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

- endpts of segments in $S \leq 2n$ endpts of vertical extensions $\leq 2 \cdot 2n$

- vertices of R

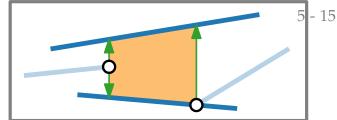

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(\mathcal{S}) \text{ has } \leq \text{ vtc and } \leq$ trapezoids.

Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

- endpts of segments in $S \leq 2n$ endpts of vertical extensions $\leq 2 \cdot 2n$ $4 \leq 6n + 4$


Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

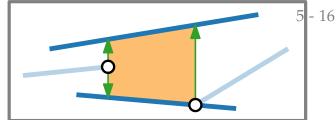
Lemma. S planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

- endpts of segments in $S \leq 2n$ endpts of vertical extensions $\leq 2 \cdot 2n$ $4 \leq 6n + 4$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).


Lemma. S planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof.

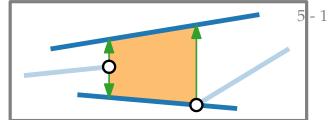
The vertices of
$$\mathcal{T}(S)$$
 are

- endpts of segments in $S \leq 2n$ endpts of vertical extensions $\leq 2 \cdot 2n$ $4 \leq 6n + 4$

Bound #trapezoids via Euler or directly (segments/leftp).

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

Lemma. S planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.


Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

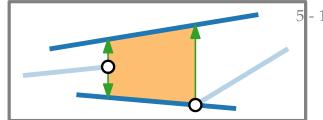
- endpts of segments in $S \leq 2n$ endpts of vertical extensions $\leq 2 \cdot 2n$ $4 \leq 6n + 4$

Bound #trapezoids via Euler or directly (segments/leftp).

Approach:

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.


Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

- endpts of segments in $S \leq 2n$ endpts of vertical extensions $\leq 2 \cdot 2n$ $4 \leq 6n + 4$

Bound #trapezoids via Euler or directly (segments/leftp).

Approach: Construct trapezoidal map $\mathcal{T}(\mathcal{S})$ and point-location data structure $\mathcal{D}(\mathcal{S})$ for $\mathcal{T}(\mathcal{S})$ incrementally!

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

Lemma. *S* planar subdivision in gen. pos. with *n* segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof.

The vertices of
$$\mathcal{T}(S)$$
 are

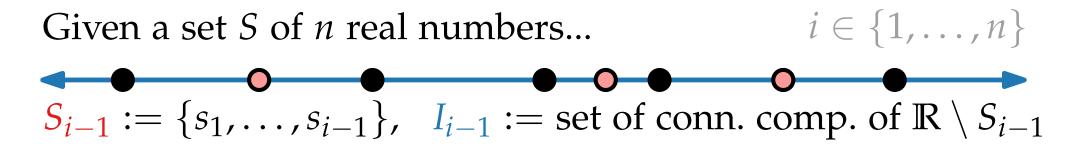
- endpts of segments in $S \leq 2n$ endpts of vertical extensions $\leq 2 \cdot 2n \leq 6n + 4$ – vertices of *R*

Bound #trapezoids via Euler or directly (segments/leftp).

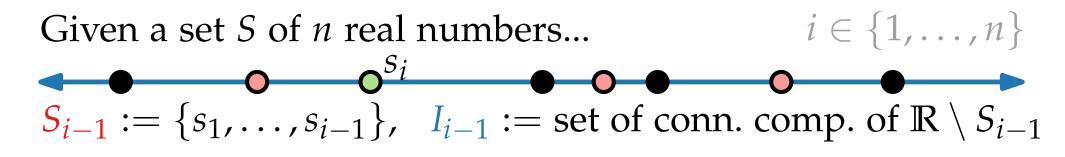
Approach: Construct trapezoidal map $\mathcal{T}(\mathcal{S})$ and point-location data structure $\mathcal{D}(\mathcal{S})$ for $\mathcal{T}(\mathcal{S})$ incrementally! algorithm-design paradigm!

The 1D Problem

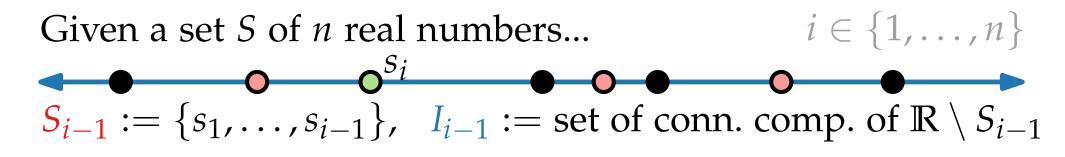
Given a set *S* of *n* real numbers...

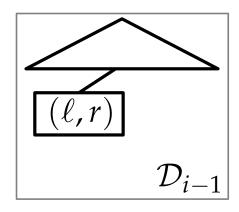

The 1D Problem

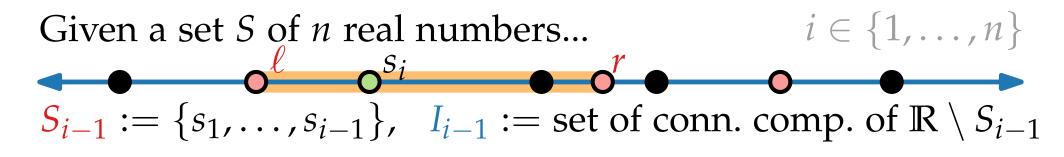
Given a set *S* of *n* real numbers...



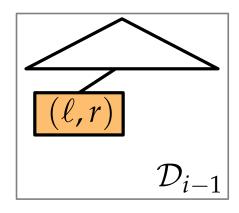
Given a set *S* of *n* real numbers... $i \in \{1, ..., n\}$

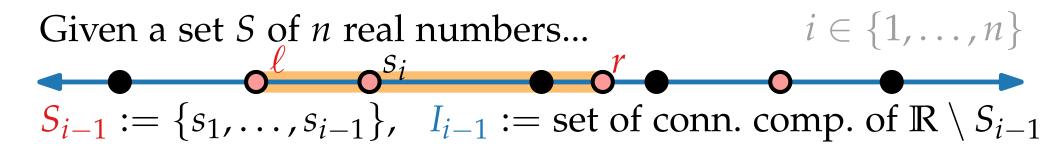

 $S_{i-1} := \{s_1, \ldots, s_{i-1}\}, I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

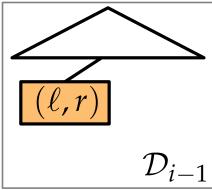

– pick an arbitrary point s_i from $S \setminus S_{i-1}$

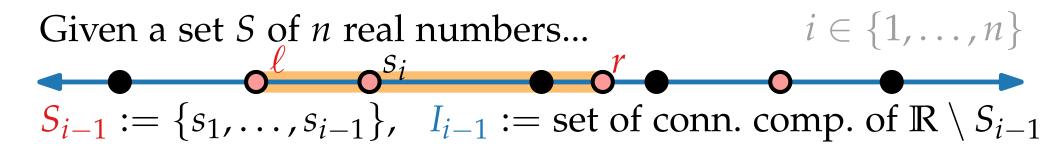


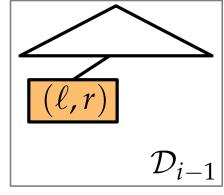
– pick an arbitrary point s_i from $S \setminus S_{i-1}$

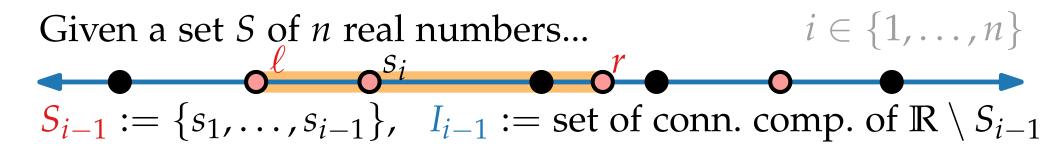


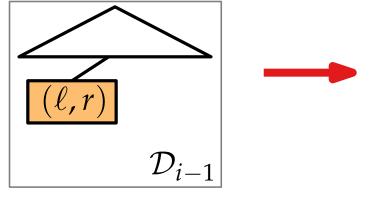

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}

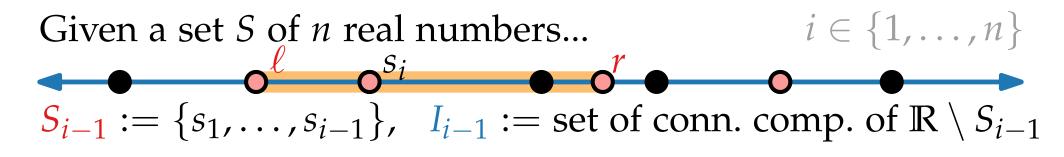


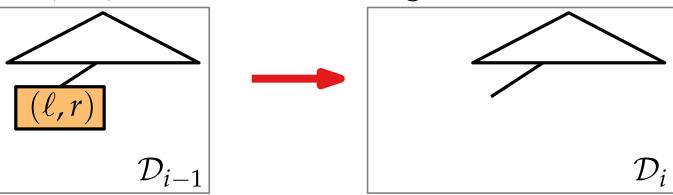

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}

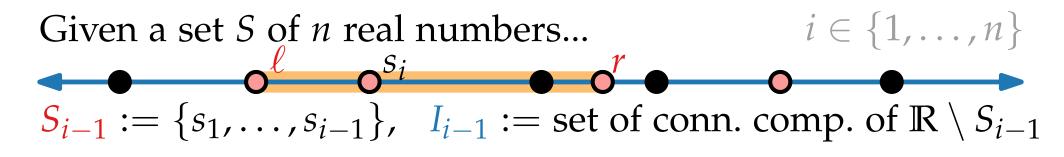


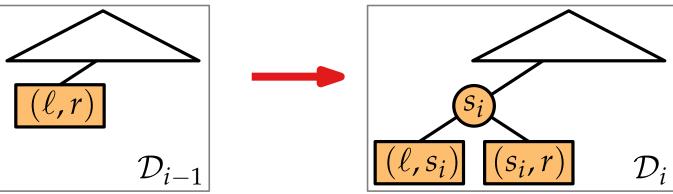

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i

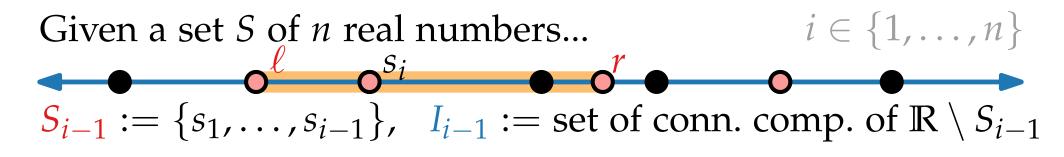


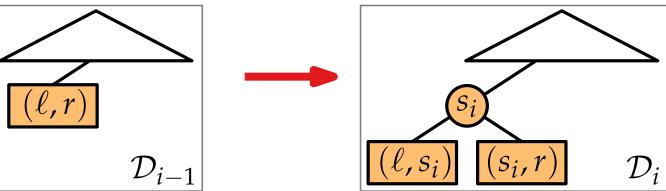

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :



