Computational Geometry

Point Localization

or
Where am I?
Lecture \#5

What's the Problem?

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]

What's the Problem?

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!
[2 min]

What's the Problem?

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.
Query:

What's the Problem?

Task:
Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.
Query: - find correct slab

What's the Problem?

$\begin{array}{ll}\text { Task: } \quad \text { Given a planar subdivision } \mathcal{S} \text { with } n \text { segments, } \\ & \text { preprocess } \mathcal{S} \text { to allow for fast pt. location queries! }\end{array}$
Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.
Query: - find correct slab

What's the Problem?

$\begin{array}{ll}\text { Task: } \quad \text { Given a planar subdivision } \mathcal{S} \text { with } n \text { segments, } \\ & \text { preprocess } \mathcal{S} \text { to allow for fast pt. location queries! }\end{array}$
Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.
Query: - find correct slab

- search in slab

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.
Query: - find correct slab

- search in slab

What's the Problem?

Task: \quad Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & \text { - find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & \text { - find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

$O(\log n)$ time!

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & \text { - find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

$O(\log n)$
But: time!

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & \text { - find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

But: Space?
$O(\log n)$ time!

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & \text { - find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

But
Space? $\Theta\left(n^{2}\right)$
$O(\log n)$ time!

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & \text { - find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

But Space? $\Theta\left(n^{2}\right)$ Task: Tight example?
$O(\log n)$ time!

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & \text { - find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

$O(\log n)$
But
Space?
$\Theta\left(n^{2}\right)$
Preproc?
time!

What's the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast pt. location queries!

Solution: Preproc.: Partition \mathcal{S} into slabs induced by vertices.

$$
\left.\begin{array}{rl}
\text { Query: } & - \text { find correct slab } \\
& \text { - search in slab }
\end{array}\right\} 2 \text { bin. searches! }
$$

$O(\log n)$
Space? $\Theta\left(n^{2}\right)$
Preproc?
$O\left(n^{2} \log n\right)$ time!

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task:
Find "good" refinement of \mathcal{S} of low complexity!

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task:
Find "good" refinement of \mathcal{S} of low complexity!
Solution: \quad Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task:
Solution: \quad Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of \mathcal{S} of low complexity! Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of \mathcal{S} of low complexity! Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of \mathcal{S} of low complexity! Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of \mathcal{S} of low complexity! Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of \mathcal{S} of low complexity!

Solution: \quad Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task:
Find "good" refinement of \mathcal{S} of low complexity!
Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task:
Find "good" refinement of \mathcal{S} of low complexity!
Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task:
Find "good" refinement of \mathcal{S} of low complexity!
Trapezoidal map $\mathcal{T}(\mathcal{S})$

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task:
Find "good" refinement of \mathcal{S} of low complexity!
Trapezoidal map $\mathcal{T}(\mathcal{S})$

Assumption: \mathcal{S} is in general position, that is, no two vertices have the same x-coordinates.

Decreasing the Complexity

Observation: The slab partition of \mathcal{S} is a refinement \mathcal{S}^{\prime} of \mathcal{S} that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of \mathcal{S} of low complexity! Trapezoidal map $\mathcal{T}(\mathcal{S})$

Assumption: \mathcal{S} is in general position, that is, no two vertices have the same x-coordinates.

A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Notation
Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

Notation
Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has: - one or two vertical sides

Notation
Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- exactly 2 non-vertical sides

Notation

Definition:
A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- exactly 2 non-vertical sides

Left side:

Notation

Definition:
A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- exactly 2 non-vertical sides

Left side:

Notation
Definition:
A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has: - one or two vertical sides

- exactly 2 non-vertical sides

Left side:

Notation

Definition:
A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- exactly 2 non-vertical sides

Left side:

Notation

Definition:
A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has: - one or two vertical sides

- exactly 2 non-vertical sides

Left side:

Notation

Definition:
A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of max. length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has: - one or two vertical sides

- exactly 2 non-vertical sides

Left side:

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has \leq vtc and \leq trapezoids.

