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Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..
yes!

Problem:  Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

— all points where at least two segments inter-
sect and

— for each such point report all segments
that contain it.

Task: Discuss with your neighbor:
how would you do it?



EEEEEEE




EEEEEEE




Example

Brute Force?

O(n?) ... can we do
better?




Example

Brute Force?

O(n?) ... can we do
better?

Idea:

Process segments
top-to-bottom using a
“sweep line”.
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Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1ygandx, < xg)
po—o—@-—

£ v
Store event pts in balanced binary search tree by <

= nextEvent() and del/insEvent() take O(log |Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

How? In a balanced binary search tree!
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findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I everys € Swithp € s

Q <« @; T < (vertical lines at x = —oco and x = 400 )

foreach s € S do

foreach endpoint p of s do C(p)
if p ¢ O then Q.insert(p); L(p) =U(p) =0

if p lower endpt of s then L(p).append(s)
| if p upper endpt of s then L/(p).append(s) y

while O # @ do . .
p + Q.nextEvent() This subroutine does the real work.
Q.deleteEvent(p) How would you implement it?
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handleEvent(event p)

if |{U(p)UL(p) UC(p)| > 1then
| report intersection in p, report segments in U(p) U L(p) U C(p)

delete L(p) UC(p) from T
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X C(p)L(p)U(p)  xbelowfonte therightofpthen
if x € rel-int(s ) then C(x) + C(x) U {s}
handleEvent(event p) if x € rel-int(s’) then
if [U(p) UL(p) UC(p)| > 1then L C() < CHULsT
| report intersection in p, report segments in U(p) U L(p) U C(p)

delete L(p) UC(p) from T
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findNewEvent(s, s’, p)
Handllng an Event if sNs’ = @ then return
{x}

x}=sNs
X CpLL(PU(p) X e Catae)

handleEvent(event p) if x € rel-int(s’) then
if [U(p) UL(p) UC(p)| > 1then L C¥) < CHULSY
| report intersection in p, report segments in U(p) U L(p) U C(p)

delete L(p) UC(p) from T
insert U(p) U C(p) into T in their order slightly below /¢

if x € rel-int(s ) then C(x) + C(x) U {s}

if U(p) UC(p) = @ then
Dieft, Uright = left,right neighbor of p in T \ /
fln(:H\Te"VEVQnt(bleft/ rights P ) blef P ﬁmgh’c
else

Slefts Sright = leftmost,rightmost segment in U(p) U C(p)

biett = left neighbor of sje in T
bright = right neighbor of s in T

. b left/ \b right
findNewEvent(bjeft, Steft, P) 14

findNewEvent(byight, Sright, P) / Sleft }9 Sright\
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Correctness

Lemma. findIntersections() correctly computes all inter-
section points & the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):

® Every int. pt g < p has been computed correctly.

® 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: pisnot an interior pt of a segment.
= p has been inserted in Q in the beginning.
Segm. in U(p) and L(p) are stored with p in the beginning.

When p is processed, we output all segm. in U(p) U L(p).
= All segments that contain p are reported.
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Case II: p is an interior point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

We also need that every
segment with p as an interior

point is added to C(p).

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U{£} around p. Imagine moving ¢ slightly back in time.
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Lemma. findIntersections() finds I intersection points
among 1 non-overlapping line segments in
O((n+ I)logn) time.
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—insert s Ns’' into Q

Can we do better? ,
—remove sNs’ from O

¢  —re-inserts s’ into O

= need just O(n) space;
(asymptotic) running
time doesn’t change
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