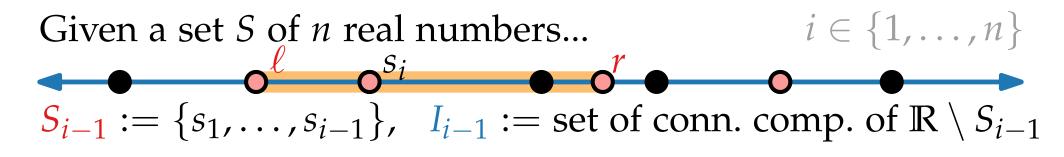

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :

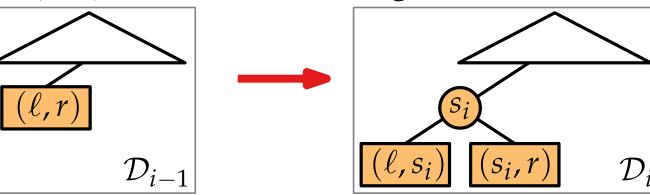


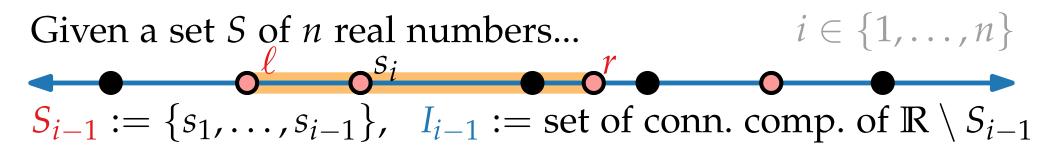

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :



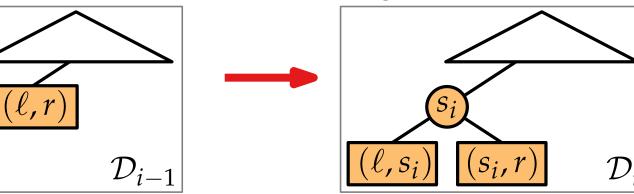
- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :

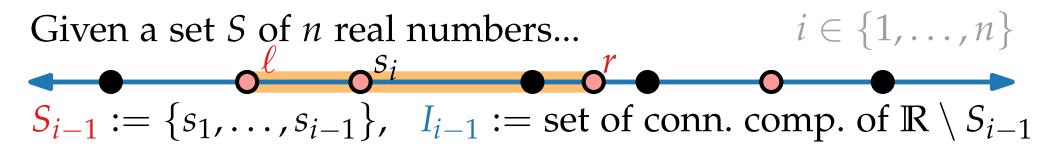



- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :

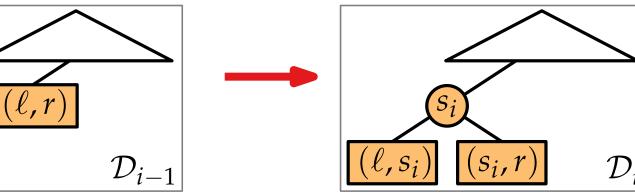


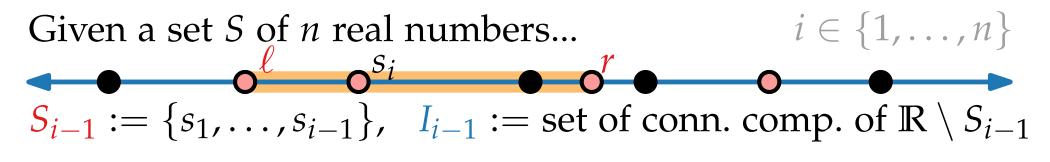
Problem:


- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :

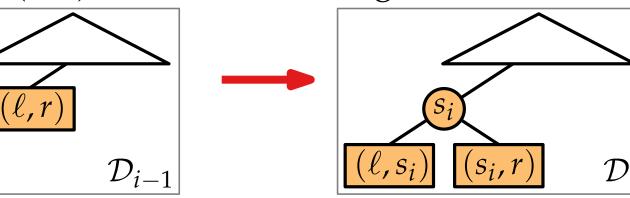


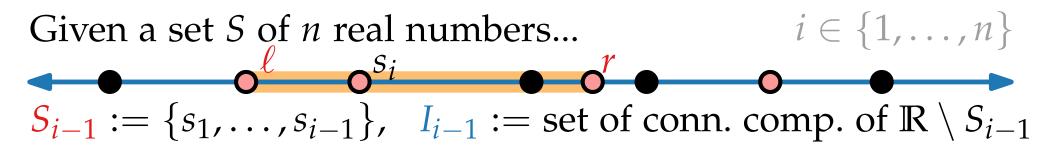
Solution:


- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :

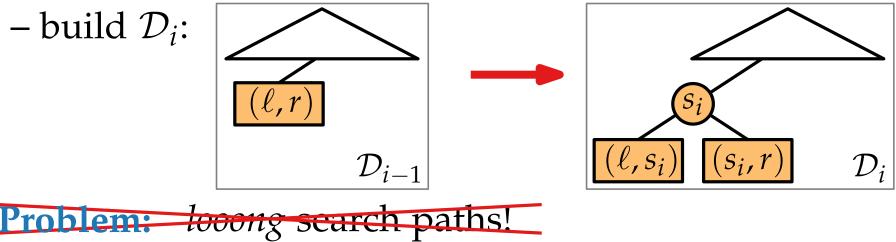


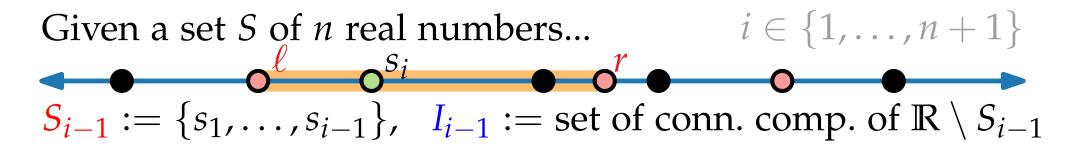
Solution:

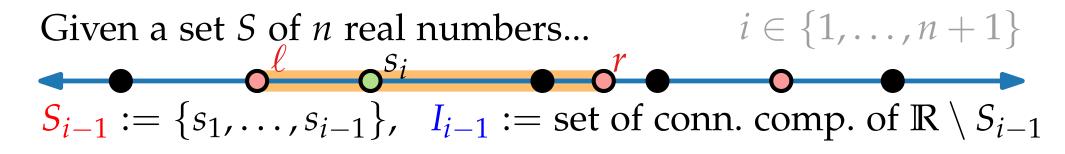

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :



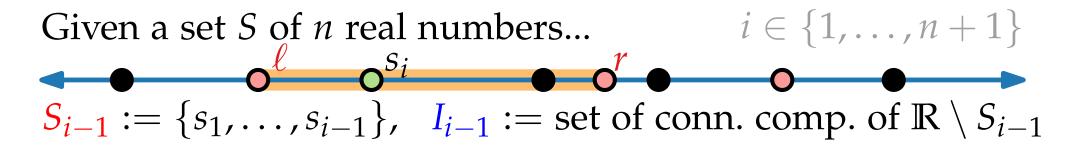
Solution: random!


- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :



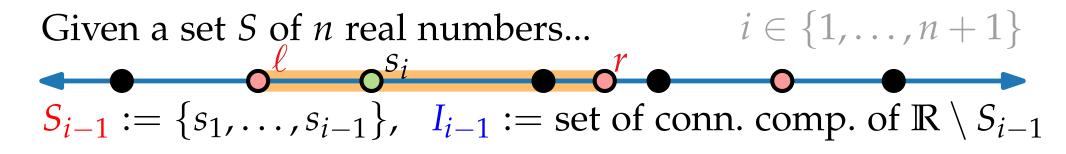

Solution: random!

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i



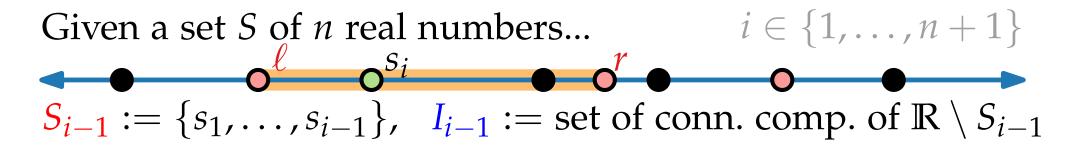
Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.


Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$.

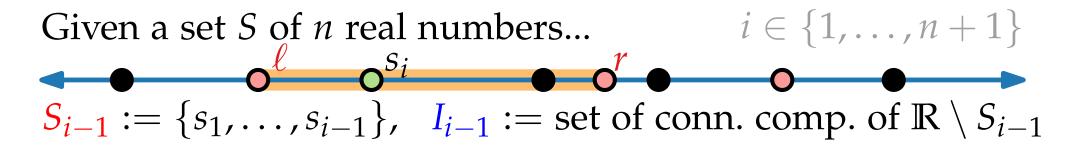
Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$.

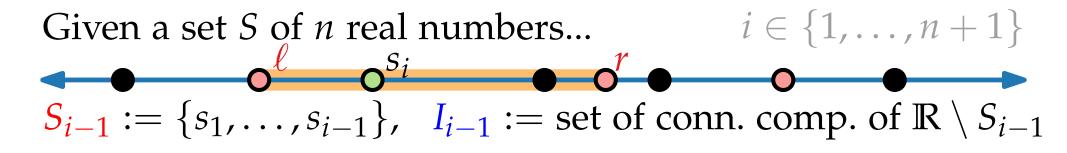

E[query time in $\mathcal{D}_n] =$

Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$.


E[query time in $\mathcal{D}_n] = E[$ length search path in $\mathcal{D}_n] =$

Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.


Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$. Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

E[query time in $\mathcal{D}_n] = E[$ length search path in $\mathcal{D}_n] =$

Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$. Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$ $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = = E[\sum_{i=1}^n X_i] =$

Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$. Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

Define random variable
$$X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$$

 $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = \\ = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$

 $E[X_i] =$

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] =$

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$

> Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$ $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$

> > $= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

> Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$ $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$

> > $= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis:

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis: Consider S_i fixed.

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis: Consider S_i fixed. If we *remove* a randomly chosen pt from S_i ,

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis:

Consider S_i fixed.

If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing *q* changes?

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis:

Consider S_i fixed.

If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing *q* changes?

– we have *i* choices, identically distributed

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] =$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis:

Consider S_i fixed.

If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing q changes?

- we have *i* choices, identically distributed
- at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] = \blacksquare$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis:

Consider S_i fixed.

