
1

Computational Geometry

Lecture #5

Point Localization
or

Where am I?

Thomas van Dijk Winter Semester 2019/20

2 - 1

What’s the Problem?

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]

2 - 2

What’s the Problem?

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]

2 - 3

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

2 - 4

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

2 - 5

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

2 - 6

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

2 - 7

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

2 - 8

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

[2 min]

2 - 9

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

2 - 10

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

2 - 11

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

2 - 12

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:

2 - 13

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab

2 - 14

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab

2 - 15

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

2 - 16

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

2 - 17

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

2 - 18

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!

2 - 19

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!But:

2 - 20

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!But: Space?

2 - 21

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!But: Space? Θ(n2)

2 - 22

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!But: Space? Θ(n2) Task: Tight example?

2 - 23

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!But: Space? Θ(n2) Preproc?

2 - 24

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!But: Space? Θ(n2) Preproc? O(n2 log n)

3 - 1

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

3 - 2

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

3 - 3

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

3 - 4

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

3 - 5

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 6

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 7

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 8

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 9

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 10

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 11

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 12

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

3 - 13

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Assumption: S is in general position, that is,
no two vertices have the same x-coordinates.

R

3 - 14

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Assumption: S is in general position, that is,
no two vertices have the same x-coordinates.

R

See Comp.
Geom. A&A

Ch. 6.3

4 - 1

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

4 - 2

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

4 - 3

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

4 - 4

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

4 - 5

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:

∆

4 - 6

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides

∆

4 - 7

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

4 - 8

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

Left side: ∆

4 - 9

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

Left side: ∆ ∆

4 - 10

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

Left side: ∆ ∆ ∆

4 - 11

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

Left side: ∆ ∆ ∆ ∆

4 - 12

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

Left side:

R

∆ ∆ ∆ ∆ ∆

4 - 13

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

Left side:

R

∆ ∆ ∆ ∆ ∆

leftp(∆)

5 - 1

Complexity of T (S)
Observe: A face ∆ of T (S) is uniquely defined by

top(∆), bot(∆), leftp(∆), and rightp(∆).

5 - 2

Complexity of T (S)
Observe: A face ∆ of T (S) is uniquely defined by

top(∆), bot(∆), leftp(∆), and rightp(∆).

5 - 3

Complexity of T (S)
Observe: A face ∆ of T (S) is uniquely defined by

top(∆), bot(∆), leftp(∆), and rightp(∆).

5 - 4

Complexity of T (S)
Observe: A face ∆ of T (S) is uniquely defined by

top(∆), bot(∆), leftp(∆), and rightp(∆).

5 - 5

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

5 - 6

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are
– endpts of segments in S

5 - 7

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are
– endpts of segments in S ≤ 2n

5 - 8

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are
– endpts of segments in S
– endpts of vertical extensions

≤ 2n

5 - 9

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are
– endpts of segments in S
– endpts of vertical extensions

≤ 2n
≤ 2 · 2n

5 - 10

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

≤ 2n
≤ 2 · 2n

5 - 11

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

5 - 12

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}

5 - 13

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}
≤ 6n + 4

5 - 14

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}
≤ 6n + 4

5 - 15

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}
≤ 6n + 4

Bound #trapezoids via Euler or directly (segments/leftp).

5 - 16

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Approach:

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}
≤ 6n + 4

Bound #trapezoids via Euler or directly (segments/leftp).

5 - 17

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Approach: Construct trapezoidal map T (S) and
point-location data structure D(S) for T (S)
incrementally!

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}
≤ 6n + 4

Bound #trapezoids via Euler or directly (segments/leftp).

5 - 18

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Approach: Construct trapezoidal map T (S) and
point-location data structure D(S) for T (S)
incrementally! algorithm-design paradigm!

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}
≤ 6n + 4

Bound #trapezoids via Euler or directly (segments/leftp).

6 - 1

The 1D Problem
Given a set S of n real numbers...

6 - 2

The 1D Problem
Given a set S of n real numbers...

6 - 3

The 1D Problem
Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n}

6 - 4

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n}

6 - 5

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n}
si

6 - 6

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

(`, r)

i ∈ {1, . . . , n}
si

Di−1

6 - 7

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 8

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 9

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 10

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 11

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

Di

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 12

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 13

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem:

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 14

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem: looong search paths!

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

6 - 15

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem: looong search paths!

Solution:

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

Problem:

Solution:

6 - 16

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem: looong search paths!

Solution:

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

Problem:

Solution:

6 - 17

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem: looong search paths!

Solution: random!

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

Problem:

Solution:

6 - 18

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem: looong search paths!

Solution: random!

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

Problem:

Solution:

7 - 1

The 1D Result

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

7 - 2

The 1D Result

Proof.

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

Let q ∈ R (wlog. q 6∈ S) and Ii(q) = arg{I ∈ Ii : q ∈ I}.

7 - 3

The 1D Result

Proof.

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

Let q ∈ R (wlog. q 6∈ S) and Ii(q) = arg{I ∈ Ii : q ∈ I}.