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in \mathcal{S}

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in $\mathcal{S} \leq 2 n$

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in $\mathcal{S} \leq 2 n$
- endpts of vertical extensions

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in $\mathcal{S} \leq 2 n$
- endpts of vertical extensions $\leq 2 \cdot 2 n$

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in $\mathcal{S} \leq 2 n$
- endpts of vertical extensions $\leq 2 \cdot 2 n$
- vertices of R

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in $\mathcal{S} \leq 2 n$
- endpts of vertical extensions $\leq 2 \cdot 2 n$
- vertices of R

4

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
$\left.\begin{array}{ll}\text { - endpts of segments in } \mathcal{S} & \leq 2 n \\ \text { - endpts of vertical extensions } \\ \text { - vertices of } R & \leq 2 \cdot 2 n\end{array}\right\}$

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq \quad$ vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
$\left.\begin{array}{ll}\text { - endpts of segments in } \mathcal{S} & \leq 2 n \\ \text { - endpts of vertical extensions } \\ \text { - vertices of } R & \leq 2 \cdot 2 n\end{array}\right\} \leq 6 n+4$

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6 n+4$ vtc and $\leq 3 n+1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
$\left.\begin{array}{ll}\text { - endpts of segments in } \mathcal{S} & \leq 2 n \\ \text { - endpts of vertical extensions } \\ \text { - vertices of } R & \leq 2 \cdot 2 n\end{array}\right\} \leq 6 n+4$

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6 n+4$ vtc and $\leq 3 n+1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
$\left.\begin{array}{ll}\text { - endpts of segments in } \mathcal{S} & \leq 2 n \\ \text { - endpts of vertical extensions } \\ \text { - vertices of } R & \leq 2 \cdot 2 n\end{array}\right\} \leq 6 n+4$
Bound \#trapezoids via Euler or directly (segments/leftp).

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6 n+4$ vtc and $\leq 3 n+1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
$\left.\begin{array}{ll}\text { - endpts of segments in } \mathcal{S} & \leq 2 n \\ \text { - endpts of vertical extensions } \\ \text { - vertices of } R & \leq 2 \cdot 2 n\end{array}\right\} \leq 6 n+4$
Bound \#trapezoids via Euler or directly (segments/leftp).
Approach:

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6 n+4$ vtc and $\leq 3 n+1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
$\left.\begin{array}{ll}\text { - endpts of segments in } \mathcal{S} & \leq 2 n \\ \text { - endpts of vertical extensions } \\ \text { - vertices of } R & \leq 2 \cdot 2 n\end{array}\right\} \leq 6 n+4$
Bound \#trapezoids via Euler or directly (segments/leftp).
Approach: Construct trapezoidal map $\mathcal{T}(\mathcal{S})$ and point-location data structure $\mathcal{D}(\mathcal{S})$ for $\mathcal{T}(\mathcal{S})$ incrementally!

Complexity of $\mathcal{T}(\mathcal{S})$

Observe: A face Δ of $\mathcal{T}(\mathcal{S})$ is uniquely defined by $\operatorname{top}(\Delta), \operatorname{bot}(\Delta), \operatorname{leftp}(\Delta)$, and $\operatorname{rightp}(\Delta)$.

Lemma. \mathcal{S} planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(\mathcal{S})$ has $\leq 6 n+4$ vtc and $\leq 3 n+1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
$\left.\begin{array}{ll}\text { - endpts of segments in } \mathcal{S} & \leq 2 n \\ \text { - endpts of vertical extensions } \\ \text { - vertices of } R & \leq 2 \cdot 2 n\end{array}\right\} \leq 6 n+4$
Bound \#trapezoids via Euler or directly (segments/leftp).
Approach: Construct trapezoidal map $\mathcal{T}(\mathcal{S})$ and point-location data structure $\mathcal{D}(\mathcal{S})$ for $\mathcal{T}(\mathcal{S})$ incrementally! algorithm-design paradigm!

The 1D Problem

Given a set S of n real numbers...

The 1D Problem

Given a set S of n real numbers...

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$

The 1D Problem

Given a set S of n real numbers...

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$

The 1D Problem

Given a set S of n real numbers...

$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}

The 1D Problem

Given a set S of n real numbers...

$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

The 1D Problem

Given a set S of n real numbers...

$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

Problem:

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

Problem: looong search paths!