- If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing q changes?
- we have *i* choices, identically distributed
- at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[X_i] = P[X_i = 1] = 2/i \blacktriangleleft$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis:

Consider S_i fixed.

- If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing q changes?
- we have *i* choices, identically distributed
- at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

Expected Query Time of \mathcal{D}_n

 $E[X_i] = P[X_i = 1] = \frac{2}{i}$

= probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis:

Consider S_i fixed.

- If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing q changes?
- we have *i* choices, identically distributed
- at most two of these change the interval

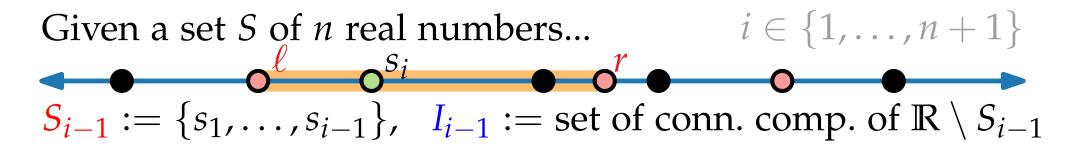
Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$

Expected Query Time of \mathcal{D}_n

- $E[X_i] = P[X_i = 1] = 2/i \blacktriangleleft$
 - = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

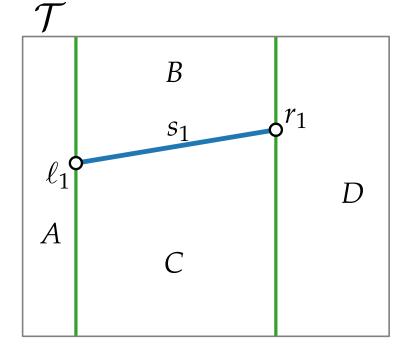
Backwards analysis:

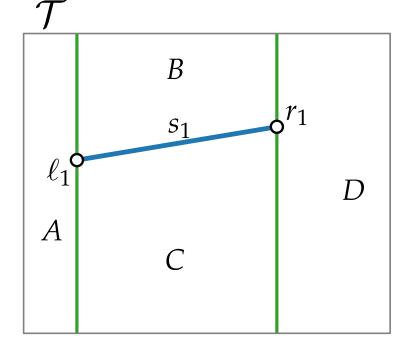

Consider S_i fixed.

- If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing q changes?
- we have *i* choices, identically distributed
- at most two of these change the interval

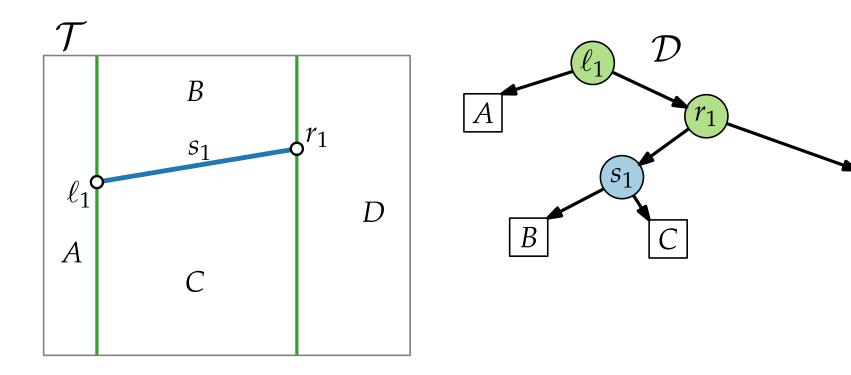
Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$

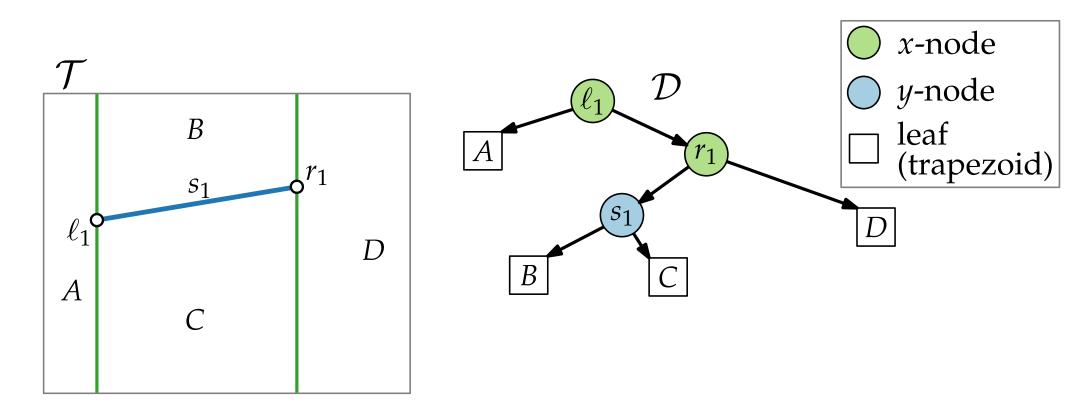

The 1D Result


Thm. The randomized-incremental algorithm preproc. a set *S* of *n* reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

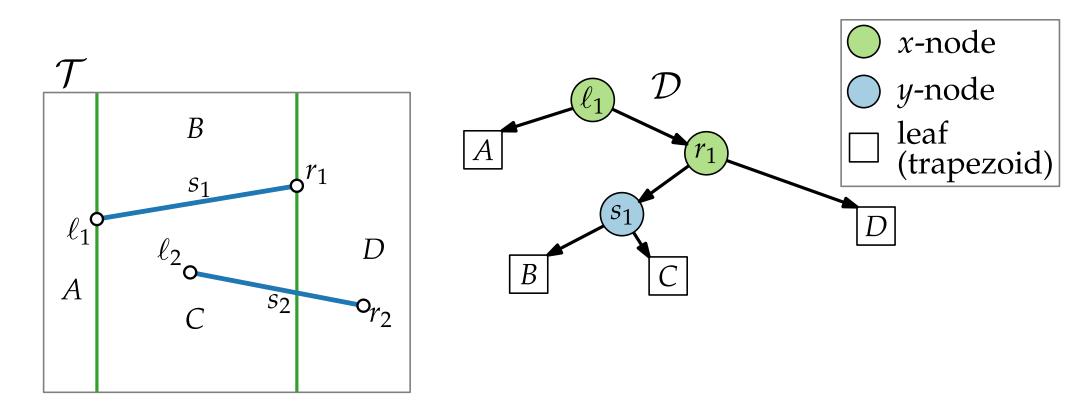
trapezoidal map ——


trapezoidal map

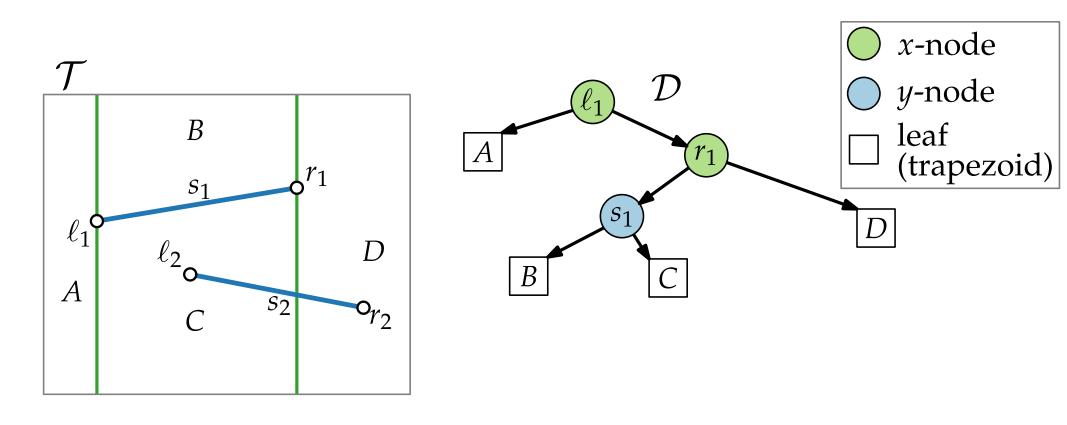
point-location data structure (DAG) trapezoidal map 10 - 4



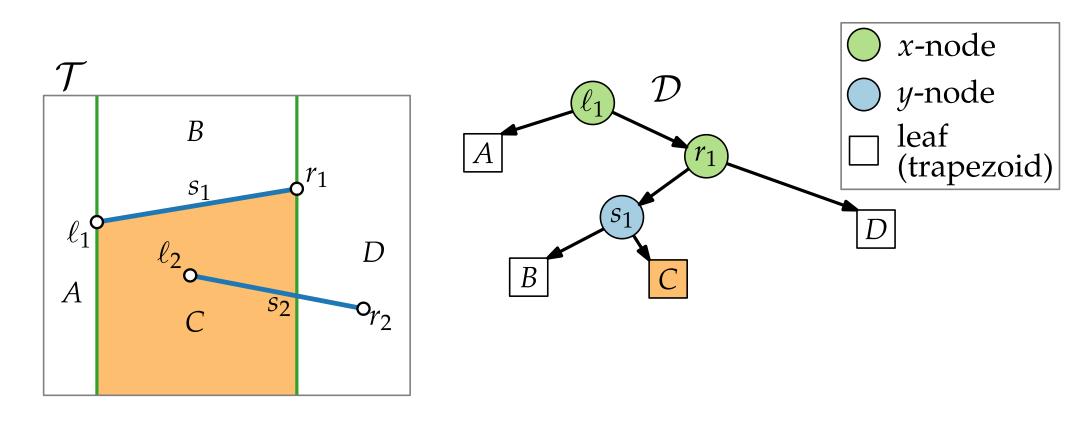
point-location data structure (DAG) trapezoidal map 10 - 5


The 2D Problempoint-location data structure (DAG)trapezoidal map_______

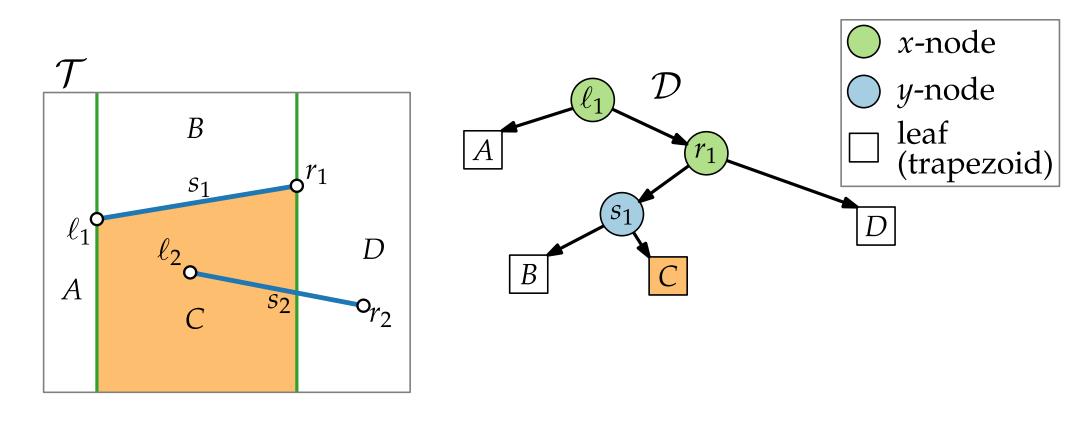
Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}


