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Line-Segment Intersection

Definition: Is an intersection?

Answer:

Discuss with your neighbor:
how would you do it?

Problem:

yes!

Task:

Depends. . .

– all points where at least two segments inter-
sect and

– for each such point report all segments
that contain it.

Given a set S of n closed non-overlapping line
segments in the plane, compute. . .
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Example

Brute Force?

O(n2) ... can we do
better?

Idea:
Process segments
top-to-bottom using a
“sweep line”.
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Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in balanced binary search tree by ≺
⇒ nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status T

Store the segments intersected by ` in left-to-right order.

`

`

How? In a balanced binary search tree!
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findIntersections(S)
Input:

Output:

set S of n non-overlapping closed line segments

– set I of intersection pts
– for each p ∈ I every s ∈ S with p ∈ s

Q ← ∅; T ← 〈 vertical lines at x = −∞ and x = +∞ 〉 // sentinels
foreach s ∈ S do

foreach endpoint p of s do
if p 6∈ Q then Q.insert(p); L(p) = U(p) = ∅
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then U(p).append(s)

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

This subroutine does the real work.
How would you implement it?

p

C(p)
// initialize event queue Q
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handleEvent(event p)
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Correctness

Let p be an intersection pt.Proof. Assume:
• Every int. pt q ≺ p has been computed correctly.
• T contains all segments intersecting ` in

left-to-right order.

Case I: p is not an interior pt of a segment.
⇒ p has been inserted in Q in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.

When p is processed, we output all segm. in U(p) ∪ L(p).
⇒ All segments that contain p are reported.

(by induction):

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.
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Correctness (Case II)
Case II: p is an interior point of some segment.
If p is not an endpt, need that p is inserted into Q before `

reaches p.

p

s
s′

`

Let s, s′ ∈ C(p) be neighbors in the circular ordering of
C(p) ∪ {`} around p. Imagine moving ` slightly back in time.
Then s, s′ were neighbors in the left-to-right order on ` (in T ).
At the beginning of the alg., they weren’t neighbors in T .
⇒ There was some moment when they became neighbors!
This is when {p} = s ∩ s′ was inserted into Q.

We also need that every
segment with p as an interior
point is added to C(p).

�

, i.e., C(p) 6= ∅.
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