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Randomized Algorithms

• are faster or use less space than deterministic algorithms in
practise,

• have theoretical runtimes beyond deterministic lower
bounds,

• are easier to implement/more elegant than deterministic
strategies,

• allow for trading runtime against output quality,

• provide a good strategy for games or search in unknown
environments.
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Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X ] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is

Example: E[fair dice] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

∑
i∈Ω′ i · Pr[X = i ].

strange dice: { }, , → {1, 1, 1, 6, 6, 6}, , ,

E[strange dice] = (1 + 1 + 1 + 6 + 6 + 6)/6 = 3.5
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First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j ] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y ] =
∑∞

j=1 j · qj−1p = p · (
∑∞

j=1 qj )′ =

= p · ( 1
p )′ = p · 1

p2 =

p · ( 1
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First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j ] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y ] =
∑∞

j=1 j · qj−1p = p · (
∑∞

j=1 qj )′ =

= p · ( 1
p )′ = p · 1

p2 = 1/p

p · ( 1
1−q )′ =

�

⇒
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Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.
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⇒ E[X ] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = n · 1n = 1.

⇒ X =

Note that this is independent of n!

X1, . . . , Xn are indicator random variables.
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Example II: Guessing cards (with memory).
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Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi ] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X ] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.
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Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.

– Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

RandO: – Compute random permutation of k ≤ n
2 + 1 lockers.

– Break lockers in this order.
We don’t damage so many lockers, but may not find any drugs.
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RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

Las Vegas Algorithm

Monte Carlo Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.
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Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[ ] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak ]}
return m

The algorithm has error probability ≤ 2−k .
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Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i ] == A[j ] then return A[i ]

LasVegasFindRepeated(int[ ] A)

Algorithm always returns correct result – but may take forever.

Success probability =
n/2

n
· n/2− 1

n − 1
≈ 1

4
.

⇒ Expected number of iterations ≈ 4 ∈ O(1).



12 - 1

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X ]/t.

(Markov inequality)



12 - 2

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X ]/t.

(Markov inequality)



12 - 3

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X ]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X ]] ≤



12 - 4

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X ]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X ]] ≤ 1/t.



12 - 5

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X ]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X ]] ≤ 1/t.

Let X be the running time of a Las Vegas algorithm and
f (n) = E[X ] its expected running time and α > 1. Then

Pr[X > α · f (n)] ≤



12 - 6

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X ]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X ]] ≤ 1/t.

Let X be the running time of a Las Vegas algorithm and
f (n) = E[X ] its expected running time and α > 1. Then

Pr[X > α · f (n)] ≤ 1/α



12 - 7

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X ]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X ]] ≤ 1/t.

Let X be the running time of a Las Vegas algorithm and
f (n) = E[X ] its expected running time and α > 1. Then

So the probability that the Las Vegas algorithm does not find a
solution in the first α · f (n) steps is less than 1/α , which is
the error probability of the respective Monte Carlo algorithm.

Pr[X > α · f (n)] ≤ 1/α
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Given a set P = {p1, . . . , pn} of points in the plane,
find a pair in

(
P
2

)
whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,

worst-case runtime O(n log n).

Element Uniqueness Problem: Given n numbers, are they unique?

Cannot be solved in o(n log n) w-c time.

⇒ Closest Pair cannot be solved in o(n log n) w-c time.

(under some assumption concerning the arithmetic model)

(under the same assumption concerning the arithmetic model)
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Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

How many points in Pi−1 can lie
in the same grid cell?

At most 4 (in the corners).

Cases: • δi < δi−1:

• δi = δi−1:

After finding pi ’s cell, need to
check only O(1) points in vicinity.

Need to recompute grid in O(i) time.

Need to store pi in its cell in O(1) time.

Define:
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• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs: 0 points.

Let X be the total work done by the algorithm.

Let Xi be the work for adding pi .

⇒ E[Xi ] ≤ 2/i · O(i) + (i − 2)/i · O(1) = O(1)
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