The 2D Problem point-location data structure (DAG) trapezoidal map \

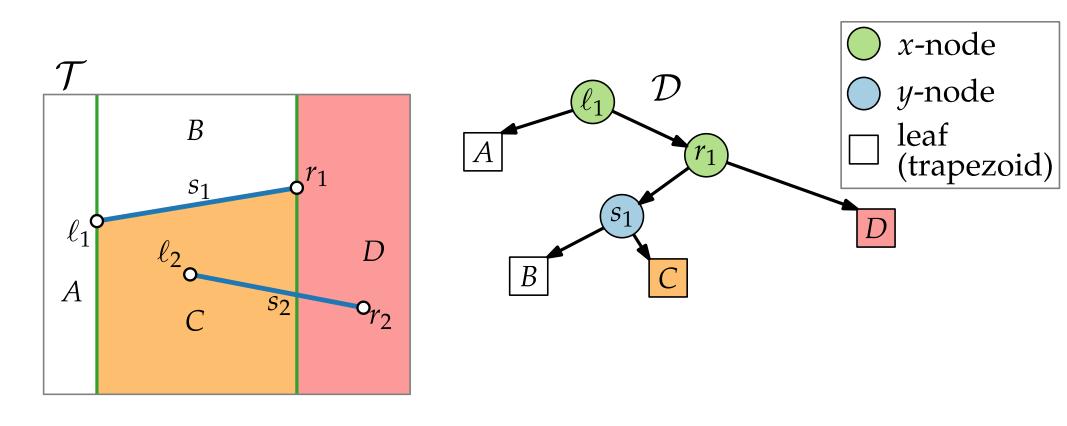
Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}


point-location data structure (DAG) trapezoidal map 10 - 8

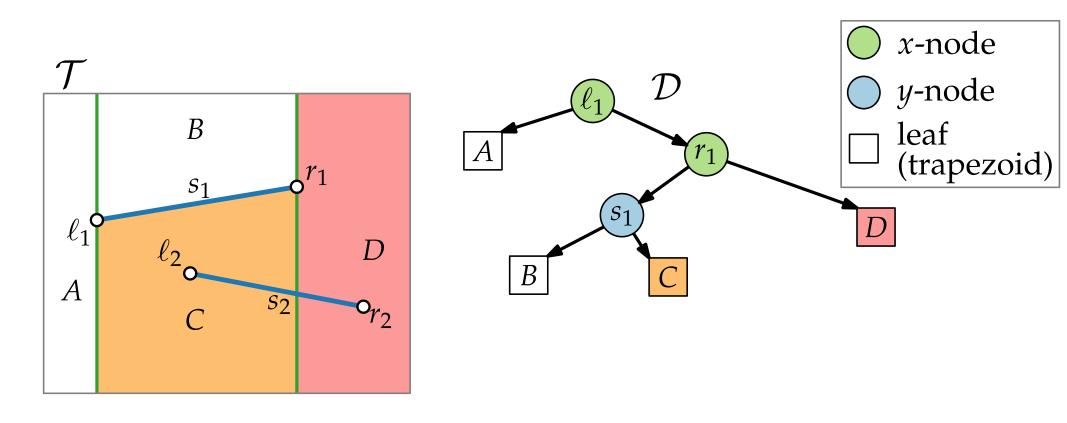
Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D} – use \mathcal{D} to locate left endpoint of next segment *s*



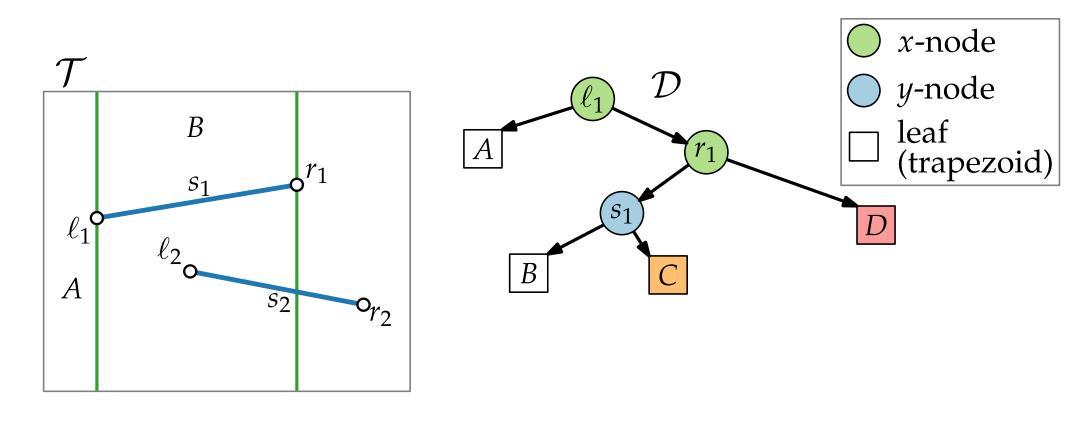
point-location data structure (DAG) trapezoidal map 10 - 9


Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D} – use \mathcal{D} to locate left endpoint of next segment *s*

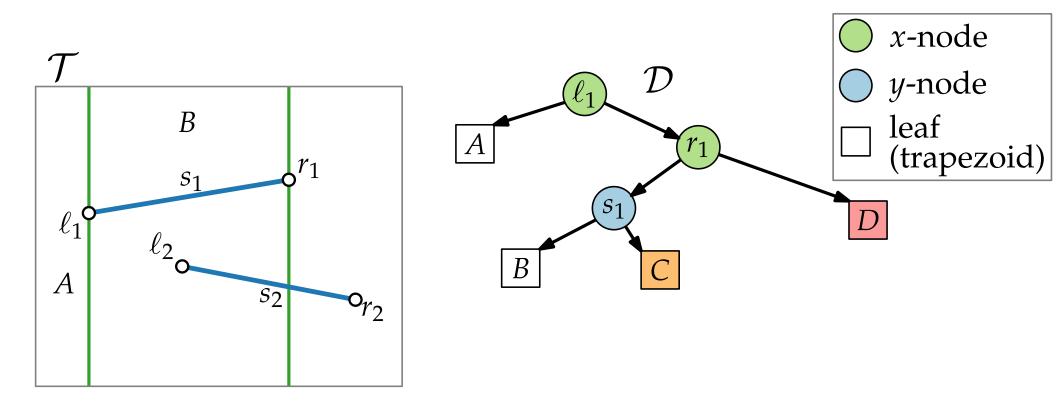
The 2D Problempoint-location data structure (DAG)Image: trapezoidal mapImage: trapezoidal mapApproach:randomized-incremental construction of \mathcal{T} and \mathcal{D} - use \mathcal{D} to locate left endpoint of next segment s- "walk" along s through \mathcal{T}



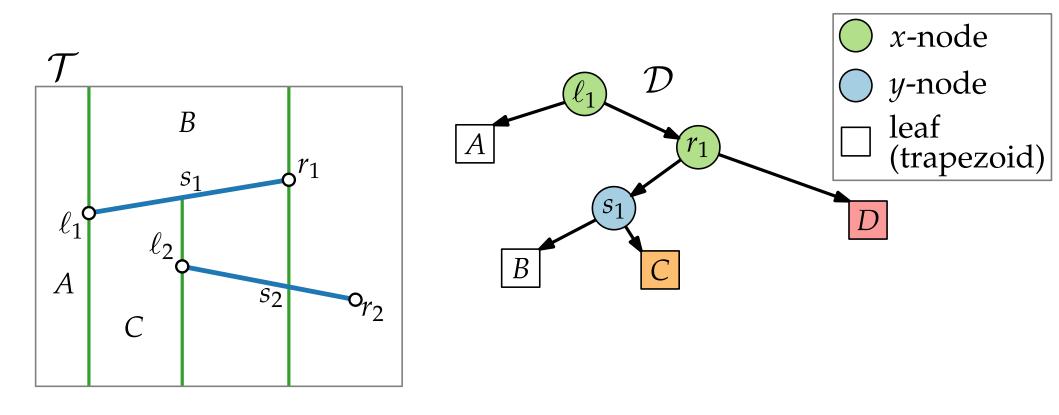
The 2D Problempoint-location data structure (DAG)Image: trapezoidal mapImage: trapezoidal mapApproach:randomized-incremental construction of \mathcal{T} and \mathcal{D} - use \mathcal{D} to locate left endpoint of next segment s- "walk" along s through \mathcal{T}


point-location data structure (DAG) trapezoidal map

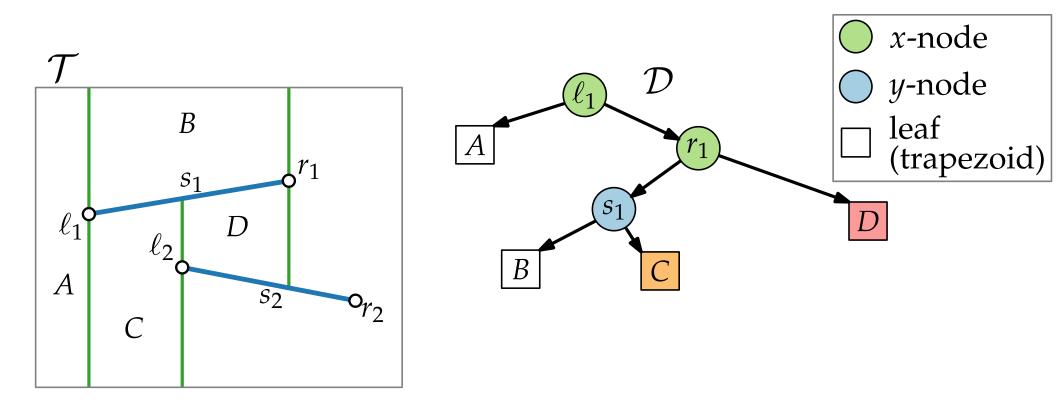
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*


