

Computational Geometry

Line-Segment Intersection or Map Overlay Lecture #3

Thomas van Dijk

Winter Semester 2019/20

Map Overlay in Geographic Information Systems (GIS)

Definition:

Answer: Depends...

Answer: Depends...

Problem: Given a set *S* of *n closed* non-overlapping line segments in the plane, compute...

Answer: Depends...

Problem: Given a set *S* of *n closed* non-overlapping line segments in the plane, compute...

- all points where at least two segments intersect and
- for each such point report all segments that contain it.

Definition: Is

Answer: Depends...

Problem: Given a set *S* of *n closed* non-overlapping line segments in the plane, compute...

 all points where at least two segments intersect and

an intersection?

ves!

 for each such point report all segments that contain it.

Definition: Is

Answer: Depends...

Problem: Given a set *S* of *n closed* non-overlapping line segments in the plane, compute...

 all points where at least two segments intersect and

an intersection?

ves!

 for each such point report all segments that contain it.

Task:

Discuss with your neighbor: how would *you* do it?

Example

Brute Force? $O(n^2)$... can we do better?

Example

Brute Force? $O(n^2)$... can we do better? Idea: Process segments top-to-bottom using a "sweep line".

event points

Which active segments should be compared?

sweep line

1) event (-point) queue \mathcal{Q}

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}}$

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q$

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q$

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$

1) event (-point) queue Q

 $p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$ $\ell \quad p \quad q$

1) event (-point) queue Q

1) event (-point) queue Q

Store event pts in *balanced binary search tree* by \prec

1) event (-point) queue \mathcal{Q}

Store event pts in *balanced binary search tree* by \prec

 \Rightarrow nextEvent() and del/insEvent() take $O(\log |Q|)$ time

1) event (-point) queue \mathcal{Q}

Store event pts in *balanced binary search tree* by \prec

 \Rightarrow nextEvent() and del/insEvent() take $O(\log |Q|)$ time

1) event (-point) queue ${\cal Q}$

Store event pts in *balanced binary search tree* by \prec

 \Rightarrow nextEvent() and del/insEvent() take $O(\log |Q|)$ time

2) (sweep-line) status \mathcal{T} ℓ

Store the segments intersected by ℓ in left-to-right order.

1) event (-point) queue ${\cal Q}$

Store event pts in *balanced binary search tree* by \prec

 \Rightarrow nextEvent() and del/insEvent() take $O(\log |Q|)$ time

2) (sweep-line) status T ℓ

Store the segments intersected by ℓ in left-to-right order. How?

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$

Store event pts in *balanced binary search tree* by \prec

 \Rightarrow nextEvent() and del/insEvent() take $O(\log |Q|)$ time

Store the segments intersected by ℓ in left-to-right order. How? In a balanced binary search tree!

findIntersections(S)

Input: set *S* of *n* non-overlapping closed line segments

Output: – set *I* of intersection pts – for each $p \in I$ every $s \in S$ with $p \in s$

findIntersections(S)

Input: set *S* of *n* non-overlapping closed line segments

Output: – set *I* of intersection pts – for each $p \in I$ every $s \in S$ with $p \in s$

 $\mathcal{Q} \leftarrow \emptyset$; $\mathcal{T} \leftarrow \langle$ vertical lines at $x = -\infty$ and $x = +\infty \rangle$ // sentinels foreach $s \in S$ do // initialize event queue \mathcal{Q}

foreach endpoint *p* of *s* **do**

if $p \notin Q$ then Q.insert(p); $L(p) = U(p) = \emptyset$

if *p* lower endpt of *s* then L(p).append(*s*)

if *p* upper endpt of *s* then U(p).append(*s*)

findIntersections(S)

Input: set *S* of *n* non-overlapping closed line segments

Output: – set *I* of intersection pts – for each $p \in I$ every $s \in S$ with $p \in s$

