Chair for
 INFORMATICS I

Efficient Algorithms and Knowledge-Based Systems

Computational Geometry

Line-Segment Intersection

or
Map Overlay
Lecture \#3

Map Overlay in
Geographic
Information
Systems
(GIS)

Line-Segment Intersection

Definition:

Line-Segment Intersection

Definition: Is an intersection?

Line-Segment Intersection

Definition: Is
 an intersection?

Answer: Depends...

Line-Segment Intersection

Definition: Is
 an intersection?

Answer: Depends...

Problem: Given a set S of n closed non-overlapping line segments in the plane, compute...

Line-Segment Intersection

Answer: Depends...

Problem: Given a set S of n closed non-overlapping line segments in the plane, compute...

- all points where at least two segments intersect and
- for each such point report all segments that contain it.

Line-Segment Intersection

Definition: Is
 an intersection?

Answer:
Depends...

Given a set S of n closed non-overlapping line segments in the plane, compute...

- all points where at least two segments intersect and
- for each such point report all segments that contain it.

Line-Segment Intersection

Definition: Is

Answer:

Problem: Given a set S of n closed non-overlapping line segments in the plane, compute...

- all points where at least two segments intersect and
- for each such point report all segments that contain it.

Task:
Discuss with your neighbor: how would you do it?

Example

Example

Example

Brute Force?

$O\left(n^{2}\right) \ldots$ can we do better?

Example

Brute Force?
$O\left(n^{2}\right)$... can we do better?
Idea:
Process segments top-to-bottom using a "sweep line".

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Which active segments should be compared?

Sweep-Line Algorithm

Which active segments should be compared?

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Which active segments should be compared?

Sweep-Line Algorithm

Sweep-Line Algorithm

Which active segments should be compared?

Sweep-Line Algorithm

Which active segments should be compared?

Sweep-Line Algorithm

Which active segments should be compared?

Data Structures

1) event (-point) queue \mathcal{Q}
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. }
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. } \quad y_{p}>y_{q}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{gathered}
p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
p \stackrel{q}{\longrightarrow}
\end{gathered}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[p_{0}]{ }
\end{aligned}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[q]{p}
\end{aligned}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow{p},
\end{aligned}
$$

Store event pts in balanced binary search tree by \prec
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[q]{p}
\end{aligned}
$$

Store event pts in balanced binary search tree by \prec
\Rightarrow nextEvent() and del/insEvent() take $O(\log |\mathcal{Q}|)$ time
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow{p}
\end{aligned}
$$

Store event pts in balanced binary search tree by \prec
\Rightarrow nextEvent() and del/insEvent() take $O(\log |\mathcal{Q}|)$ time
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[p]{q}
\end{aligned}
$$

Store event pts in balanced binary search tree by \prec
\Rightarrow nextEvent() and del/insEvent() take $O(\log |\mathcal{Q}|)$ time
2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order.

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[p]{q}
\end{aligned}
$$

Store event pts in balanced binary search tree by \prec
\Rightarrow nextEvent() and del/insEvent() take $O(\log |\mathcal{Q}|)$ time
2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order. How?

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[p]{q}
\end{aligned}
$$

Store event pts in balanced binary search tree by \prec
\Rightarrow nextEvent() and del/insEvent() take $O(\log |\mathcal{Q}|)$ time
2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order. How? In a balanced binary search tree!

Pseudo-code

findIntersections(S)
Input: \quad set S of n non-overlapping closed line segments
Output: - set I of intersection pts

- for each $p \in I$ every $s \in S$ with $p \in s$

Pseudo-code

findIntersections(S)
Input: \quad set S of n non-overlapping closed line segments
Output: - set I of intersection pts

- for each $p \in I$ every $s \in S$ with $p \in s$
$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels foreach $s \in S$ do foreach endpoint p of s do
if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=\varnothing$ if p lower endpt of s then $L(p)$.append (s) if p upper endpt of s then $U(p)$.append (s)

Pseudo-code

findIntersections(S)
Input: \quad set S of n non-overlapping closed line segments
Output: - set I of intersection pts