point-location data structure (DAG) trapezoidal map

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*

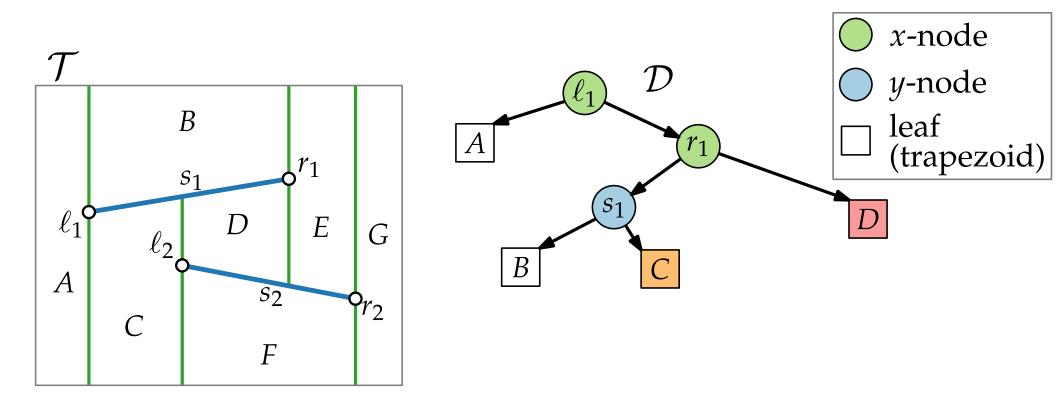

point-location data structure (DAG) trapezoidal map 10 - 14

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

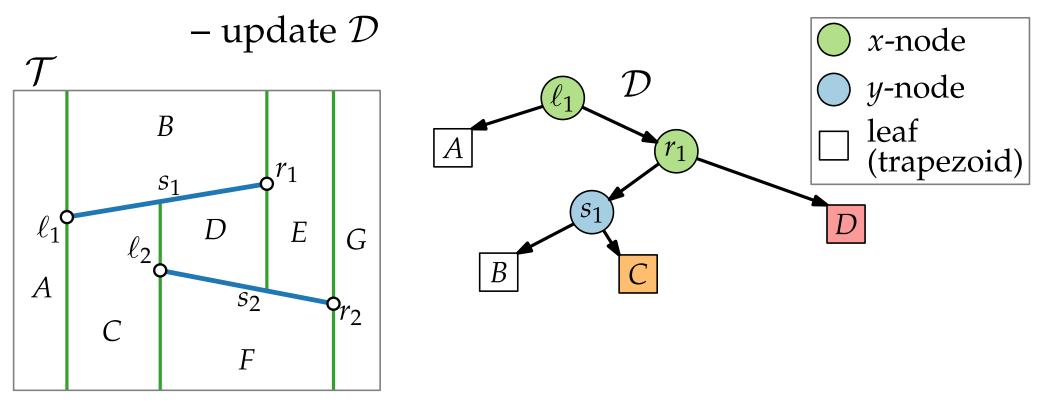

point-location data structure (DAG) trapezoidal map 10 - 15

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

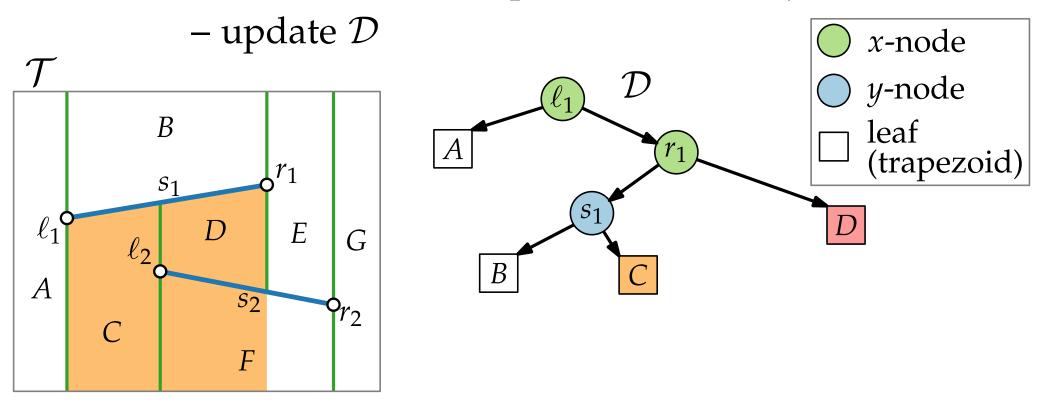
point-location data structure (DAG) trapezoidal map 10 - 16


- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

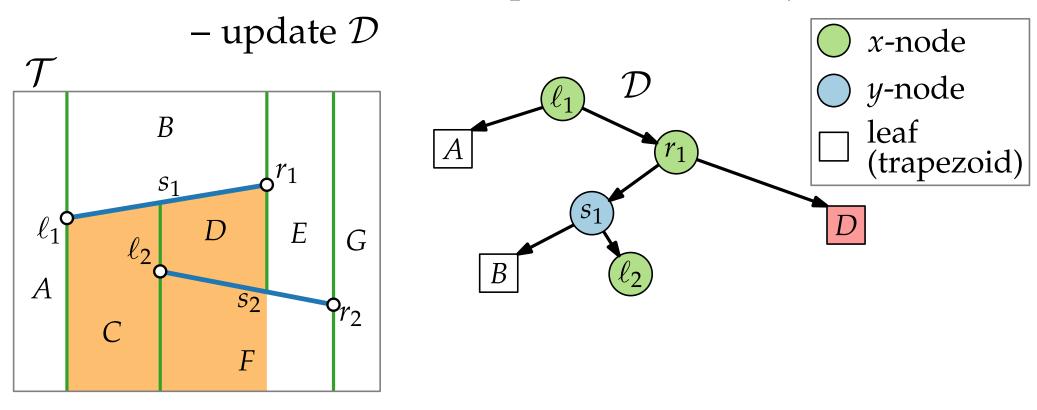
point-location data structure (DAG) trapezoidal map


Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

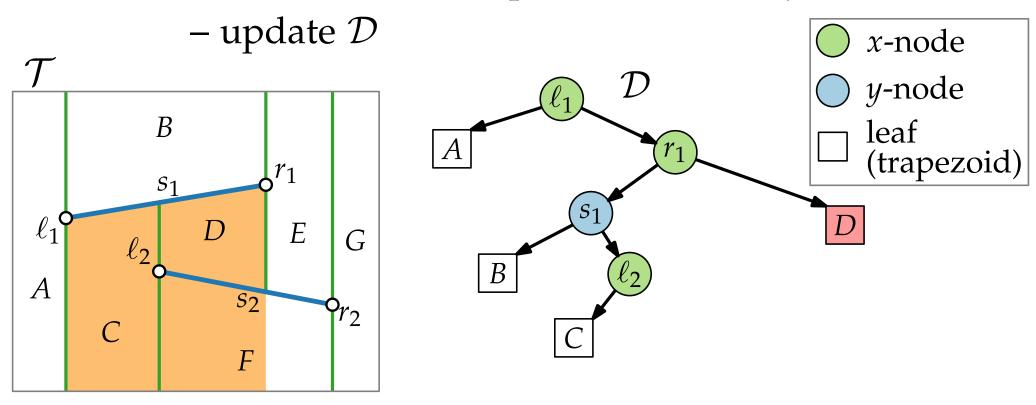
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)