 $\mathcal{Q} \leftarrow \emptyset$; $\mathcal{T} \leftarrow \langle$ vertical lines at $x = -\infty$ and $x = +\infty \rangle$ // sentinels foreach $s \in S$ do // initialize event queue \mathcal{Q}

foreach endpoint *p* of *s* **do**

if $p \notin Q$ then Q.insert(p); $L(p) = U(p) = \emptyset$

if *p* lower endpt of *s* then L(p).append(*s*)

if *p* upper endpt of *s* then U(p).append(*s*)

```
while Q \neq \emptyset do

p \leftarrow Q.nextEvent()

Q.deleteEvent(p)

handleEvent(p)
```

findIntersections(S)

Input: set *S* of *n* non-overlapping closed line segments

Output: – set *I* of intersection pts – for each $p \in I$ every $s \in S$ with $p \in s$

 $\mathcal{Q} \leftarrow \emptyset$; $\mathcal{T} \leftarrow \langle$ vertical lines at $x = -\infty$ and $x = +\infty \rangle$ // sentinels foreach $s \in S$ do // initialize event queue \mathcal{Q}

foreach endpoint *p* of *s* **do**

if $p \notin Q$ then Q.insert(p); $L(p) = U(p) = \emptyset$

if *p* lower endpt of *s* then L(p).append(*s*)

if *p* upper endpt of *s* then U(p).append(*s*)

while $Q \neq \emptyset$ do $p \leftarrow Q.nextEvent()$ This subroutine does the real work.Q.deleteEvent(p)How would you implement it?handleEvent(p)How would you implement it?

findIntersections(S)

Input: set *S* of *n* non-overlapping closed line segments

Output: – set *I* of intersection pts – for each $p \in I$ every $s \in S$ with $p \in s$

 $\mathcal{Q} \leftarrow \emptyset$; $\mathcal{T} \leftarrow \langle \text{vertical lines at } x = -\infty \text{ and } x = +\infty \rangle$ // sentinels foreach $s \in S$ do // initialize event queue Q**foreach** endpoint *p* of *s* **do** 1) if $p \notin Q$ then Q.insert(p); $L(p) = U(p) = \emptyset$ if *p* lower endpt of *s* then *L*(*p*).append(*s*) if *p* upper endpt of *s* then U(p).append(*s*) while $\mathcal{Q} \neq \emptyset$ do This subroutine does the real work. $p \leftarrow Q.nextEvent()$ How would you implement it? Q.deleteEvent(p) handleEvent(*p*)

if $|U(p) \cup L(p) \cup C(p)| > 1$ **then** | report intersection in *p*, report segments in $U(p) \cup L(p) \cup C(p)$

if $|U(p) \cup L(p) \cup C(p)| > 1$ **then** \lfloor report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from \mathcal{T} // consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ

if $|U(p) \cup L(p) \cup C(p)| > 1$ **then** \lfloor report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from $\mathcal{T} / /$ **consecutive in** \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ **if** $U(p) \cup C(p) = \emptyset$ **then**

else

if $|U(p) \cup L(p) \cup C(p)| > 1$ **then** $_$ report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from \mathcal{T} // consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly **if** $U(p) \cup C(p) = \emptyset$ **then** $\downarrow b_{\text{left}}, b_{\text{right}} = \text{left,right neighbor of } p \text{ in } \mathcal{T}$ findNewEvent($b_{\text{left}}, b_{\text{right}}, p$)

else

findNewEvent(s, s', p) if $s \cap s' = \emptyset$ then return $\{x\} = s \cap s'$ if x below ℓ or to the right of p then if $x \notin Q$ then Q.add(x) if $x \in \text{rel-int}(s)$ then $C(x) \leftarrow C(x) \cup \{s\}$ if $x \in \text{rel-int}(s')$ then $C(x) \leftarrow C(x) \cup \{s'\}$

b_{lef}

if $|U(p) \cup L(p) \cup C(p)| > 1$ **then** $L \cap C(x) \leftarrow C(x) \cup \{s\}$ \lfloor report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$

delete $L(p) \cup C(p)$ from \mathcal{T} // consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ if $U(p) \cup C(p) = \emptyset$ then