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

Solution:

- pick an arbitrary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

Problem: looong search paths!

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$

Solution:

- pick anary point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

Problem: looong search paths!

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Solution: random!

- pick anably point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

Problem: looong search paths!

The 1D Problem

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Solution: random!

- pick anably point s_{i} from $S \backslash S_{i-1}$
- locate s_{i} in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_{i}
- build \mathcal{D}_{i} :

Problem: worg search paths!

The 1D Result

Given a set S of n real numbers... $i \in\{1, \ldots, n+1\}$

$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

The 1D Result

Given a set S of n real numbers...

Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_{i}(q)=\arg \left\{I \in I_{i}: q \in I\right\}$.

The 1D Result

Given a set S of n real numbers...

Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_{i}(q)=\arg \left\{I \in I_{i}: q \in I\right\}$.
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=$

The 1D Result

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_{i}(q)=\arg \left\{I \in I_{i}: q \in I\right\}$.
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

The 1D Result

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_{i}(q)=\arg \left\{I \in I_{i}: q \in I\right\}$.
Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

The 1D Result

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_{i}(q)=\arg \left\{I \in I_{i}: q \in I\right\}$.
Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=
$$

The 1D Result

Given a set S of n real numbers...
$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_{i}(q)=\arg \left\{I \in I_{i}: q \in I\right\}$.
Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$E\left[X_{i}\right]=$

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$E\left[X_{i}\right]=P\left[X_{i}=1\right]=$

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]= \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q)
\end{aligned}
$$

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$ $E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]= \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q), \text { i.e., } s_{i} \in I_{i-1}(q) .
\end{aligned}
$$

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$ $E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]= \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q), \text { i.e., } s_{i} \in I_{i-1}(q) .
\end{aligned}
$$

Backwards analysis:

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]= \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q), \text { i.e., } s_{i} \in I_{i-1}(q) .
\end{aligned}
$$

Backwards analysis:

Consider S_{i} fixed.

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]= \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q), \text { i.e., } s_{i} \in I_{i-1}(q) .
\end{aligned}
$$

Backwards analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i},

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q), \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\boldsymbol{?}
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]= \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q), \text { i.e., } s_{i} \in I_{i-1}(q) .
\end{aligned}
$$

Backwards analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i}, what's the probability that the interval containing q changes?

Define random variable $X_{i}=\left\{\begin{array}{cc}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \text {, } \\ 0 & \end{array}\right.$ 0 else.
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\boldsymbol{?}
$$

Expected Query Time of \mathcal{D}_{n}

$$
E\left[X_{i}\right]=P\left[X_{i}=1\right]=
$$

$$
=\text { probability that } I_{i}(q) \neq I_{i-1}(q) \text {, i.e., } s_{i} \in I_{i-1}(q) \text {. }
$$

Backwards analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i}, what's the probability that the interval containing q changes?

- we have i choices, identically distributed

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \text {, } \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\boldsymbol{?}
$$

Expected Query Time of \mathcal{D}_{n}

$$
E\left[X_{i}\right]=P\left[X_{i}=1\right]=
$$

$=$ probability that $I_{i}(q) \neq I_{i-1}(q)$, i.e., $s_{i} \in I_{i-1}(q)$.

Backwards analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i}, what's the probability that the interval containing q changes?

- we have i choices, identically distributed
- at most two of these change the interval

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \text {, } \\ 0 & \text { else }\end{cases}$ 0 else.
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\boldsymbol{?}
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]= \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q), \text { i.e., } s_{i} \in I_{i-1}(q) .
\end{aligned}
$$

Backwards analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i}, what's the probability that the interval containing q changes?

- we have i choices, identically distributed
- at most two of these change the interval

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \text {, } \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\boldsymbol{?}
$$

Expected Query Time of \mathcal{D}_{n}

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left[X_{i}=1\right]=2 / i \\
& =\text { probability that } I_{i}(q) \neq I_{i-1}(q), \text { i.e., } s_{i} \in I_{i-1}(q) .
\end{aligned}
$$

Backwards analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i}, what's the probability that the interval containing q changes?

