Julius-Maximilians- Chair for Y,
UNIVERSITAT INFORMATICS | ||||| | fl
WURZBURG Efficient Algorithms and

KnOWledge'Based SVStemS Institute for Informatics

Computational Geometry

Line-Segment Intersection

Map Overlay

Lecture #3

Thomas van Dijk Winter Semester 2019 /20

® Dawson

® Dawson

® Dawson

Ft. Simpson

" Eéallcrwknifc
., p) 4

Map Overlay
in
Geographic
Information

Systems
(GIS)

Map Overlay
in
Geographic

Information

Map Overlay Here:
in

Geographic

Information

Map Overlay Here:
in

Geographic

Information

= bridge

Line-Segment Intersection

Definition:

Line-Segment Intersection

Definition: Is /< an intersection?

Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..

Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..

Problem: Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..

Problem: Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

— all points where at least two segments inter-
sect and

— for each such point report all segments
that contain it.

Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..
yes!

Problem: Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

— all points where at least two segments inter-
sect and

— for each such point report all segments
that contain it.

Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..
yes!

Problem: Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

— all points where at least two segments inter-
sect and

— for each such point report all segments
that contain it.

Task: Discuss with your neighbor:
how would you do it?

EEEEEEE

EEEEEEE

Example

Brute Force?

O(n?) ... can we do
better?

Example

Brute Force?

O(n?) ... can we do
better?

Idea:

Process segments
top-to-bottom using a
“sweep line”.

Sweep-Line Algorithm

\ /

Sweep-Line Algorithm

event points
Which active segments

should be compared?

Sweep-Line Algorithm

Which active segments

\ / should be compared?

Sweep-Line Algorithm

sweep line

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments

should be compared?

Sweep-Line Algorithm

Which active segments

\ T

Sweep-Line Algorithm

Which active segments
Q should be compared?

\

Sweep-Line Algorithm

Which active segments

\ should be compared?

Sweep-Line Algorithm

Which active segments

\ should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Sweep-Line Algorithm

Which active segments
should be compared?

Data Structures

1) event (-point) queue O

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P =4 <=det

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

p <5] <7 def.]/p >y6]

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

p <5] <7 def.]/p >y¢]

2) (sweep-line) status T

Pomooo——— o]

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)

Pomooo——— o]

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)

g—&+07—

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)
Po—o—@-—

‘ T

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)
p.q.-q'_
0 4

Store event pts in balanced binary search tree by <

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P<q <gef. Yo>Yg or (yp=yzandx, <xg)
po—o—@——
¢ v
Store event pts in balanced binary search tree by <

= nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)
Po—o-q—-

£ v
Store event pts in balanced binary search tree by <

= nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status 7 / \ M/

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)
po—o—@——

£ v
Store event pts in balanced binary search tree by <

= nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

Data Structures

1) event (-point) queue O

P<q <gef. Yo>Yg or (yp=yzandx, <xg)
po—o—@——
¢ v
Store event pts in balanced binary search tree by <

= nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

How?

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)
po—o—@-—

£ v
Store event pts in balanced binary search tree by <

= nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

How? In a balanced binary search tree!

Pseudo-code

findIntersections(S)

Input: set S of n non-overlapping closed line segments

Output: -set I of intersection pts
—foreach p € I everys € Swithp € s

Pseudo-code

findIntersections(S)

Input: set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I everys € Swithp € s

Q <« @; T < (vertical lines at x = —oco and x = 400)
foreach s € S do
foreach endpoint p of s do

if p ¢ O then Q.insert(p); L(p) =U(p) =0

if p lower endpt of s then L(p).append(s)
| if p upper endpt of s then L/(p).append(s) P

Pseudo-code

findIntersections(S)

Input: set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I everys € Swithp € s

Q <« @; T < (vertical lines at x = —oco and x = 400)
foreach s € S do
foreach endpoint p of s do

if p ¢ O then Q.insert(p); L(p) =U(p) =0

if p lower endpt of s then L(p).append(s)
| if p upper endpt of s then L/(p).append(s) P

while O # @ do
p + Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

Pseudo-code

findIntersections(S)

Input: set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I everys € Swithp € s