E[query time in Dn] =

7 - 4

The 1D Result

Proof.

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

Let q ∈ R (wlog. q 6∈ S) and Ii(q) = arg{I ∈ Ii : q ∈ I}.

E[query time in Dn] = E[length search path in Dn] =

7 - 5

The 1D Result

Proof.

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

Let q ∈ R (wlog. q 6∈ S) and Ii(q) = arg{I ∈ Ii : q ∈ I}.

E[query time in Dn] = E[length search path in Dn] =

7 - 6

The 1D Result

Proof.

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

Let q ∈ R (wlog. q 6∈ S) and Ii(q) = arg{I ∈ Ii : q ∈ I}.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] =

7 - 7

The 1D Result

Proof.

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

Let q ∈ R (wlog. q 6∈ S) and Ii(q) = arg{I ∈ Ii : q ∈ I}.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

8 - 1

Expected Query Time of Dn

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

8 - 2

Expected Query Time of Dn

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] =

8 - 3

Expected Query Time of Dn

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =

8 - 4

Expected Query Time of Dn

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q)

8 - 5

Expected Query Time of Dn

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

8 - 6

Expected Query Time of Dn

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis:

8 - 7

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis:

8 - 8

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

8 - 9

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

what’s the probability that the interval
containing q changes?

8 - 10

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

what’s the probability that the interval
containing q changes?
– we have i choices, identically distributed

8 - 11

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

what’s the probability that the interval
containing q changes?
– we have i choices, identically distributed
– at most two of these change the interval

8 - 12

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

what’s the probability that the interval
containing q changes?
– we have i choices, identically distributed
– at most two of these change the interval

8 - 13

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

what’s the probability that the interval
containing q changes?
– we have i choices, identically distributed

2/i

– at most two of these change the interval

8 - 14

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

what’s the probability that the interval
containing q changes?
– we have i choices, identically distributed

2/i

– at most two of these change the interval

8 - 15

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis: If we remove a randomly chosen pt from Si,

what’s the probability that the interval
containing q changes?
– we have i choices, identically distributed

2/i

O(log n)

– at most two of these change the interval

9

The 1D Result

Thm. The randomized-incremental algorithm preproc.
a set S of n reals in O(n log n) expected time such
that a query takes O(log n) expected time.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

10 - 1

The 2D Problem
Approach: randomized-incremental construction of T and D

10 - 2

The 2D Problem
Approach: randomized-incremental construction of T and D

trapezoidal map

10 - 3

The 2D Problem
Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

T

trapezoidal map

10 - 4

The 2D Problem
Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

T

trapezoidal map
point-location data structure (DAG)

10 - 5

The 2D Problem
Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D

trapezoidal map
point-location data structure (DAG)

10 - 6

The 2D Problem
Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

10 - 7

The 2D Problem
Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 8

The 2D Problem

– use D to locate left endpoint of next segment s
Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 9

The 2D Problem

– use D to locate left endpoint of next segment s
Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 10

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T

Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 11

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T

Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 12

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s

Approach: randomized-incremental construction of T and D

s1

A

B

C

D
`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 13

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 14

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

10 - 15

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

10 - 16

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D

10 - 17

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G

10 - 18

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G

10 - 19

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B C

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G

10 - 20

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

10 - 21

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C

10 - 22

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

10 - 23

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D

10 - 24

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

10 - 25

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

D

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

10 - 26

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

10 - 27

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

r2

10 - 28

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

r2

G

10 - 29

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

r2

Gs2

10 - 30

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

r2

Gs2

E

10 - 31

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

r2

Gs2

E

10 - 32

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

r2

Gs2

E

11 - 1

Walking through T and Updating D
T (Si−1)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

11 - 2

Walking through T and Updating D
T (Si−1)

si

`i

ri

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

11 - 3

Walking through T and Updating D
T (Si−1)

si

`i

ri

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

11 - 4

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

11 - 5

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

11 - 6

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 7

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 8

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri
A

B

D

C

E
F

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 9

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri
A

B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 10

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri
A

B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 11

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri
A

B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1) D(Si−1)

D(Si)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 12

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri
A

B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1) D(Si−1)

D(Si)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 13

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

B

A
C

D

E

F

A
B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1) D(Si−1)

D(Si)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 14

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

B

A
C

D

E

F

A
B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1) D(Si−1)

D(Si)

TrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

11 - 15

Walking through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

risi

B

A
C

D

E

F

A
B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1) D(Si−1)

D(Si)

si si

siTrapezoidalMap(set S of n non-crossing segments)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapezoids incident to si)
D.add new inner nodes()

T (Si)

si

12 - 1

The 2d-Result
TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

12 - 2

The 2d-Result
TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

The expected size of D is O(n) and the
expected query time is O(log n).

12 - 3

The 2d-Result

Invariant: Before step i, T is a trapezoidal map for Si−1
and D is a valid search structure for T .

TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

The expected size of D is O(n) and the
expected query time is O(log n).

12 - 4

The 2d-Result

Invariant: Before step i, T is a trapezoidal map for Si−1
and D is a valid search structure for T .