- for each $p \in I$ every $s \in S$ with $p \in s$
$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels foreach $s \in S$ do foreach endpoint p of s do if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=\varnothing$ if p lower endpt of s then $L(p)$.append (s) if p upper endpt of s then $U(p)$.append (s)
while $\mathcal{Q} \neq \varnothing$ do
$p \leftarrow \mathcal{Q}$.nextEvent()
Q.deleteEvent (p)
handleEvent (p)

Pseudo-code

findIntersections(S)

Input: \quad set S of n non-overlapping closed line segments
Output: - set I of intersection pts

- for each $p \in I$ every $s \in S$ with $p \in s$
$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels foreach $s \in S$ do foreach endpoint p of s do if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=\varnothing$ if p lower endpt of s then $L(p)$.append (s) if p upper endpt of s then $U(p)$.append (s)

while $\mathcal{Q} \neq \varnothing$ do
$p \leftarrow \mathcal{Q}$.nextEvent() This subroutine does the real work. Q.deleteEvent (p) How would you implement it? handleEvent (p)

Pseudo-code

findIntersections(S)

Input: \quad set S of n non-overlapping closed line segments
Output: - set I of intersection pts

- for each $p \in I$ every $s \in S$ with $p \in s$
$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels foreach $s \in S$ do foreach endpoint p of s do if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=\varnothing$ if p lower endpt of s then $L(p)$.append (s) if p upper endpt of s then $U(p)$.append (s)
p $p \neq Q$ th Q.
while $\mathcal{Q} \neq \varnothing$ do
$p \leftarrow \mathcal{Q}$.nextEvent() This subroutine does the real work. Q.deleteEvent (p) How would you implement it? handleEvent (p)

Handling an Event

$C(p), L(p), U(p)$

handleEvent(event p)

Handling an Event

$C(p), L(p), U(p)$
handleEvent(event p)
if $|U(p) \cup L(p) \cup C(p)|>1$ then report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$

Handling an Event

$$
C(p), L(p), U(p)
$$

handleEvent(event p)

if $|U(p) \cup L(p) \cup C(p)|>1$ then
report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup \mathcal{C}(p)$ from $\mathcal{T} / /$ consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ

Handling an Event

p长

$$
C(p), L(p), U(p)
$$

handleEvent(event p)

if $|U(p) \cup L(p) \cup C(p)|>1$ then
report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from $\mathcal{T} / /$ consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ if $U(p) \cup C(p)=\varnothing$ then
else

Handling an Event

$$
C(p), L(p), U(p)
$$

handleEvent(event p)

if $|U(p) \cup L(p) \cup C(p)|>1$ then
report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from $\mathcal{T} / /$ consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ if $U(p) \cup C(p)=\varnothing$ then
$b_{\text {left }}, b_{\text {right }}=$ left,right neighbor of p in \mathcal{T} findNewEvent $\left(b_{\text {left }}, b_{\text {right }}, p\right)$
else

Handling an Event

$C(p), L(p), U(p)$
if $s \cap s^{\prime}=\varnothing$ then return $\{x\}=s \cap s^{\prime}$
if x below ℓ or to the right of p then if $x \notin \mathcal{Q}$ then $\mathcal{Q} \cdot \operatorname{add}(x)$
if $x \in \operatorname{rel-int}(s)$ then $C(x) \leftarrow C(x) \cup\{s\}$
if $x \in \operatorname{rel}-i n t\left(s^{\prime}\right)$ then
$C(x) \leftarrow C(x) \cup\left\{s^{\prime}\right\}$
if $|U(p) \cup L(p) \cup C(p)|>1$ then
report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from $\mathcal{T} / /$ consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ if $U(p) \cup C(p)=\varnothing$ then
$b_{\text {left }}, b_{\text {right }}=$ left,right neighbor of p in \mathcal{T} findNewEvent $\left(b_{\text {left }}, b_{\text {right }}, p\right)$
else