Q <« @; T < (vertical lines at x = —oco and x = 400)
foreach s € S do
foreach endpoint p of s do

if p ¢ O then Q.insert(p); L(p) =U(p) =0

if p lower endpt of s then L(p).append(s)
| if p upper endpt of s then L/(p).append(s) P

while O # @ do . .
p + Q.nextEvent() This subroutine does the real work.
Q.deleteEvent(p) How would you implement it?

 handleEvent(p

Pseudo-code

findIntersections(S)

Input: set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I everys € Swithp € s

Q <« @; T < (vertical lines at x = —oco and x = 400)

foreach s € S do

foreach endpoint p of s do C(p)
if p ¢ O then Q.insert(p); L(p) =U(p) =0

if p lower endpt of s then L(p).append(s)
| if p upper endpt of s then L/(p).append(s) y

while O # @ do . .
p + Q.nextEvent() This subroutine does the real work.
Q.deleteEvent(p) How would you implement it?

 handleEvent(p

Handling an Event

X C(p).L(p),U(p)

Handling an Event

X C(p).L(p),U(p)

Handling an Event

X C(p).L(p),U(p)

Handling an Event

X C(p).L(p),U(p)

Handling an Event

a(C(p)L(p)U(p)

handleEvent(event p)

if |{U(p)UL(p) UC(p)| > 1then
| report intersection in p, report segments in U(p) U L(p) U C(p)

delete L(p) UC(p) from T
insert U(p) U C(p) into T in their order slightly below /¢

if U(p) UC(p) = @ then
Dieft, Uright = left rlght neighbor of p in 7 \ /
flndNeWEvent(bleft P I'lght/ p) blek p ﬁngh’c

else

findNewEvent(s, s’, p)
Handllng an Event if sNs’ = @ then return
{x}

x} =snNs
X C(p)L(p)U(p) xbelowfonte therightofpthen
if x € rel-int(s) then C(x) + C(x) U {s}
handleEvent(event p) if x € rel-int(s’) then
if [U(p) UL(p) UC(p)| > 1then L C() < CHULsT
| report intersection in p, report segments in U(p) U L(p) U C(p)

delete L(p) UC(p) from T
insert U(p) U C(p) into T in their order slightly below /¢

if U(p) UC(p) = @ then
Dieft, Uright = left rlght neighbor of p in 7 \ /
fmdNewEvent(bleft s Dright P) blef P ﬁngh’c

else

findNewEvent(s, s’, p)
Handllng an Event if sNs’ = @ then return
{x}

x}=sNs
X CpLL(PU(p) X e Catae)

handleEvent(event p) if x € rel-int(s’) then
if [U(p) UL(p) UC(p)| > 1then L C¥) < CHULSY
| report intersection in p, report segments in U(p) U L(p) U C(p)

delete L(p) UC(p) from T
insert U(p) U C(p) into T in their order slightly below /¢

if x € rel-int(s) then C(x) + C(x) U {s}

if U(p) UC(p) = @ then
Dieft, Uright = left,right neighbor of p in T \ /
fln(:H\Te"VEVQnt(bleft/ rights P) blef P ﬁmgh’c
else

Slefts Sright = leftmost,rightmost segment in U(p) U C(p)

biett = left neighbor of sje in T
bright = right neighbor of s in T

. b left/ \b right
findNewEvent(bjeft, Steft, P) 14

findNewEvent(byight, Sright, P) / Sleft }9 Sright\

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume:
® Every int. pt g < p has been computed correctly.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume:
® Every int. pt g < p has been computed correctly.

® 7 contains all segments intersecting ¢ in
left-to-right order.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
® Every int. pt g < p has been computed correctly.

® 7 contains all segments intersecting ¢ in
left-to-right order.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
® Every int. pt g < p has been computed correctly.

® 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: pisnot an interior pt of a segment.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):
® Every int. pt g < p has been computed correctly.
® 7 contains all segments intersecting ¢ in
left-to-right order.
Case [: pisnot an interior pt of a segment.

= p has been inserted in Q in the beginning.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
® Every int. pt g < p has been computed correctly.