- we have i choices, identically distributed
- at most two of these change the interval

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \text {, } \\ 0 & \text { else. }\end{cases}$
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\boldsymbol{?}
$$

Expected Query Time of \mathcal{D}_{n}

[$E\left[X_{i}\right]=P\left[X_{i}=1\right]=2 / i$
$=$ probability that $I_{i}(q) \neq I_{i-1}(q)$, i.e., $s_{i} \in I_{i-1}(q)$.

Backwards
analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i}, what's the probability that the interval containing q changes?

- we have i choices, identically distributed
- at most two of these change the interval

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \text {, } \\ 0 & \text { else }\end{cases}$
0 else.
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=?
$$

Expected Query Time of \mathcal{D}_{n}

$\left[E\left[X_{i}\right]=P\left[X_{i}=1\right]=2 / i\right.$
$=$ probability that $I_{i}(q) \neq I_{i-1}(q)$, i.e., $s_{i} \in I_{i-1}(q)$.

Backwards
analysis:

Consider S_{i} fixed.
If we remove a randomly chosen pt from S_{i}, what's the probability that the interval containing q changes?

- we have i choices, identically distributed
- at most two of these change the interval

Define random variable $X_{i}= \begin{cases}1 & \text { if } I_{i}(q) \neq I_{i-1}(q) \text {, } \\ 0 & \text { else }\end{cases}$
0 else.
$E\left[\right.$ query time in $\left.\mathcal{D}_{n}\right]=E\left[\right.$ length search path in $\left.\mathcal{D}_{n}\right]=$

$$
=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right] \underset{O(\log n)}{=}
$$

The 1D Result

Given a set S of n real numbers... $i \in\{1, \ldots, n+1\}$

$S_{i-1}:=\left\{s_{1}, \ldots, s_{i-1}\right\}, \quad I_{i-1}:=$ set of conn. comp. of $\mathbb{R} \backslash S_{i-1}$
Thm. The randomized-incremental algorithm preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

The 2D Problem

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D} - use \mathcal{D} to locate left endpoint of next segment s

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

$\int x$-node
y-node
\square leaf (trapezoid)

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

The 2D Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); \mathcal{D}.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); \mathcal{D}.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); \mathcal{D}.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); D.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); D.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); D.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); \mathcal{D}.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); $\mathcal{D} . \operatorname{init}()$
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); \mathcal{D}.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); \mathcal{D}.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})
D.remove_leaves $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); $\mathcal{D} . \operatorname{init}()$
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})
D.remove_leaves $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)
$R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); \mathcal{D}.init()
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})
D.remove_leaves $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
D.add_leaves(new trapezoids incident to s_{i})

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments) $R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); $\mathcal{D} . \operatorname{init}()$
$B \quad D$
E $\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S) for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})
D.remove_leaves $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
D.add_leaves(new trapezoids incident to s_{i})

Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments) $R=\operatorname{BBox}(S) ; \mathcal{T}$.init(); $\mathcal{D} . \operatorname{init}()$
$B \quad D$

A
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)=$ RandomPermutation (S)
for $i=1$ to n do
$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=\operatorname{FollowSegment}\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})
D.remove_leaves $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
D.add_leaves(new trapezoids incident to s_{i})
D.add_new_inner_nodes()

Walking through \mathcal{T} and Updating \mathcal{D}

$\left(\Delta_{0}, \ldots, \Delta_{k}\right)=$ FollowSegment $\left(\mathcal{T}, \mathcal{D}, s_{i}\right)$
\mathcal{T}.remove $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
\mathcal{T}.add(new trapezoids incident to s_{i})
D.remove_leaves $\left(\Delta_{0}, \ldots, \Delta_{k}\right)$
D.add_leaves(new trapezoids incident to s_{i})
D.add_new_inner_nodes()

The 2d-Result

Theorem. TrapezoidalMap (S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time.

The 2d-Result

Theorem. TrapezoidalMap (S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

The 2d-Result

Theorem. TrapezoidalMap (S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Invariant: Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T}.

The 2d-Result

Theorem. TrapezoidalMap (S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Invariant: Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T}.

Proof. - Correctness by loop invariant.

The 2d-Result

Theorem. TrapezoidalMap (S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Invariant: Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T}.