Proof. – Correctness by loop invariant.

TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

The expected size of D is O(n) and the
expected query time is O(log n).

12 - 5

The 2d-Result

Invariant: Before step i, T is a trapezoidal map for Si−1
and D is a valid search structure for T .

Proof. – Correctness by loop invariant.
– Query time similar to 1D analysis.

TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

The expected size of D is O(n) and the
expected query time is O(log n).

12 - 6

The 2d-Result

Invariant: Before step i, T is a trapezoidal map for Si−1
and D is a valid search structure for T .

Proof. – Correctness by loop invariant.
– Query time similar to 1D analysis.
⇒ construction time

TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

The expected size of D is O(n) and the
expected query time is O(log n).

13 - 1

Query Time

Let T(q) be the query time for a fixed query pt q.

13 - 2

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

13 - 3

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

13 - 4

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.

13 - 5

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

13 - 6

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤ 3n.

13 - 7

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

3n.

13 - 8

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over

3n.

13 - 9

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders

3n.

13 - 10

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

3n.

13 - 11

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

Xi := # nodes that are added to the query path in iteration i.

3n.

13 - 12

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

Xi := # nodes that are added to the query path in iteration i.

S and q are fixed.

3n.

13 - 13

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

Xi := # nodes that are added to the query path in iteration i.

S and q are fixed.

⇒ Xi random var. that depends only on insertion order of S.

3n.

13 - 14

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

Xi := # nodes that are added to the query path in iteration i.

S and q are fixed.

⇒ Xi random var. that depends only on insertion order of S.

⇒ expected path length from D.root to q is

3n.

13 - 15

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

Xi := # nodes that are added to the query path in iteration i.

S and q are fixed.

⇒ Xi random var. that depends only on insertion order of S.

⇒ expected path length from D.root to q is

E[∑n
i=1 Xi] =

3n.

13 - 16

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

Xi := # nodes that are added to the query path in iteration i.

S and q are fixed.

⇒ Xi random var. that depends only on insertion order of S.

⇒ expected path length from D.root to q is

E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

3n.

14 - 1

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

14 - 2

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =

14 - 3

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤

14 - 4

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] =

14 - 5

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

14 - 6

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

∆q(Si) := trapezoid in T (Si) that contains q.

14 - 7

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

14 - 8

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

14 - 9

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.

14 - 10

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.

14 - 11

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.

∆ ∆ ∆ ∆

si

si
si

si

14 - 12

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.

Trick: T (Si) (and thus ∆) is uniquely determined by Si.

14 - 13

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.

Trick:
Consider Si ⊆ S fixed.
T (Si) (and thus ∆) is uniquely determined by Si.

14 - 14

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.

Trick:
Consider Si ⊆ S fixed.
T (Si) (and thus ∆) is uniquely determined by Si.

⇒ ∆ does not depend on insertion order.

15 - 1

Query Time (cont’d)

Aim: bound pi.

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

15 - 2

Query Time (cont’d)

Aim: bound pi.
Tool:

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

15 - 3

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

15 - 4

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

pi = prob. that ∆ changes when si is removed

15 - 5

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

∆ ∆ ∆ ∆

si

si
si

si

pi = prob. that ∆ changes when si is removed

Four cases:

15 - 6

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

∆ ∆ ∆ ∆

si

si
si

si

P(top(∆) = si) =?

pi = prob. that ∆ changes when si is removed

Four cases:

15 - 7

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

∆ ∆ ∆ ∆

si

si
si

si

pi = prob. that ∆ changes when si is removed

Four cases:

P(top(∆) = si) = 1/i (since exactly 1 of i segments is top(∆)).

15 - 8

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

∆ ∆ ∆ ∆

si

si
si

si

pi = prob. that ∆ changes when si is removed

Four cases:

P(top(∆) = si) = 1/i (since exactly 1 of i segments is top(∆)).
⇒ pi ≤ 4/i
⇒E[∑n

i=1 Xi] = ∑n
i=1 E[Xi] ≤ ∑n

i=1 3 · pi

= 12 ∑n
i=1 1/i ∈ O(log n)

15 - 9

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i.
i.e., prob. that ∆ changes when inserting si.

∆ ∆ ∆ ∆

si

si
si

si

pi = prob. that ∆ changes when si is removed

Four cases:

P(top(∆) = si) = 1/i (since exactly 1 of i segments is top(∆)).
⇒ pi ≤ 4/i
⇒E[∑n

i=1 Xi] = ∑n
i=1 E[Xi] ≤ ∑n

i=1 3 · pi

= 12 ∑n
i=1 1/i ∈ O(log n)

	Titel
	What's the Problem?
	Decreasing the Complexity
	Notation
	Complexity of T(S)
	The 1D Problem
	The 1D Result
	Expected Query Time of ${\cal D}_n$
	The 1D Result
	The 2D Problem
	Walking through $\cal T$ and Updating $\cal D$
	The 2d-Result
	Query Time
	Query Time (cont'd)
	Query Time (cont'd)