® 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: pisnot an interior pt of a segment.
= p has been inserted in Q in the beginning.
Segm. in U(p) and L(p) are stored with p in the beginning.

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
® Every int. pt g < p has been computed correctly.

® 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: pisnot an interior pt of a segment.

= p has been inserted in Q in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.
When p is processed, we output all segm. in U(p) U L(p).

Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):

® Every int. pt g < p has been computed correctly.

® 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: pisnot an interior pt of a segment.
= p has been inserted in Q in the beginning.
Segm. in U(p) and L(p) are stored with p in the beginning.

When p is processed, we output all segm. in U(p) U L(p).
= All segments that contain p are reported.

Correctness (Case II)

Case II: p is an interior point of some segment.

Correctness (Case 1I)

Case II: p is an interior point of some segment, i.e., C(p) # @.

Correctness (Case 1I)

Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.
If p is not an endpt, need that p is inserted into Q before ¢

reaches p.
— /

7

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.
If p is not an endpt, need that p is inserted into Q before ¢

— / / reaches p.
5

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U {¢} around p.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U{£} around p. Imagine moving ¢ slightly back in time.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).
At the beginning of the alg., they weren’t neighbors in 7.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).
At the beginning of the alg., they weren’t neighbors in 7.
= There was some moment when they became neighbors!

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).
At the beginning of the alg., they weren’t neighbors in 7.
= There was some moment when they became neighbors!

This is when {p} = s N s’ was inserted into Q.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

We also need that every
segment with p as an interior

point is added to C(p).

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).
At the beginning of the alg., they weren’t neighbors in 7.
= There was some moment when they became neighbors!

This is when {p} = s N s’ was inserted into O

Running time?

Q <+ @, T <« (vertical linesatx = —ocoand x = 400
foreach s € S do
foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =@

if p lower endpt of s then L(p).append(s)

if p upper endpt of s then L/(p).append(s)

handleEvent(event p)

while Q # @ do if |U(p) UL(p) UC(p)| > 1 then
p < QnextEvent() | reportintersection in p, report segments in U(p) U L(p)

Q.deleteEvent(p) delete L(p) UC(p) from T

handleEvent(p) insert U(p)UC(p) into T in their order slightly below ¢
= if U(p) UC(p) = @ then
Dieft / bright = left/right neighbor of p in T
findNewEvent(bjest, bright, P)
else
Sleft/ Sright = leftmost/rightmost segment in U(p) U C(p
bieft = left neighbor of sje in 7
bright = right neighbor of syjon: in T
findNewEvent(bjet, Sieft, P)
findNewEvent(byight, Sright, P)

Running time?

Q <+ @, T <« (vertical linesatx = —ocoand x = 400
foreach s € S do
foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =@

if p lower endpt of s then L(p).append(s)

if p upper endpt of s then L/(p).append(s)

handleEvent(event p)

while Q # @ do if |U(p) UL(p) UC(p)| > 1 then
p < QnextEvent() | report intersection in p, report segments in U(p) U L(p)

Q.deleteEvent(p) delete L(p) UC(p) from T
handleEvent(p) insert U(p)UC(p) into T in their order slightly below ¢
= if U(p) UC(p) = @ then

else .
Sleft/ Sright = leftmost/rightmost segment in U(p) U C(p

bieft = left neighbor of sje in T
bright = right neighbor of syjon: in T
findNewEvent(bjet, Sieft, P)
findNewEvent(byight, Sright, P)

Running time?

Q <+ @, T <« (vertical linesatx = —ocoand x = 400
foreach s € S do
foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =0

if p lower endpt of s then L(p).append(s)

if p upper endpt of s then L/(p).append(s)

handleEvent(event p)

while Q # @ do if |U(p) UL(p) UC(p)| > 1 then
p < QnextEvent() | report intersection in p, report segments in U(p) U L(p)

Q.deleteEvent(p) delete L(p) UC(p) from T
handleEvent(p) insert U(p)UC(p) into T in their order slightly below ¢
= if U(p) UC(p) = @ then

else .
Sleft/ Sright = leftmost/rightmost segment in U(p) U C(p

bieft = left neighbor of sje in T
bright = right neighbor of syjon: in T
findNewEvent(bjet, Sieft, P)
findNewEvent(byight, Sright, P)

Running time?