Proof. - Correctness by loop invariant.

- Query time similar to 1D analysis.

The 2d-Result

Theorem. TrapezoidalMap (S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Invariant: Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T}.

Proof. - Correctness by loop invariant.

- Query time similar to 1D analysis.
\Rightarrow construction time

Query Time

Let $T(q)$ be the query time for a fixed query pt q.

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O($
).

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step.

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq$

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)
$X_{i}:=$ \# nodes that are added to the query path in iteration i.

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)
$X_{i}:=\#$ nodes that are added to the query path in iteration i.
S and q are fixed.

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)
$X_{i}:=$ \# nodes that are added to the query path in iteration i.
S and q are fixed.
$\Rightarrow X_{i}$ random var. that depends only on insertion order of S.

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)
$X_{i}:=$ \# nodes that are added to the query path in iteration i.
S and q are fixed.
$\Rightarrow X_{i}$ random var. that depends only on insertion order of S.
\Rightarrow expected path length from \mathcal{D}.root to q is

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)
$X_{i}:=$ \# nodes that are added to the query path in iteration i.
S and q are fixed.
$\Rightarrow X_{i}$ random var. that depends only on insertion order of S.
\Rightarrow expected path length from \mathcal{D}.root to q is

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=
$$

Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q)=O$ (length of the path from \mathcal{D}.root to q).
height (\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3 n$.
We are interested in the expected behaviour of \mathcal{D} :
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)
$X_{i}:=$ \# nodes that are added to the query path in iteration i.
S and q are fixed.
$\Rightarrow X_{i}$ random var. that depends only on insertion order of S.
\Rightarrow expected path length from \mathcal{D}.root to q is

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=?
$$

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=$

Query Time (cont'd)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq$

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=$

Query Time (cont'd)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

$$
\Delta_{q}\left(S_{i-1}\right) \neq \Delta_{q}\left(S_{i}\right) .
$$

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

$$
\Delta_{q}\left(S_{i-1}\right) \neq \Delta_{q}\left(S_{i}\right) .
$$

In this case $\Delta_{q}\left(S_{i}\right)$ must have been created in iteration i.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

$$
\Delta_{q}\left(S_{i-1}\right) \neq \Delta_{q}\left(S_{i}\right) .
$$

In this case $\Delta_{q}\left(S_{i}\right)$ must have been created in iteration i.
$\Rightarrow \Delta:=\Delta_{q}\left(S_{i}\right)$ is adjacent to the new segment s_{i}.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

$$
\Delta_{q}\left(S_{i-1}\right) \neq \Delta_{q}\left(S_{i}\right) .
$$

In this case $\Delta_{q}\left(S_{i}\right)$ must have been created in iteration i.
$\Rightarrow \Delta:=\Delta_{q}\left(S_{i}\right)$ is adjacent to the new segment s_{i}.
$\Rightarrow \operatorname{top}(\Delta)=s_{i}, \operatorname{bot}(\Delta)=s_{i}, \operatorname{leftp}(\Delta) \in s_{i}$, or $\operatorname{rightp}(\Delta) \in s_{i}$.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

$$
\Delta_{q}\left(S_{i-1}\right) \neq \Delta_{q}\left(S_{i}\right) .
$$

In this case $\Delta_{q}\left(S_{i}\right)$ must have been created in iteration i.
$\Rightarrow \Delta:=\Delta_{q}\left(S_{i}\right)$ is adjacent to the new segment s_{i}.
$\Rightarrow \operatorname{top}(\Delta)=s_{i}, \operatorname{bot}(\Delta)=s_{i}, \operatorname{leftp}(\Delta) \in s_{i}$, or $\operatorname{rightp}(\Delta) \in s_{i}$.
Trick:
$\mathcal{T}\left(S_{i}\right)$ (and thus Δ) is uniquely determined by S_{i}.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

$$
\Delta_{q}\left(S_{i-1}\right) \neq \Delta_{q}\left(S_{i}\right) .
$$

In this case $\Delta_{q}\left(S_{i}\right)$ must have been created in iteration i.
$\Rightarrow \Delta:=\Delta_{q}\left(S_{i}\right)$ is adjacent to the new segment s_{i}.
$\Rightarrow \operatorname{top}(\Delta)=s_{i}, \operatorname{bot}(\Delta)=s_{i}, \operatorname{leftp}(\Delta) \in s_{i}$, or $\operatorname{rightp}(\Delta) \in s_{i}$.
Trick: $\quad \mathcal{T}\left(S_{i}\right)$ (and thus Δ) is uniquely determined by S_{i}. Consider $S_{i} \subseteq S$ fixed.