Handling an Event

$C(p), L(p), U(p)$

handleEvent(event p)

if $s \cap s^{\prime}=\varnothing$ then return
$\{x\}=s \cap s^{\prime}$
if x below ℓ or to the right of p then if $x \notin \mathcal{Q}$ then $\mathcal{Q} \cdot \operatorname{add}(x)$
if $x \in \operatorname{rel-int}(s)$ then $C(x) \leftarrow C(x) \cup\{s\}$
if $x \in \operatorname{rel}-i n t\left(s^{\prime}\right)$ then
$C(x) \leftarrow C(x) \cup\left\{s^{\prime}\right\}$
report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from $\mathcal{T} / /$ consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ
if $U(p) \cup C(p)=\varnothing$ then
$\begin{aligned} & b_{\text {left }}, b_{\text {right }}=\text { left,right } \\ & \text { findNewEvent }\left(b_{\text {left }}, b_{\text {right }}, p\right)\end{aligned}$ else

$s_{\text {left }}, s_{\text {right }}=$ leftmost,rightmost segment in $U(p) \cup C(p)$ $b_{\text {left }}=$ left neighbor of $s_{\text {left }}$ in \mathcal{T}
$b_{\text {right }}=$ right neighbor of $s_{\text {right }}$ in \mathcal{T}
findNewEvent $\left(b_{\text {left }}, s_{\text {left }}, p\right)$ findNewEvent $\left(b_{\text {right }}, s_{\text {right }}, p\right)$

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume:

- Every int. pt $q \prec p$ has been computed correctly.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume:

- Every int. pt $q \prec p$ has been computed correctly.
- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction): - Every int. pt $q \prec p$ has been computed correctly.

- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction): - Every int. pt $q \prec p$ has been computed correctly.

- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.
Case I: p is not an interior pt of a segment.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):

- Every int. pt $q \prec p$ has been computed correctly.
- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.
Case I: p is not an interior $p t$ of a segment.
$\Rightarrow p$ has been inserted in \mathcal{Q} in the beginning.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):

- Every int. pt $q \prec p$ has been computed correctly.
- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.

Case I: p is not an interior $p t$ of a segment.
$\Rightarrow p$ has been inserted in \mathcal{Q} in the beginning.
Segm. in $U(p)$ and $L(p)$ are stored with p in the beginning.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):

- Every int. pt $q \prec p$ has been computed correctly.
- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.
Case I: p is not an interior $p t$ of a segment.
$\Rightarrow p$ has been inserted in \mathcal{Q} in the beginning.
Segm. in $U(p)$ and $L(p)$ are stored with p in the beginning. When p is processed, we output all segm. in $U(p) \cup L(p)$.

Correctness

Lemma. findIntersections() correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):

- Every int. pt $q \prec p$ has been computed correctly.
- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.
Case I: p is not an interior $p t$ of a segment.
$\Rightarrow p$ has been inserted in \mathcal{Q} in the beginning.
Segm. in $U(p)$ and $L(p)$ are stored with p in the beginning. When p is processed, we output all segm. in $U(p) \cup L(p)$.
\Rightarrow All segments that contain p are reported.

Correctness (Case II)

Case II: p is an interior point of some segment.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ reaches p.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p. Imagine moving ℓ slightly back in time.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s^{\prime} were neighbors in the left-to-right order on ℓ (in \mathcal{T}).

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s^{\prime} were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T}.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s^{\prime} were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T}.
\Rightarrow There was some moment when they became neighbors!

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s^{\prime} were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T}. \Rightarrow There was some moment when they became neighbors! This is when $\{p\}=s \cap s^{\prime}$ was inserted into \mathcal{Q}.

Correctness (Case II)

Case II: p is an interior point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

We also need that every segment with p as an interior point is added to $C(p)$.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s^{\prime} were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T}. \Rightarrow There was some moment when they became neighbors! This is when $\{p\}=s \cap s^{\prime}$ was inserted into \mathcal{Q}
$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels foreach $s \in S$ do
foreach endpoint p of s do
if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=\varnothing$
if p lower endpt of s then $L(p)$.append (s)
if p upper endpt of s then $U(p)$.append (s)
while $\mathcal{Q} \neq \varnothing$ do
$p \leftarrow \mathcal{Q}$.nextEvent()
\mathcal{Q}.deleteEvent (p)
handleEvent (p)

