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Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!But: Space? Θ(n2) Preproc? O(n2 log n)
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See Comp.
Geom. A&A

Ch. 6.3
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Walking through T and Updating D
T (Si−1)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()
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that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi
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∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.
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⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.
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T (Si) (and thus ∆) is uniquely determined by Si.
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Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.

Trick:
Consider Si ⊆ S fixed.
T (Si) (and thus ∆) is uniquely determined by Si.

⇒ ∆ does not depend on insertion order.
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Query Time (cont’d)

Aim: bound pi.

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.
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Query Time (cont’d)

Aim: bound pi.
Tool:

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.
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Aim: bound pi.
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that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.
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Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
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15 - 7

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

∆ ∆ ∆ ∆

si

si
si

si

pi = prob. that ∆ changes when si is removed

Four cases:

P(top(∆) = si) = 1/i (since exactly 1 of i segments is top(∆)).
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Query Time (cont’d)

Aim: bound pi.
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pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.
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pi = prob. that ∆ changes when si is removed

Four cases:

P(top(∆) = si) = 1/i (since exactly 1 of i segments is top(∆)).
⇒ pi ≤ 4/i
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i=1 E[Xi] ≤ ∑n

i=1 3 · pi

= 12 ∑n
i=1 1/i ∈ O(log n)
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Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.
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pi = prob. that ∆ changes when si is removed

Four cases:

P(top(∆) = si) = 1/i (since exactly 1 of i segments is top(∆)).
⇒ pi ≤ 4/i
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i=1 3 · pi

= 12 ∑n
i=1 1/i ∈ O(log n)
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