 $b_{\text{left}}, b_{\text{right}} = \text{left,right neighbor of } p \text{ in } \mathcal{T}$ findNewEvent($b_{\text{left}}, b_{\text{right}}, p$)

else

findNewEvent(s, s', p) if $s \cap s' = \emptyset$ then return $\{x\} = s \cap s'$ if x below ℓ or to the right of p then if $x \notin Q$ then Q.add(x) if $x \in \text{rel-int}(s)$ then $C(x) \leftarrow C(x) \cup \{s\}$ if $x \in \text{rel-int}(s')$ then $C(x) \leftarrow C(x) \cup \{s'\}$

b_{lef}

right

bright

if $|U(p) \cup L(p) \cup C(p)| > 1$ **then** $L \cap C(x) \leftarrow C(x) \cup \{s'\}$ \lfloor report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$

delete $L(p) \cup C(p)$ from \mathcal{T} // consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ if $U(p) \cup C(p) = \emptyset$ then

 $b_{\text{left}}, b_{\text{right}} = \text{left,right neighbor of } p \text{ in } \mathcal{T}$ findNewEvent($b_{\text{left}}, b_{\text{right}}, p$)

else

 $s_{\text{left}}, s_{\text{right}} = \text{leftmost, rightmost segment in } U(p) \cup C(p)$ $b_{\text{left}} = \text{left neighbor of } s_{\text{left}} \text{ in } \mathcal{T}$ $b_{\text{right}} = \text{right neighbor of } s_{\text{right}} \text{ in } \mathcal{T}$ $findNewEvent(b_{\text{left}}, s_{\text{left}}, p)$ $findNewEvent(b_{\text{right}}, s_{\text{right}}, p)$

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof. Let *p* be an intersection pt.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof. Let *p* be an intersection pt. Assume:

• Every int. pt $q \prec p$ has been computed correctly.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof. Let *p* be an intersection pt. Assume:

- Every int. pt $q \prec p$ has been computed correctly.
- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof.

Let *p* be an intersection pt. Assume (by induction):

- Every int. pt $q \prec p$ has been computed correctly.
- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof.

- Let *p* be an intersection pt. Assume (by induction):
 - Every int. pt $q \prec p$ has been computed correctly.
 - \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Case I: *p* is not an interior pt of a segment.
Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof.

- Let *p* be an intersection pt. Assume (by induction):
 - Every int. pt $q \prec p$ has been computed correctly.
 - \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Case I: *p* is not an interior pt of a segment.

 \Rightarrow *p* has been inserted in Q in the beginning.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof.

- Let *p* be an intersection pt. Assume (by induction):
 - Every int. pt $q \prec p$ has been computed correctly.
 - \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Case I: *p* is not an interior pt of a segment.

 \Rightarrow *p* has been inserted in Q in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof.

- Let *p* be an intersection pt. Assume (by induction):
 - Every int. pt $q \prec p$ has been computed correctly.
 - \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Case I: *p* is not an interior pt of a segment.

 \Rightarrow *p* has been inserted in Q in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning. When p is processed, we output all segm. in $U(p) \cup L(p)$.

Lemma. findIntersections() correctly computes all intersection points & the segments that contain them.

Proof.

- Let *p* be an intersection pt. Assume (by induction):
 - Every int. pt $q \prec p$ has been computed correctly.
 - \mathcal{T} contains all segments intersecting ℓ in left-to-right order.
- **Case I:** *p* is not an interior pt of a segment.
- \Rightarrow *p* has been inserted in Q in the beginning.
- Segm. in U(p) and L(p) are stored with p in the beginning.
- When *p* is processed, we output all segm. in $U(p) \cup L(p)$.
- \Rightarrow All segments that contain *p* are reported.

Case II: *p* is an interior point of some segment.

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$.

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ reaches *p*.

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

reaches *p*.

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

reaches *p*.

 ℓ

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p.

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

reaches *p*.

e production of the second sec

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p. Imagine moving ℓ slightly back in time.

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

reaches *p*.

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s' were neighbors in the left-to-right order on ℓ (in \mathcal{T}).

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

reaches *p*.

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s' were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T} .

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

reaches *p*.

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s' were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T} . \Rightarrow There was some moment when they became neighbors!

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

reaches *p*.

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s' were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T} . \Rightarrow There was some moment when they became neighbors! This is when $\{p\} = s \cap s'$ was inserted into Q.