Running time?
$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels
foreach $s \in S$ do
foreach endpoint p of s do
if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=\varnothing$
if p lower endpt of s then $L(p)$.append (s)
if p upper endpt of s then $U(p)$.append (s)

while $\mathcal{Q} \neq \varnothing$ do

$p \leftarrow \mathcal{Q}$.nextEvent() Q.deleteEvent (p) handleEvent (p)

Running time?

handleEvent(event p)

```
if }|U(p)\cupL(p)\cupC(p)|>1 then
``` report intersection in \(p\), report segments in \(U(p) \cup L(p)\) delete \(L(p) \cup C(p)\) from \(\mathcal{T} / /\) consecutive in \(\mathcal{T}\) ! insert \(U(p) \cup C(p)\) into \(\mathcal{T}\) in their order slightly below \(\ell\) if \(U(p) \cup C(p)=\varnothing\) then \(b_{\text {left }} / b_{\text {right }}=\) left \(/\) right neighbor of \(p\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, b_{\text {right }}, p\right)\)

\section*{else}
\(s_{\text {left }} / s_{\text {right }}=\) leftmost \(/\) rightmost segment in \(U(p) \cup C(p\) \(b_{\text {left }}=\) left neighbor of \(s_{\text {left }}\) in \(\mathcal{T}\) \(b_{\text {right }}=\) right neighbor of \(s_{\text {right }}\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, s_{\text {left }}, p\right)\) findNewEvent \(\left(b_{\text {right }}, s_{\text {right }}, p\right)\)
\(\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle\) vertical lines at \(x=-\infty\) and \(x=+\infty\rangle / /\) sentinels
foreach \(s \in S\) do
foreach endpoint \(p\) of \(s\) do
if \(p \notin \mathcal{Q}\) then \(\mathcal{Q}\).insert \((p) ; L(p)=U(p)=\varnothing\)
if \(p\) lower endpt of \(s\) then \(L(p)\).append \((s)\)
if \(p\) upper endpt of \(s\) then \(U(p)\).append \((s)\)

\section*{while \(\mathcal{Q} \neq \varnothing\) do}
\(p \leftarrow \mathcal{Q}\).nextEvent() Q.deleteEvent \((p)\) handleEvent \((p)\)

Running time?

\section*{handleEvent(event \(p\))}
```

if }|U(p)\cupL(p)\cupC(p)|>1 then

```
report intersection in \(p\), report segments in \(U(p) \cup L(p)\) delete \(L(p) \cup C(p)\) from \(\mathcal{T} / /\) consecutive in \(\mathcal{T}\) ! insert \(U(p) \cup C(p)\) into \(\mathcal{T}\) in their order slightly below \(\ell\) if \(U(p) \cup C(p)=\varnothing\) then \(b_{\text {left }} / b_{\text {right }}=\) left \(/\) right neighbor of \(p\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, b_{\text {right }}, p\right) \rightarrow\left\{\{x\}=s \cap s^{\prime}\right.\)

\section*{else}
\(s_{\text {left }} / s_{\text {right }}=\) leftmost \(/\) rightmost segment in \(U(p) \cup C(p\) \(b_{\text {left }}=\) left neighbor of \(s_{\text {left }}\) in \(\mathcal{T}\) \(b_{\text {right }}=\) right neighbor of \(s_{\text {right }}\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, s_{\text {left }}, p\right)\) findNewEvent \(\left(b_{\text {right }}, s_{\text {right }}, p\right)\)
\(\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle\) vertical lines at \(x=-\infty\) and \(x=+\infty\rangle / /\) sentinels
foreach \(s \in S\) do
foreach endpoint \(p\) of \(s\) do
if \(p \notin \mathcal{Q}\) then \(\mathcal{Q}\).insert \((p) ; L(p)=U(p)=\varnothing\)
if \(p\) lower endpt of \(s\) then \(L(p)\).append \((s)\)
if \(p\) upper endpt of \(s\) then \(U(p)\).append \((s)\)

\section*{while \(\mathcal{Q} \neq \varnothing\) do}
\(p \leftarrow \mathcal{Q}\).nextEvent() Q.deleteEvent \((p)\) handleEvent \((p)\)

Running time?

