
Computational Geometry

Lecture #3

Line-Segment Intersection
or

Map Overlay

Thomas van Dijk Winter Semester 2019/20

Map Overlay
in

Geographic
Information

Systems
(GIS)

Map Overlay
in

Geographic
Information

Systems
(GIS)

Map Overlay
in

Geographic
Information

Systems
(GIS)

Here:

Map Overlay
in

Geographic
Information

Systems
(GIS)

Here:

= bridge

Line-Segment Intersection

Definition:

Line-Segment Intersection

Definition: Is an intersection?

Line-Segment Intersection

Definition: Is an intersection?

Answer: Depends. . .

Line-Segment Intersection

Definition: Is an intersection?

Answer:

Problem:

Depends. . .

Given a set S of n closed non-overlapping line
segments in the plane, compute. . .

Line-Segment Intersection

Definition: Is an intersection?

Answer:

Problem:

Depends. . .

– all points where at least two segments inter-
sect and

– for each such point report all segments
that contain it.

Given a set S of n closed non-overlapping line
segments in the plane, compute. . .

Line-Segment Intersection

Definition: Is an intersection?

Answer:

Problem:

yes!
Depends. . .

– all points where at least two segments inter-
sect and

– for each such point report all segments
that contain it.

Given a set S of n closed non-overlapping line
segments in the plane, compute. . .

Line-Segment Intersection

Definition: Is an intersection?

Answer:

Discuss with your neighbor:
how would you do it?

Problem:

yes!

Task:

Depends. . .

– all points where at least two segments inter-
sect and

– for each such point report all segments
that contain it.

Given a set S of n closed non-overlapping line
segments in the plane, compute. . .

Example

Example

Example

Brute Force?

O(n2) ... can we do
better?

Example

Brute Force?

O(n2) ... can we do
better?

Idea:
Process segments
top-to-bottom using a
“sweep line”.

Sweep-Line Algorithm

Sweep-Line Algorithm
event points

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm
sweep line

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Data Structures
1) event (-point) queue Q

2) (sweep-line) status T

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def.

2) (sweep-line) status T

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. yp > yq

2) (sweep-line) status T

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def.

p q

yp > yq

2) (sweep-line) status T

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

2) (sweep-line) status T

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

2) (sweep-line) status T

`

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

2) (sweep-line) status T

`

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in balanced binary search tree by ≺

2) (sweep-line) status T

`

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in balanced binary search tree by ≺
⇒ nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status T

`

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in balanced binary search tree by ≺
⇒ nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status T

`

`

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in balanced binary search tree by ≺
⇒ nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status T

Store the segments intersected by ` in left-to-right order.

`

`

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in balanced binary search tree by ≺
⇒ nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status T

Store the segments intersected by ` in left-to-right order.

`

`

How?

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in balanced binary search tree by ≺
⇒ nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status T

Store the segments intersected by ` in left-to-right order.

`

`

How? In a balanced binary search tree!

Pseudo-code
findIntersections(S)
Input:

Output:

set S of n non-overlapping closed line segments

– set I of intersection pts
– for each p ∈ I every s ∈ S with p ∈ s

Pseudo-code
findIntersections(S)
Input:

Output:

set S of n non-overlapping closed line segments

– set I of intersection pts
– for each p ∈ I every s ∈ S with p ∈ s

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s) p

// initialize event queue Q

Pseudo-code
findIntersections(S)
Input:

Output:

set S of n non-overlapping closed line segments

– set I of intersection pts
– for each p ∈ I every s ∈ S with p ∈ s

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

p

// initialize event queue Q

Pseudo-code
findIntersections(S)
Input:

Output:

set S of n non-overlapping closed line segments

– set I of intersection pts
– for each p ∈ I every s ∈ S with p ∈ s

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

This subroutine does the real work.
How would you implement it?

p

// initialize event queue Q

Pseudo-code
findIntersections(S)
Input:

Output:

set S of n non-overlapping closed line segments

– set I of intersection pts
– for each p ∈ I every s ∈ S with p ∈ s

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

This subroutine does the real work.
How would you implement it?