Case II: *p* is an interior point of some segment, i.e., $C(p) \neq \emptyset$. If *p* is not an endpt, need that *p* is inserted into \mathcal{Q} before ℓ

We also need that *every* segment with p as an interior point is added to C(p).

reaches *p*.

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s' were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T} . \Rightarrow There was some moment when they became neighbors! This is when $\{p\} = s \cap s'$ was inserted into \mathcal{Q} .

```
Q \leftarrow \emptyset; \ \mathcal{T} \leftarrow \langle \text{vertical lines at } x = -\infty \text{ and } x = +\infty \rangle // \text{ sentinels}
foreach s \in S do
foreach endpoint p of s do
if p \notin Q then Q.insert(p); L(p) = U(p) = \emptyset
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)
while Q \neq \emptyset do
p \leftarrow Q.nextEvent()
```

Running time?

Q.deleteEvent(p)

handleEvent(*p*)

Running TimeCheck your knowledge about planar graphs!Lemma.findIntersections() finds I intersection points
among n non-overlapping line segments in
 $O((n + I) \log n)$ time.

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m+n)\log n)$.

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$. Then it's clear that the runtime is $O((m+n)\log n)$.

We show that $m \in O(n + I)$.

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$. Then it's clear that the runtime is $O((m+n)\log n)$.

We show that $m \in O(n + I)$. (\Rightarrow lemma)

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{v} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{$ endpts, intersection pts $\}$

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{v} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma)

- Define (geometric) graph G = (V, E) with
- $V = \{$ endpts, intersection pts $\}$

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{v} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma)

- Define (geometric) graph G = (V, E) with
- $V = \{$ endpts, intersection pts $\} \Rightarrow |V| \le 2n + I$.

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{v} m(p)$.

Then it's clear that the runtime is $O((m+n)\log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$ For any $p \in V$: $m(p) = \deg(p)$.

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$ For any $p \in V$: m(p) = deg(p). $\Rightarrow m = \sum_{p} \deg(p) = 2|E|$

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$ For any $p \in V$: $m(p) = \deg(p)$. $\Rightarrow m = \sum_{p} \deg(p) = 2|E| \leq$

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$ For any $p \in V$: m(p) = deg(p). $\Rightarrow m = \sum_{p} \deg(p) = 2|E| \leq$ Euler (*G* is planar!!)

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$ For any $p \in V$: $m(p) = \deg(p)$. $\Rightarrow m = \sum_{p} \deg(p) = 2|E| \leq 2 \cdot (3|V| - 6)$ Euler (*G* is planar!!)

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$ For any $p \in V$: $m(p) = \deg(p)$. $\Rightarrow m = \sum_{p} \deg(p) = 2|E| \leq 2 \cdot (3|V| - 6)$ $\in O($ Euler (*G* is planar!!)

Check your knowledge about planar graphs! findIntersections() finds *I* intersection points Lemma. among *n* non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt, $m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$ and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m + n) \log n)$. We show that $m \in O(n + I)$. (\Rightarrow lemma) Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$ For any $p \in V$: $m(p) = \deg(p)$. $\Rightarrow m = \sum_{p} \deg(p) = 2|E| \leq 2 \cdot (3|V| - 6)$ $\in O(n+I)$ Euler (*G* is planar!!)

Today's Main Result

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Today's Main Result

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.
Sure?

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line

 \Rightarrow (worst-case) space consumption \in

Sure?

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

The event-point queue $\mathcal Q$ contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line

 \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Sure? The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Can we do better?

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Sure? The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Can we do better?

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Sure? The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Can we do better?

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Sure? The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Can we do better?

– insert $s \cap s'$ into Q

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Sure? The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

- insert $s \cap s'$ into Q- remove $s \cap s'$ from Q

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Sure? The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

- insert $s \cap s'$ into \mathcal{Q}
- remove $s \cap s'$ from \mathcal{Q}
- re-insert $s \cap s'$ into \mathcal{Q}

 \Rightarrow need just O(n) space;

Theorem. We can report all *I* intersection points among *n* non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

- insert $s \cap s'$ into \mathcal{Q}
- remove $s \cap s'$ from \mathcal{Q}
- re-insert $s \cap s'$ into \mathcal{Q}
- ⇒ need just O(n) space; (asymptotic) running time doesn't change