\section*{handleEvent(event \(p\))}
```

if }|U(p)\cupL(p)\cupC(p)|>1 then

```
report intersection in \(p\), report segments in \(U(p) \cup L(p)\) delete \(L(p) \cup C(p)\) from \(\mathcal{T} / /\) consecutive in \(\mathcal{T}\) ! insert \(U(p) \cup C(p)\) into \(\mathcal{T}\) in their order slightly below \(\ell\) if \(U(p) \cup C(p)=\varnothing\) then \(b_{\text {left }} / b_{\text {right }}=\) left \(/\) right neighbor of \(p\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, b_{\text {right }}, p\right) \rightarrow\left\{\{x\}=s \cap s^{\prime}\right.\)

\section*{else}
\(s_{\text {left }} / s_{\text {right }}=\) leftmost \(/\) rightmost segment in \(U(p) \cup C(p\) \(b_{\text {left }}=\) left neighbor of \(s_{\text {left }}\) in \(\mathcal{T}\) \(b_{\text {right }}=\) right neighbor of \(s_{\text {right }}\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, s_{\text {left }}, p\right)\) findNewEvent \(\left(b_{\text {right }}, s_{\text {right }}, p\right)\)
\(\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle\) vertical lines at \(x=-\infty\) and \(x=+\infty\rangle / /\) sentinels
foreach \(s \in S\) do
foreach endpoint \(p\) of \(s\) do
if \(p \notin \mathcal{Q}\) then \(\mathcal{Q}\).insert \((p) ; L(p)=U(p)=\varnothing\)
if \(p\) lower endpt of \(s\) then \(L(p)\).append \((s)\)
if \(p\) upper endpt of \(s\) then \(U(p)\).append \((s)\)
while \(\mathcal{Q} \neq \varnothing\) do
\(p \leftarrow \mathcal{Q}\).nextEvent() Q.deleteEvent \((p)\) handleEvent \((p)\)

Running time?

\section*{handleEvent(event \(p\))}
```

if }|U(p)\cupL(p)\cupC(p)|>1 then

```
report intersection in \(p\), report segments in \(U(p) \cup L(p)\) delete \(L(p) \cup C(p)\) from \(\mathcal{T} / /\) consecutive in \(\mathcal{T}\) ! insert \(U(p) \cup C(p)\) into \(\mathcal{T}\) in their order slightly below \(\ell\) if \(U(p) \cup C(p)=\varnothing\) then \(b_{\text {left }} / b_{\text {right }}=\) left \(/\) right neighbor of \(p\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, b_{\text {right }}, p\right) \rightarrow\left\{\{x\}=s \cap s^{\prime}\right.\)

\section*{else}
\(s_{\text {left }} / s_{\text {right }}=\) leftmost \(/\) rightmost segment in \(U(p) \cup C(p\) \(b_{\text {left }}=\) left neighbor of \(s_{\text {left }}\) in \(\mathcal{T}\) \(b_{\text {right }}=\) right neighbor of \(s_{\text {right }}\) in \(\mathcal{T}\) findNewEvent \(\left(b_{\text {left }}, s_{\text {left }}, p\right)\) findNewEvent \(\left(b_{\text {right }}, s_{\text {right }}, p\right)\)

Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)
Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)
Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\[
\begin{aligned}
& m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)| \\
& \text { and } m=\sum_{p} m(p) .
\end{aligned}
\]

Then it's clear that the runtime is \(O((m+n) \log n)\).

Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)
Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\[
\begin{aligned}
& m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)| \\
& \text { and } m=\sum_{p} m(p) .
\end{aligned}
\]

Then it's clear that the runtime is \(O((m+n) \log n)\). We show that \(m \in O(n+I)\).

Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)
Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\[
\begin{aligned}
& m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)| \\
& \text { and } m=\sum_{p} m(p) .
\end{aligned}
\]

Then it's clear that the runtime is \(O((m+n) \log n)\). We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)

Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)
Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with \(V=\{\) endpts, intersection pts \(\}\)

Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)
Lemma. findIntersections() finds I intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with \(V=\{\) endpts, intersection pts \(\}\)

\section*{Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)}

Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\).