p

C(p)
// initialize event queue Q

Handling an Event

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft, bright = left,right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft, sright = leftmost,rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

p C(p),L(p),U(p)

Handling an Event

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft, bright = left,right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft, sright = leftmost,rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

p C(p),L(p),U(p)

Handling an Event

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft, bright = left,right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft, sright = leftmost,rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

p C(p),L(p),U(p)

Handling an Event

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft, bright = left,right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft, sright = leftmost,rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

p C(p),L(p),U(p)

Handling an Event

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft, bright = left,right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft, sright = leftmost,rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

`pbleft bright

p C(p),L(p),U(p)

Handling an Event

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft, bright = left,right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft, sright = leftmost,rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

`pbleft bright

findNewEvent(s, s′ , p)
if s ∩ s′ = ∅ then return
{x} = s ∩ s′
if x below ` or to the right of p then

if x 6∈ Q then Q.add(x)
if x ∈ rel-int(s) then C(x)← C(x) ∪ {s}
if x ∈ rel-int(s′) then

C(x)← C(x) ∪ {s′}

p C(p),L(p),U(p)

Handling an Event

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft, bright = left,right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft, sright = leftmost,rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

`pbleft bright

`

sleft

bright

p

bleft

sright

findNewEvent(s, s′ , p)
if s ∩ s′ = ∅ then return
{x} = s ∩ s′
if x below ` or to the right of p then

if x 6∈ Q then Q.add(x)
if x ∈ rel-int(s) then C(x)← C(x) ∪ {s}
if x ∈ rel-int(s′) then

C(x)← C(x) ∪ {s′}

p C(p),L(p),U(p)

Correctness
Lemma. findIntersections() correctly computes all inter-

section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof.

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

(by induction):

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

Case I: p is not an interior pt of a segment.

(by induction):

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

Case I: p is not an interior pt of a segment.
⇒ p has been inserted in Q in the beginning.

(by induction):

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

Case I: p is not an interior pt of a segment.
⇒ p has been inserted in Q in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.

(by induction):

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

Case I: p is not an interior pt of a segment.
⇒ p has been inserted in Q in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.

When p is processed, we output all segm. in U(p) ∪ L(p).

(by induction):

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

Case I: p is not an interior pt of a segment.
⇒ p has been inserted in Q in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.

When p is processed, we output all segm. in U(p) ∪ L(p).
⇒ All segments that contain p are reported.

(by induction):

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness (Case II)
Case II: p is an interior point of some segment.

Correctness (Case II)
Case II: p is an interior point of some segment., i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p.

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p. Imagine moving ` slightly back in time.

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p. Imagine moving ` slightly back in time.
Then s, s′ were neighbors in the left-to-right order on ` (in T).

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p. Imagine moving ` slightly back in time.
Then s, s′ were neighbors in the left-to-right order on ` (in T).
At the beginning of the alg., they weren’t neighbors in T .

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p. Imagine moving ` slightly back in time.
Then s, s′ were neighbors in the left-to-right order on ` (in T).
At the beginning of the alg., they weren’t neighbors in T .
⇒ There was some moment when they became neighbors!

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p. Imagine moving ` slightly back in time.
Then s, s′ were neighbors in the left-to-right order on ` (in T).
At the beginning of the alg., they weren’t neighbors in T .
⇒ There was some moment when they became neighbors!
This is when {p} = s ∩ s′ was inserted into Q.

, i.e., C(p) 6= ∅.

Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p. Imagine moving ` slightly back in time.
Then s, s′ were neighbors in the left-to-right order on ` (in T).
At the beginning of the alg., they weren’t neighbors in T .
⇒ There was some moment when they became neighbors!
This is when {p} = s ∩ s′ was inserted into Q.

We also need that every
segment with p as an interior
point is added to C(p).

�

, i.e., C(p) 6= ∅.

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

Running time?