Q <+ @, T <« (vertical linesatx = —ocoand x = 400
foreach s € S do
foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =0

if p lower endpt of s then L(p).append(s)

if p upper endpt of s then L/(p).append(s)

handleEvent(event p)

while Q # @ do if |U(p) UL(p) UC(p)| > 1 then
p < QnextEvent() | reportintersection in p, report segments in U(p) U L(p)

Q.deleteEvent(p) delete L(p) UC(p) from T
handleEvent(p) insert U(p)UC(p) into T in their order slightly below ¢
= if U(p) UC(p) = @ then

else ix ¢ Lthen Qadd(x)
Sleft/ Sright = leftmost/rightmost segment in U(p) U C(p

bieft = left neighbor of sje in 7
bright = right neighbor of syjon: in T
findNewEvent(bjet, Sieft, P)
findNewEvent(byight, Sright, P)

Running time?

Check Youy /cnowledge aboyt Planay o,
Running Time

/

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| + |U(p) UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| + |U(p) UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I).

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| + |U(p) UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + |U(p) UC(p)|
andm =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + |U(p) UC(p)|
andm =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + |U(p) UC(p)
and m =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }= |V| <2n + L.

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| + [U(p) UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts }= |V| <2n + L.
Forany p € V:m(p) = deg(p).

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + |U(p) UC(p)
andm =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }= |V| <2n + L.
Forany p € V:m(p) = deg(p).
= m =}, deg(p) =2|E]

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + [U(p) UC(p)|
andm =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }= |V| <2n + L.
Forany p € V:m(p) = deg(p).
= m =}, deg(p) =2|E| <

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| + |U(p) UC(p)
andm =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts }= |V| <2n + L.
Forany p € V:m(p) = deg(p).

= m =} ,deg(p) =2|E| <

Euler (G is planar!!)

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| + |U(p) UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts }= |V| <2n + L.
Forany p € V:m(p) = deg(p).

= m =}, deg(p) =2|E| < 2-(3|V|—-6)

Euler (G is planar!!)

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + [U(p) UC(p)|
andm =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n+ I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }= |V| <2n + L.
Forany p € V:m(p) = deg(p).
= m =}, deg(p) =2|E| < 2-(3|V|—-6)

c O()
Euler (G is planar!!)

: : Checj
Running Time YOUr knowledg, ,
S,

Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| + |U(p) UC(p)

and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).

We show that m € O(n+ I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts }= |V| <2n + L.

Forany p € V:m(p) = deg(p).

= m =}, deg(p) =2|E| < 2-(3|V|—6)
cOn+1)

Euler (G is planar!!)

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

Can we do better?

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

Can we do better?

N

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

14

Can we do better?

N

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

—insert s Ns’' into Q
Can we do better? l

N

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

—insert s Ns’' into Q
Can we do better?

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

—insert s Ns’' into Q
Can we do better?

¢ —removesns' from Q

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

—insert s Ns’' into Q

Can we do better? ,
—remove sNs’ from O

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

—insert s Ns’' into Q

Can we do better? ,
—remove sNs’ from O

¢ —re-inserts s’ into O

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

—insert s Ns’' into Q

Can we do better? ,
—remove sNs’ from O

¢ —re-inserts s’ into O

= need just O(n) space;

Today’s Main Result

Theorem. We can report all I intersection points among 7
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n + I)logn) time and O(n) space.

Sure? The event-point queue Q contains
¢ all segment end pts below the sweep line
¢ all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :~(

—insert s Ns’' into Q

Can we do better? ,
—remove sNs’ from O

¢ —re-inserts s’ into O

= need just O(n) space;
(asymptotic) running
time doesn’t change

	Titel
	Map Overlay in GIS
	Line-Segment Intersection
	Sweep-Line Algorithm
	Data Structures
	Pseudo-code
	Handling an Event
	Correctness
	Correctness (Case II)
	Running Time
	Today's Main Result