\section*{Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)}

Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\). We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\). For any \(p \in V: m(p)=\operatorname{deg}(p)\).

\section*{Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)}

Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\).
For any \(p \in V: m(p)=\operatorname{deg}(p)\).
\(\Rightarrow m=\sum_{p} \operatorname{deg}(p)=2|E|\)

\section*{Running Time \({ }^{\text {Check your knowledge about planar graphs! }}\)}

Lemma. findIntersections() finds I intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\).
For any \(p \in V: m(p)=\operatorname{deg}(p)\).
\(\Rightarrow m=\sum_{p} \operatorname{deg}(p)=2|E| \leq\)

Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\).
For any \(p \in V: m(p)=\operatorname{deg}(p)\).
\(\Rightarrow m=\sum_{p} \operatorname{deg}(p)=2|E| \leq\)
Euler (G is planar!!)

Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I)\). \((\Rightarrow\) lemma)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\).
For any \(p \in V: m(p)=\operatorname{deg}(p)\).
\(\Rightarrow m=\sum_{p} \operatorname{deg}(p)=2|E| \leq 2 \cdot(3|V|-6)\)
Euler (G is planar!!)

Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\).
For any \(p \in V: m(p)=\operatorname{deg}(p)\).
\(\Rightarrow m=\sum_{p} \operatorname{deg}(p)=2|E| \underset{y}{\leq} \begin{array}{r}\text { (} 3|V|-6) \\ \in O(\quad)\end{array}\)
Euler (\(G\) is planar!!)

Lemma. findIntersections() finds \(I\) intersection points among \(n\) non-overlapping line segments in \(O((n+I) \log n)\) time.

Proof. Let \(p\) be an event pt ,
\(m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|\)
and \(m=\sum_{p} m(p)\).
Then it's clear that the runtime is \(O((m+n) \log n)\).
We show that \(m \in O(n+I) .(\Rightarrow\) lemma \()\)
Define (geometric) graph \(G=(V, E)\) with
\(V=\{\) endpts, intersection pts \(\} \Rightarrow|V| \leq 2 n+I\).
For any \(p \in V: m(p)=\operatorname{deg}(p)\).
\(\Rightarrow m=\sum_{p} \operatorname{deg}(p)=2|E| \underset{q}{\leq} \quad \underset{\sim}{(3|V|-6)}\)
Euler (\(G\) is planar!!)

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? \(\quad\) The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in\)

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I):-(\)

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I):-(\)
Can we do better?

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I):-(\)
Can we do better?

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I):-(\)
Can we do better?

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? \(\quad\) The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line \(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I):-(\)

Can we do better?

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I)\) :-(
Can we do better?

- insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I)\) :-(
Can we do better?

- insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\) - remove \(s \cap s^{\prime}\) from \(\mathcal{Q}\)

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? \(\quad\) The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I):-(\)
Can we do better?

- insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)
- remove \(s \cap s^{\prime}\) from \(\mathcal{Q}\)

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I)\) :-(
Can we do better?

- insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)
- remove \(s \cap s^{\prime}\) from \(\mathcal{Q}\)
- re-insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? \(\quad\) The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line \(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I):-(\)

Can we do better?

- insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)
- remove \(s \cap s^{\prime}\) from \(\mathcal{Q}\)
- re-insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)
\(\Rightarrow\) need just \(O(n)\) space;

\section*{Today's Main Result}

Theorem. We can report all I intersection points among \(n\) non-overlapping line segments in the plane and report the segments involved in the intersections in \(O((n+I) \log n)\) time and \(O(n)\) space.

Sure? The event-point queue \(\mathcal{Q}\) contains
- all segment end pts below the sweep line
- all intersection pts below the sweep line
\(\Rightarrow\) (worst-case) space consumption \(\in \Theta(n+I)\) :-(
Can we do better?

- insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)
- remove \(s \cap s^{\prime}\) from \(\mathcal{Q}\)
- re-insert \(s \cap s^{\prime}\) into \(\mathcal{Q}\)
\(\Rightarrow\) need just \(O(n)\) space; (asymptotic) running time doesn't change```