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft/bright = left/right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft/sright = leftmost/rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

Running time?

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft/bright = left/right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft/sright = leftmost/rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

Running time?

{x} = s ∩ s′

if x 6∈ Q then Q.add(x)

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft/bright = left/right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft/sright = leftmost/rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

Running time?

{x} = s ∩ s′

if x 6∈ Q then Q.add(x)

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

handleEvent(event p)
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report intersection in p, report segments in U(p) ∪ L(p) ∪ C(p)
delete L(p) ∪ C(p) from T // consecutive in T !
insert U(p) ∪ C(p) into T in their order slightly below `
if U(p) ∪ C(p) = ∅ then

bleft/bright = left/right neighbor of p in T
findNewEvent(bleft, bright, p)

else
sleft/sright = leftmost/rightmost segment in U(p) ∪ C(p)
bleft = left neighbor of sleft in T
bright = right neighbor of sright in T
findNewEvent(bleft, sleft, p)
findNewEvent(bright, sright, p)

Running time?

{x} = s ∩ s′

if x 6∈ Q then Q.add(x)

Running Time
Lemma. findIntersections() finds I intersection points

among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I).

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.
For any p ∈ V: m(p) = deg(p).

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.
For any p ∈ V: m(p) = deg(p).
⇒ m = ∑p deg(p) =2|E|

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.
For any p ∈ V: m(p) = deg(p).
⇒ m = ∑p deg(p) = ≤2|E|

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.
For any p ∈ V: m(p) = deg(p).
⇒ m = ∑p deg(p) = ≤2|E|

Euler (G is planar!!)

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.
For any p ∈ V: m(p) = deg(p).
⇒ m = ∑p deg(p) = ≤2|E|

Euler (G is planar!!)

2 · (3|V| − 6)

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.
For any p ∈ V: m(p) = deg(p).
⇒ m = ∑p deg(p) = ≤2|E|

Euler (G is planar!!)

2 · (3|V| − 6)
∈ O()

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Running Time

Proof. Let p be an event pt,

Then it’s clear that the runtime is O((m + n) log n).

m(p) = |L(p) ∪ C(p)|+ |U(p) ∪ C(p)|
and m = ∑p m(p).

We show that m ∈ O(n + I). (⇒ lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }⇒ |V| ≤ 2n + I.
For any p ∈ V: m(p) = deg(p).
⇒ m = ∑p deg(p) = ≤2|E|

Euler (G is planar!!)

2 · (3|V| − 6)
∈ O()n + I �

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n + I) log n) time.

Check your knowledge about planar graphs!

Today’s Main Result
Theorem. We can report all I intersection points among n

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result
Theorem. We can report all I intersection points among n

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better?

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better?

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? `

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? ` – insert s ∩ s′ into Q

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? – insert s ∩ s′ into Q
`

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? – insert s ∩ s′ into Q
– remove s ∩ s′ from Q`

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

`

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? – insert s ∩ s′ into Q
– remove s ∩ s′ from Q

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

`

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? – insert s ∩ s′ into Q
– remove s ∩ s′ from Q
– re-insert s ∩ s′ into Q

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

`

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? – insert s ∩ s′ into Q
– remove s ∩ s′ from Q
– re-insert s ∩ s′ into Q
⇒ need just O(n) space;

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

Today’s Main Result

`

Sure? The event-point queue Q contains
• all segment end pts below the sweep line
• all intersection pts below the sweep line
⇒ (worst-case) space consumption ∈Θ(n + I) :-(

Can we do better? – insert s ∩ s′ into Q
– remove s ∩ s′ from Q
– re-insert s ∩ s′ into Q
⇒ need just O(n) space;

(asymptotic) running
time doesn’t change �

Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I) log n) time and O(n) space.

	Titel
	Map Overlay in GIS
	Line-Segment Intersection
	Sweep-Line Algorithm
	Data Structures
	Pseudo-code
	Handling an Event
	Correctness
	Correctness (Case II)
	Running Time
	Today's Main Result