point-location data structure (DAG) trapezoidal map

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

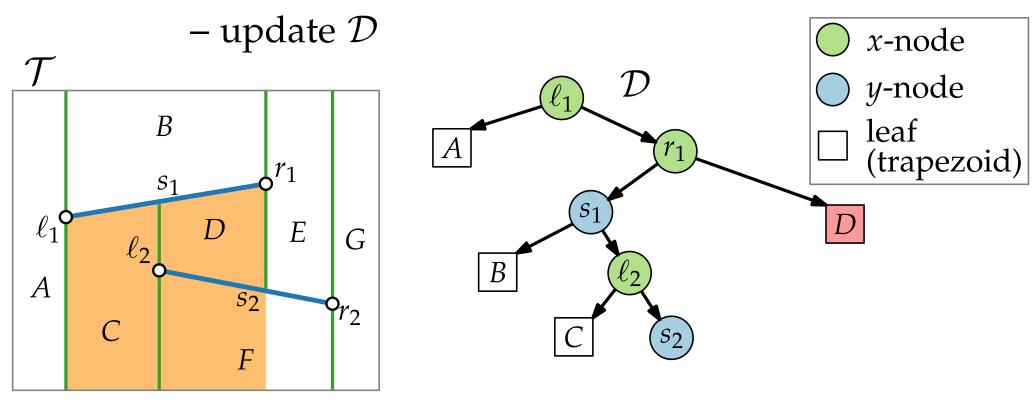

point-location data structure (DAG) trapezoidal map 10 - 19

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

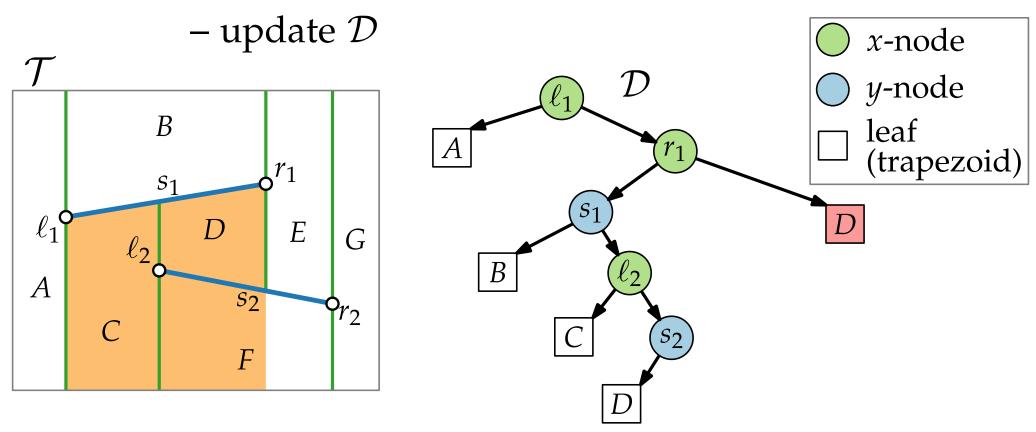

point-location data structure (DAG) trapezoidal map

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

point-location data structure (DAG) trapezoidal map

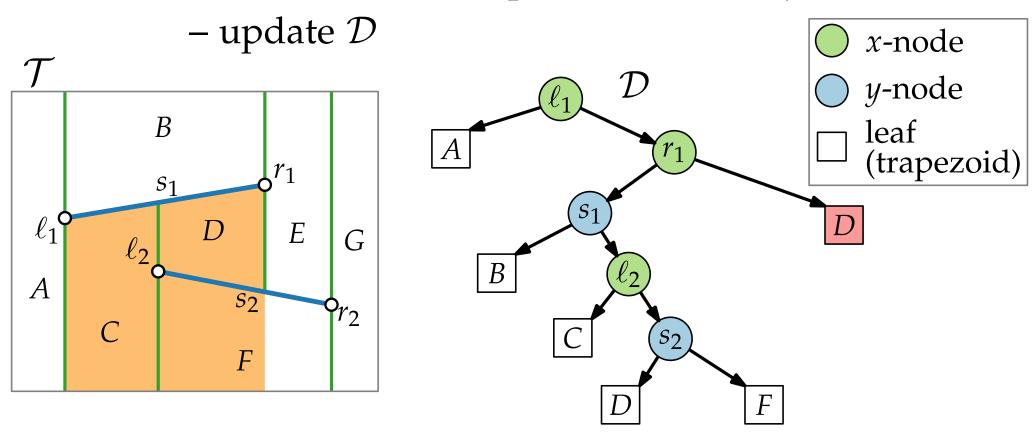

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

point-location data structure (DAG) trapezoidal map


Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

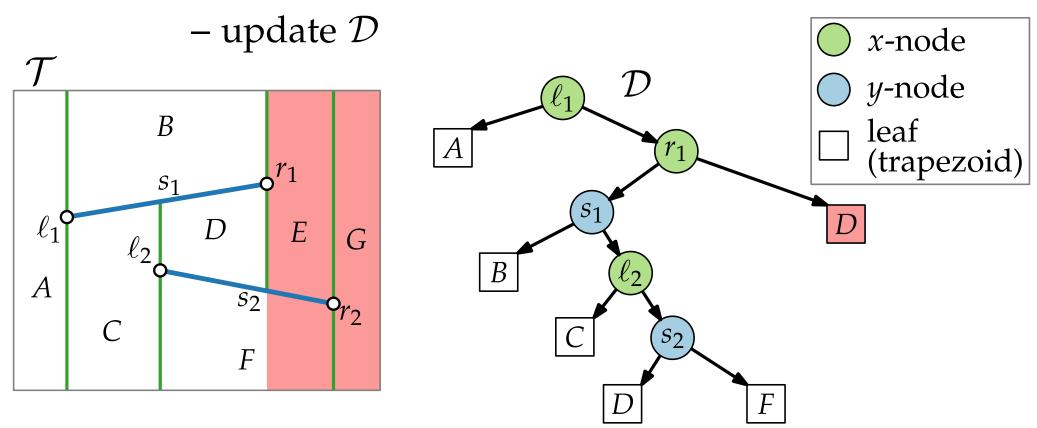
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

point-location data structure (DAG) trapezoidal map

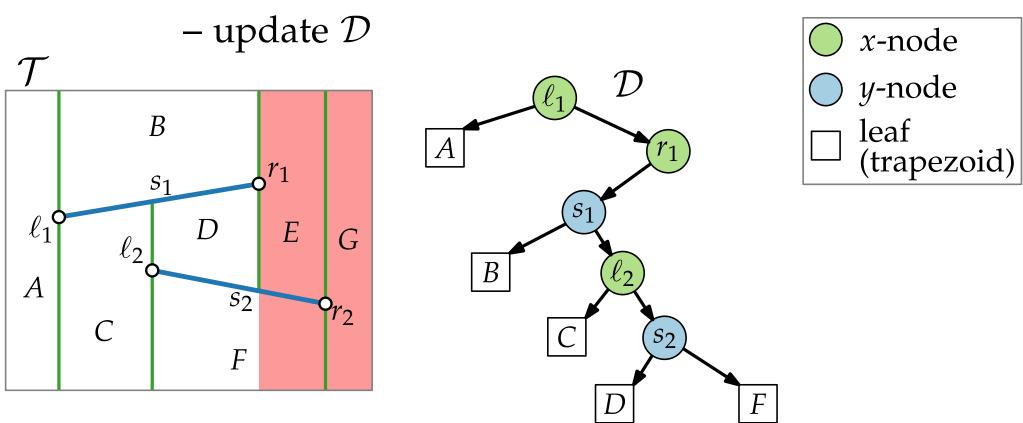

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

point-location data structure (DAG) trapezoidal map

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

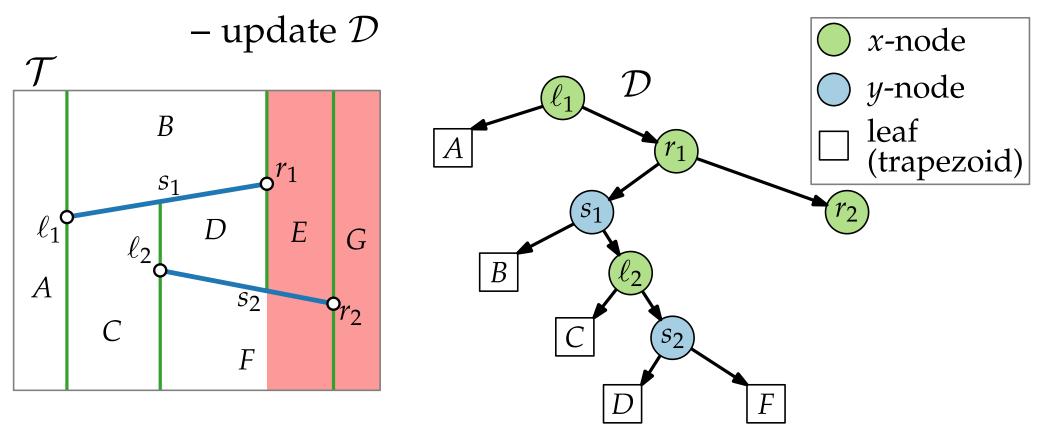

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

point-location data structure (DAG) trapezoidal map

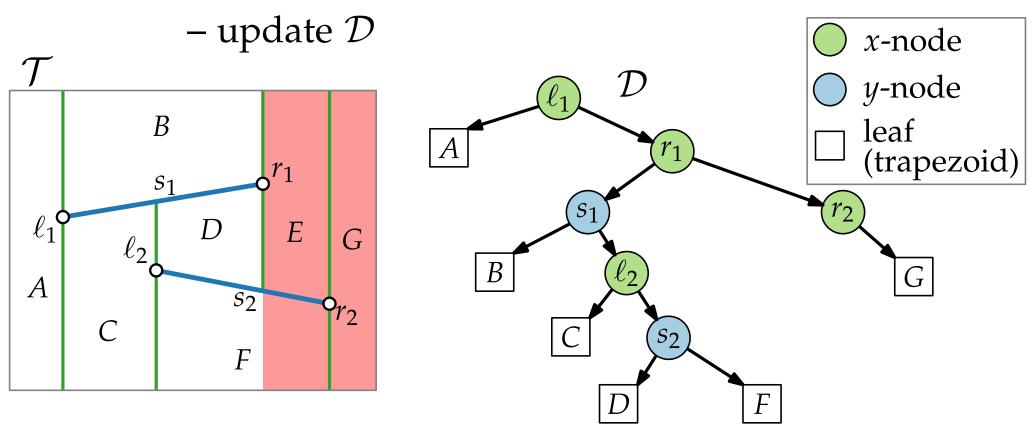

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

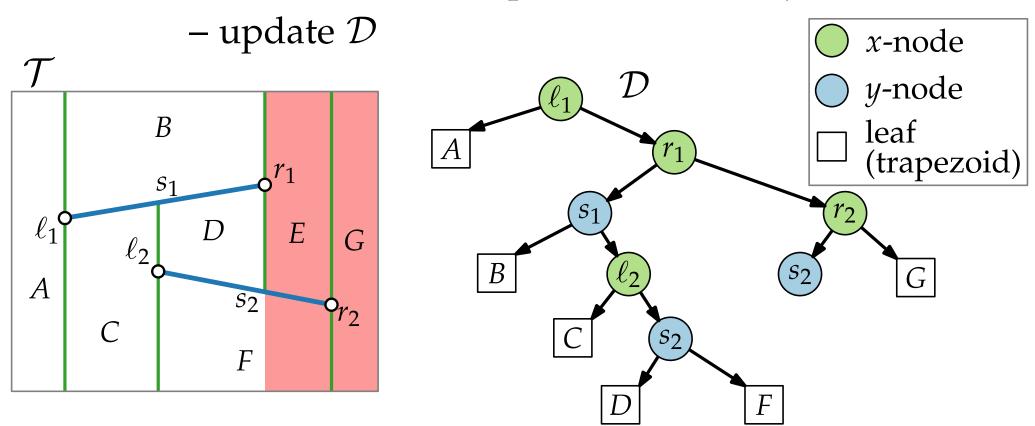
point-location data structure (DAG) trapezoidal map


- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

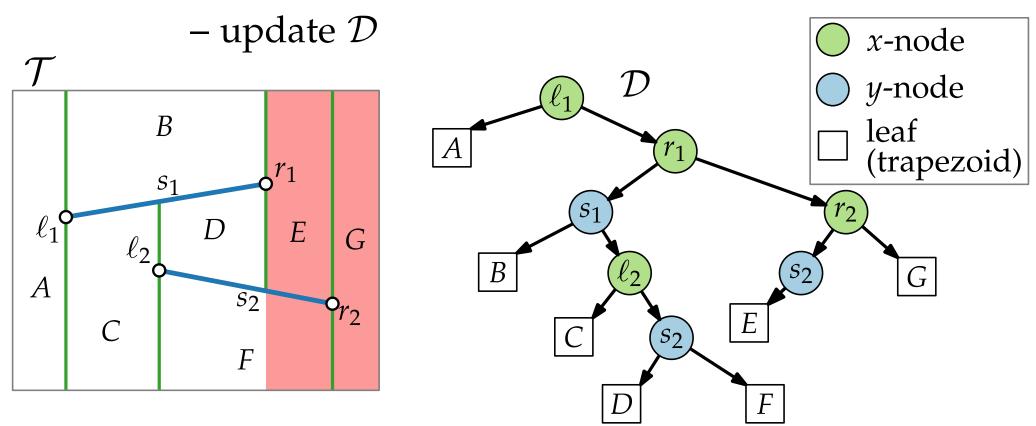
point-location data structure (DAG) trapezoidal map


Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

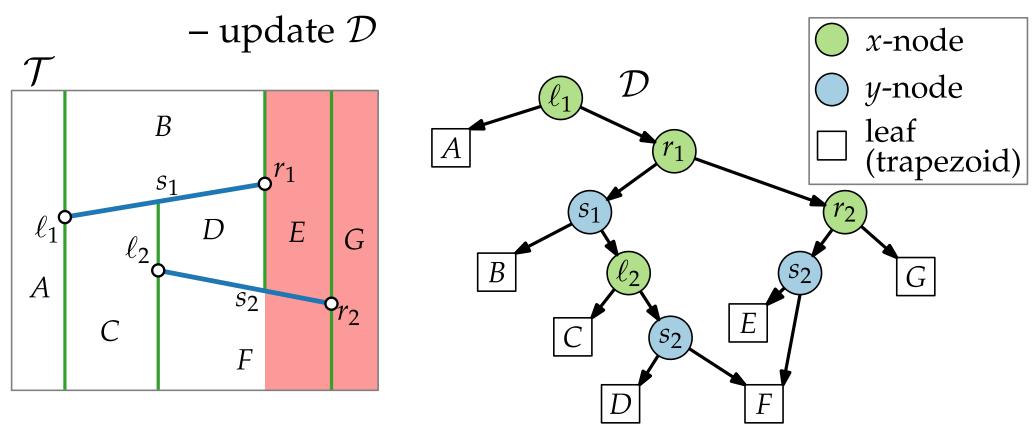
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)


point-location data structure (DAG) trapezoidal map

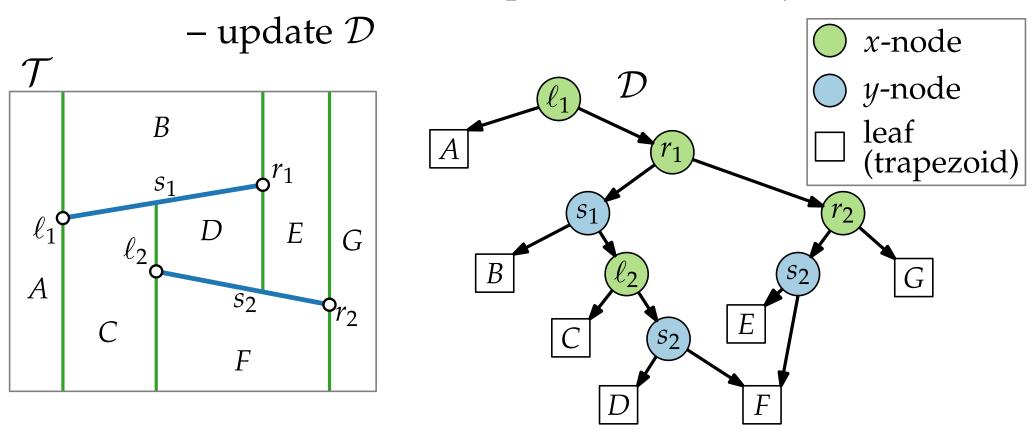
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)


point-location data structure (DAG) trapezoidal map

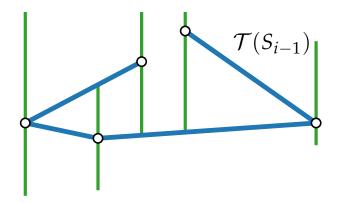
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)


point-location data structure (DAG) trapezoidal map

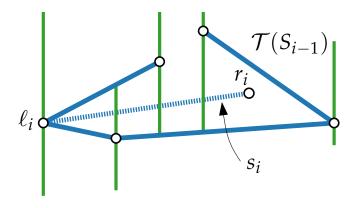
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

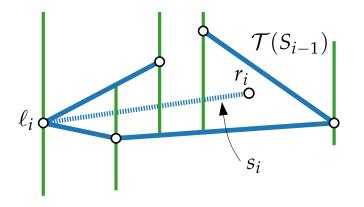

point-location data structure (DAG) trapezoidal map

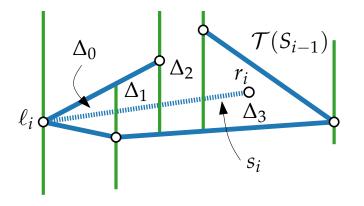
- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

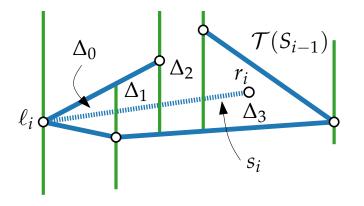


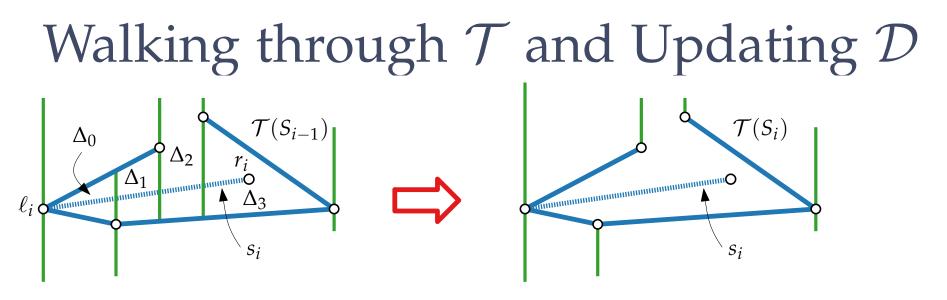
point-location data structure (DAG) trapezoidal map

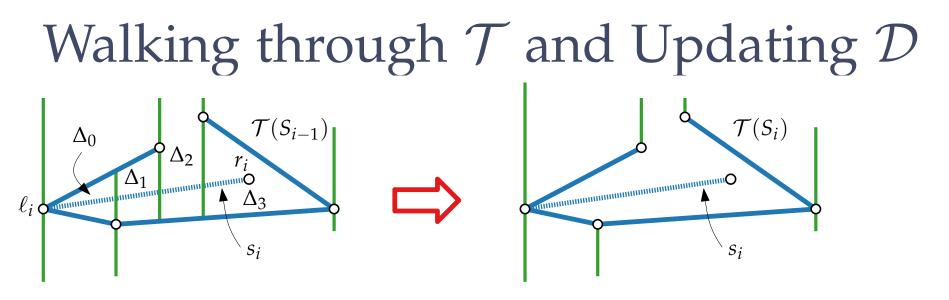

- use \mathcal{D} to locate left endpoint of next segment *s*
- "walk" along *s* through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting *s*
- construct new trapezoids of \mathcal{T} (adjacent to s)

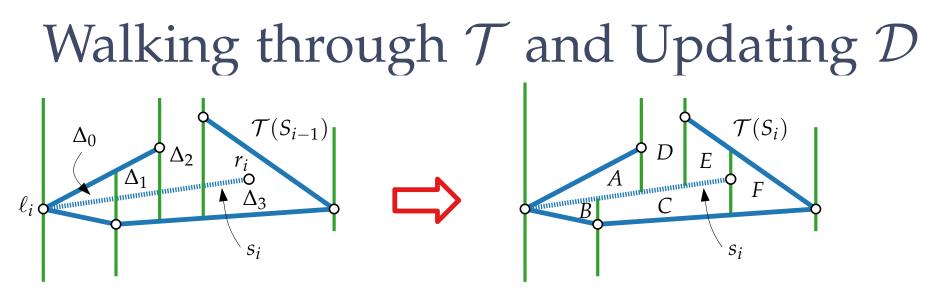

Walking through \mathcal{T} and Updating \mathcal{D}

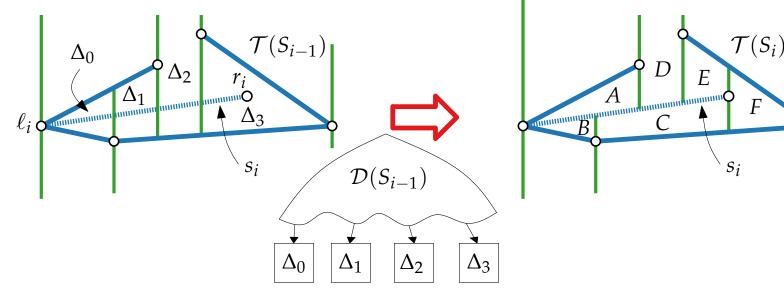

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, ..., s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do**


TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, ..., s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do**

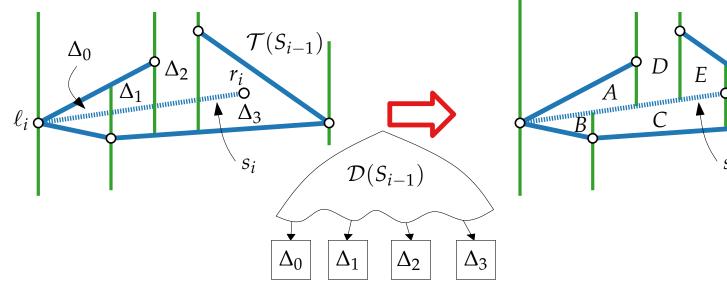

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $| (\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$


TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $| (\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$


TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$


TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$ $\mathcal{T}.add(new trapezoids incident to s_i)$ 11 - 7


TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$ $\mathcal{T}.add(new trapezoids incident to s_i)$

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$ $\mathcal{T}.add(new trapezoids incident to s_i)$

 $\mathcal{T}(S_i)$

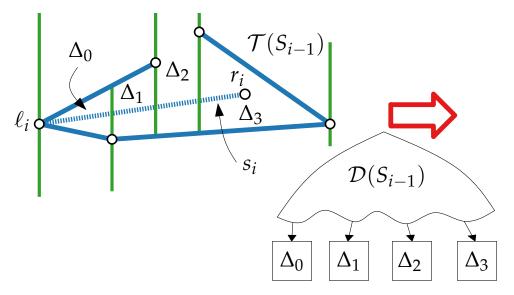
 S_i

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$ $\mathcal{T}.add(new trapezoids incident to s_i)$ $\mathcal{D}.remove_leaves(\Delta_0, \dots, \Delta_k)$

11 - 11 Walking through \mathcal{T} and Updating \mathcal{D} $\mathcal{T}(S_{i-1})$ $\mathcal{T}(S_i)$ Δ_0 D Δ_2 E r_i uuuuuC B - Δ_3 $\mathcal{D}(S_i)$ S_i S_i $\mathcal{D}(S_{i-1})$ $\mathcal{D}(S_{i-1})$ Δ_3 Δ_1 Δ_2 Δ_0

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$ $\mathcal{T}.add(new trapezoids incident to s_i)$ $\mathcal{D}.remove_leaves(\Delta_0, \dots, \Delta_k)$

 $\mathcal{T}(S_i)$


D

B

E

hummun

 S_i

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, \dots, \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, \dots, \Delta_k)$ $\mathcal{T}.add(new trapezoids incident to s_i)$ $\mathcal{D}.remove_leaves(\Delta_0, \dots, \Delta_k)$ $\mathcal{D}.add_leaves(new trapezoids incident to s_i)$ $\mathcal{D}(S_i)$

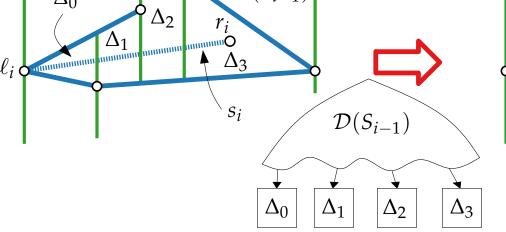
 $\mathcal{D}(S_{i-1})$

Walking through \mathcal{T} and Updating \mathcal{D} $\mathcal{T}(S_{i-1})$ $\mathcal{T}(S_i)$ Δ_0 D Δ_2 E r_i ,Ó uuuuuC B - Δ_3 $\mathcal{D}(S_i)$ S_i S_i $\mathcal{D}(S_{i-1})$ $\mathcal{D}(S_{i-1})$ Δ_3 Δ_1 Δ_0 Δ_2 F В D TrapezoidalMap(set *S* of *n* non-crossing segments) Ε $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \ldots, s_n) =$ RandomPermutation(S)A for i = 1 to n do $(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$ \mathcal{T} .remove $(\Delta_0, \ldots, \Delta_k)$ \mathcal{T} .add(new trapezoids incident to s_i) \mathcal{D} .remove_leaves $(\Delta_0, \ldots, \Delta_k)$ \mathcal{D} .add_leaves(new trapezoids incident to s_i)