Query Time (cont'd)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\sum_{j=0}^{3} j \cdot \mathbf{P}\left[X_{i}=j\right] \leq 3 \cdot \mathbf{P}\left[X_{i} \geq 1\right]=3 p_{i}$
$\Delta_{q}\left(S_{i}\right):=$ trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q.
Key idea: Iteration i contributes a node to Π_{q} iff

$$
\Delta_{q}\left(S_{i-1}\right) \neq \Delta_{q}\left(S_{i}\right) .
$$

In this case $\Delta_{q}\left(S_{i}\right)$ must have been created in iteration i.
$\Rightarrow \Delta:=\Delta_{q}\left(S_{i}\right)$ is adjacent to the new segment s_{i}.
$\Rightarrow \operatorname{top}(\Delta)=s_{i}, \operatorname{bot}(\Delta)=s_{i}, \operatorname{leftp}(\Delta) \in s_{i}$, or $\operatorname{rightp}(\Delta) \in s_{i}$.
Trick: $\quad \mathcal{T}\left(S_{i}\right)$ (and thus Δ) is uniquely determined by S_{i}. Consider $S_{i} \subseteq S$ fixed.
$\Rightarrow \Delta$ does not depend on insertion order.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim: bound p_{i}.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim: bound p_{i}. Tool:

Query Time (cont'd)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim:
Tool:
bound p_{i}.
Backwards analysis!

Query Time (cont'd)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim: bound p_{i}.
Backwards analysis!
$p_{i}=$ prob. that Δ changes when s_{i} is removed

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim:
Tool: Backwards analysis!
$p_{i}=$ prob. that Δ changes when s_{i} is removed
Four cases:

Query Time (cont'd)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim:
Tool:
bound p_{i}.
Backwards analysis!
$p_{i}=$ prob. that Δ changes when s_{i} is removed
Four cases:

$\mathbf{P}\left(\operatorname{top}(\Delta)=s_{i}\right)=$?

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim:
Tool:
bound p_{i}.
Backwards analysis!
$p_{i}=$ prob. that Δ changes when s_{i} is removed
Four cases:

$\mathbf{P}\left(\operatorname{top}(\Delta)=s_{i}\right)=1 / i($ since exactly 1 of i segments is top $(\Delta))$.

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim:
Tool: bound p_{i}.
Backwards analysis!
$p_{i}=$ prob. that Δ changes when s_{i} is removed
Four cases:

$\mathbf{P}\left(\operatorname{top}(\Delta)=s_{i}\right)=1 / i($ since exactly 1 of i segments is top $(\Delta))$.

$$
\begin{aligned}
& \Rightarrow p_{i} \leq 4 / i \\
& \Rightarrow \mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right] \leq \sum_{i=1}^{n} 3 \cdot p_{i} \\
&=12 \sum_{i=1}^{n} 1 / i \in O(\log n)
\end{aligned}
$$

Query Time (cont’d)

$p_{i}=$ prob. that the search path Π_{q} of q in \mathcal{D} contains a node that was created in iteration i.
i.e., prob. that Δ changes when inserting s_{i}.

Aim:
Tool: bound p_{i}.
Backwards analysis!
$p_{i}=$ prob. that Δ changes when s_{i} is removed
Four cases:

$\mathbf{P}\left(\operatorname{top}(\Delta)=s_{i}\right)=1 / i($ since exactly 1 of i segments is top $(\Delta))$.

$$
\begin{aligned}
& \Rightarrow p_{i} \leq 4 / i \\
& \Rightarrow \mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right] \leq \sum_{i=1}^{n} 3 \cdot p_{i} \\
&=12 \sum_{i=1}^{n} 1 / i \in O(\log n)
\end{aligned}
$$