11 - 13

Walking through \mathcal{T} and Updating \mathcal{D} $\mathcal{T}(S_{i-1})$ $\mathcal{T}(S_i)$ Δ_0 D Δ_2 E r_i uuuuuC B - Δ_3 $\mathcal{D}(S_i)$ S_i S_i $\mathcal{D}(S_{i-1})$ $\mathcal{D}(S_{i-1})$ Δ_3 Δ_1 Δ_0 Δ_2 F В D TrapezoidalMap(set *S* of *n* non-crossing segments) Ε $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \ldots, s_n) =$ RandomPermutation(S)A for i = 1 to n do $(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$ \mathcal{T} .remove $(\Delta_0, \ldots, \Delta_k)$ \mathcal{T} .add(new trapezoids incident to s_i) \mathcal{D} .remove_leaves $(\Delta_0, \ldots, \Delta_k)$

 \mathcal{D} .add_leaves(new trapezoids incident to s_i) \mathcal{D} .add_new_inner_nodes() 11 - 14


B

D

Ε

uuuuunC

 S_i

TrapezoidalMap(set *S* of *n* non-crossing segments) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, ..., s_n) = RandomPermutation(S)$ **for** i = 1 **to** *n* **do** $(\Delta_0, ..., \Delta_k) = FollowSegment(\mathcal{T}, \mathcal{D}, s_i)$ $\mathcal{T}.remove(\Delta_0, ..., \Delta_k)$ $\mathcal{T}.add(new trapezoids incident to s_i)$ $\mathcal{D}.remove_leaves(\Delta_0, ..., \Delta_k)$ $\mathcal{D}.add_leaves(new trapezoids incident to s_i)$ $\mathcal{D}.add_leaves(new trapezoids incident to s_i)$ $\mathcal{D}.add_new_inner_nodes()$

 $\mathcal{D}(S_i)$ $\mathcal{D}(S_{i-1})$ F В D Е A

Theorem. TrapezoidalMap(*S*) computes $\mathcal{T}(S)$ for a set of *n* line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time.

Theorem. TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.

Theorem. TrapezoidalMap(*S*) computes $\mathcal{T}(S)$ for a set of *n* line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.

Invariant: Before step *i*, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T} .

Theorem. TrapezoidalMap(*S*) computes $\mathcal{T}(S)$ for a set of *n* line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.

Invariant: Before step *i*, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T} .

Proof. – Correctness by loop invariant.

Theorem. TrapezoidalMap(*S*) computes $\mathcal{T}(S)$ for a set of *n* line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.

Invariant: Before step *i*, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T} .

Proof.

- Correctness by loop invariant.
- Query time similar to 1D analysis.

Theorem. TrapezoidalMap(*S*) computes $\mathcal{T}(S)$ for a set of *n* line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.

Invariant: Before step *i*, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T} .

Proof.

- Correctness by loop invariant.
- Query time similar to 1D analysis.
 - \Rightarrow construction time

Let T(q) be the query time for a fixed query pt q.

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O($).

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(D) increases by at most 3 in each step.

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(\mathcal{D}) increases by at most 3 in each step. \Rightarrow *T*(*q*) \leq

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} :

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders (permut. of S)

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders (permut. of S)

 $X_i :=$ # nodes that are added to the query path in iteration *i*.

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders (permut. of S) $X_i := \#$ nodes that are added to the query path in iteration i.

S and q are fixed.

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders (permut. of S)

 $X_i := #$ nodes that are added to the query path in iteration *i*. *S* and *q* are fixed.

 \Rightarrow X_{*i*} random var. that depends only on insertion order of S.

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders (permut. of S)

 $X_i := #$ nodes that are added to the query path in iteration *i*. *S* and *q* are fixed.

 \Rightarrow *X_i* random var. that depends only on insertion order of *S*. \Rightarrow expected path length from \mathcal{D} .root to *q* is

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders (permut. of S)

 $X_i := #$ nodes that are added to the query path in iteration *i*. *S* and *q* are fixed.

⇒ X_i random var. that depends only on insertion order of *S*. ⇒ expected path length from \mathcal{D} .root to *q* is $\mathbf{E}[\sum_{i=1}^n X_i] =$

Let T(q) be the query time for a fixed query pt q. $\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of \mathcal{D} : \Rightarrow average of T(q) over all n! insertion orders (permut. of S)

 $X_i := #$ nodes that are added to the query path in iteration *i*. *S* and *q* are fixed.

⇒ X_i random var. that depends only on insertion order of *S*. ⇒ expected path length from \mathcal{D} .root to *q* is $\mathbf{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbf{E}[X_i] = ?$

- p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.
- $\Rightarrow \mathbf{E}[X_i] =$

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le$$

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 0$$

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*.

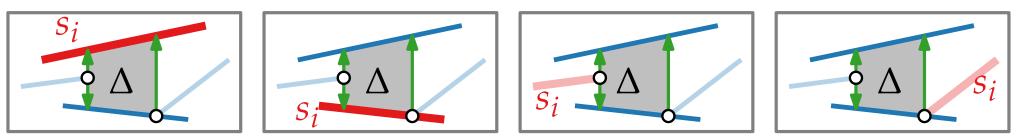
 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*. $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment s_i .


 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*. $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment s_i . $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$.

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*. $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment s_i . $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$. **Trick:** $\mathcal{T}(S_i)$ (and thus Δ) is uniquely determined by S_i .

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*. $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment s_i . $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$. **Trick:** $\mathcal{T}(S_i)$ (and thus Δ) is uniquely determined by S_i . Consider $S_i \subseteq S$ fixed.

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) :=$ trapezoid in $\mathcal{T}(S_i)$ that contains q.

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*. $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment s_i . $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$. **Trick:** $\mathcal{T}(S_i)$ (and thus Δ) is uniquely determined by S_i . Consider $S_i \subseteq S$ fixed. $\Rightarrow \Delta$ does *not* depend on insertion order.

 $p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. e., \text{ prob. that } \Delta \text{ changes when inserting } s_i.$ Aim: bound p_i .

 $p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. i.e., \text{prob. that } \Delta \text{ changes when inserting } s_i.$ Aim: bound p_i . Tool:

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

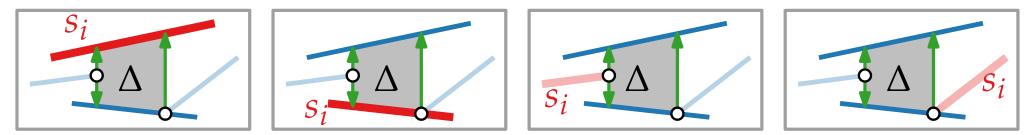
i.e., prob. that Δ changes when inserting s_i .

Aim: Tool:

bound *p_i*. *Backwards analysis!*

- p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.
 - i.e., prob. that Δ changes when inserting s_i .
- Aim: bound p_i .
- **Tool:** Backwards analysis!
- p_i = prob. that Δ changes when s_i is removed

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.


i.e., prob. that Δ changes when inserting s_i .

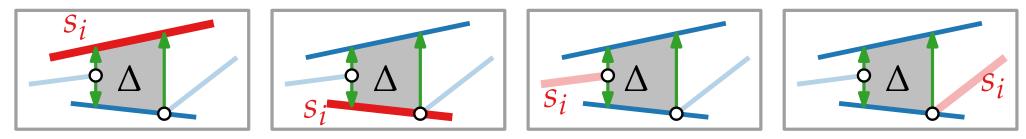
Aim: bound p_i .

Tool: Backwards analysis!

 p_i = prob. that Δ changes when s_i is removed

Four cases:

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.


i.e., prob. that Δ changes when inserting s_i .

Aim: bound p_i .

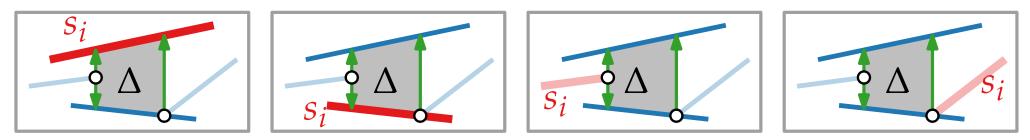
Tool: Backwards analysis!

 p_i = prob. that Δ changes when s_i is removed

Four cases:

 $\mathbf{P}(\mathrm{top}(\Delta) = s_i) = ?$

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.


i.e., prob. that Δ changes when inserting s_i .

Aim: bound p_i .

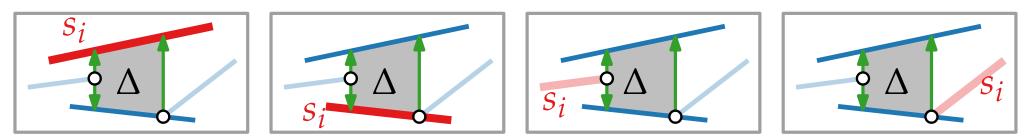
Tool: Backwards analysis!

 p_i = prob. that Δ changes when s_i is removed

Four cases:

 $\mathbf{P}(\operatorname{top}(\Delta) = s_i) = 1/i$ (since exactly 1 of *i* segments is $\operatorname{top}(\Delta)$).

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.


i.e., prob. that Δ changes when inserting s_i .

Aim: bound p_i .

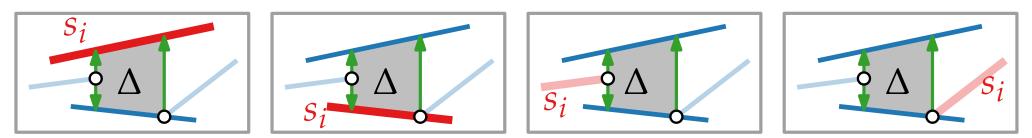
Tool: Backwards analysis!

 p_i = prob. that Δ changes when s_i is removed

Four cases:

 $\mathbf{P}(\operatorname{top}(\Delta) = s_i) = 1/i \text{ (since exactly 1 of } i \text{ segments is } \operatorname{top}(\Delta)).$ $\Rightarrow p_i \leq 4/i$ $\Rightarrow \mathbf{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbf{E}[X_i] \leq \sum_{i=1}^n 3 \cdot p_i$ $= 12 \sum_{i=1}^n 1/i \in O(\log n)$

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.


i.e., prob. that Δ changes when inserting s_i .

Aim: bound p_i .

Tool: Backwards analysis!

 p_i = prob. that Δ changes when s_i is removed

Four cases:

 $\mathbf{P}(\operatorname{top}(\Delta) = s_i) = 1/i \text{ (since exactly 1 of } i \text{ segments is } \operatorname{top}(\Delta)).$ $\Rightarrow p_i \leq 4/i$ $\Rightarrow \mathbf{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbf{E}[X_i] \leq \sum_{i=1}^n 3 \cdot p_i$ $= 12 \sum_{i=1}^n 1/i \in O(\log n)$