Julius-Maximilians- Lehrstuhl fiir e
UNIVERSITAT INFORMATIK | I'l'l | fl
WU RZ B U RG Effiziente Algorithmen und

wissensbasierte Systeme Institut fuir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 4. Randomized Algorithms

(based on lecture notes of Sabine Storandt)

Steven Chaplick & Alexander Wolff Chair for Computer Science |

Randomized Algorithms

Randomized Algorithms

e are faster or use less space than deterministic algorithms in
practise,

Randomized Algorithms

e are faster or use less space than deterministic algorithms in
practise,

e have theoretical runtimes beyond deterministic lower
bounds,

Randomized Algorithms

e are faster or use less space than deterministic algorithms in
practise,

e have theoretical runtimes beyond deterministic lower
bounds,

e are easier to implement/more elegant than deterministic
strategies,

Randomized Algorithms

are faster or use less space than deterministic algorithms in
practise,

have theoretical runtimes beyond deterministic lower
bounds,

are easier to implement/more elegant than deterministic
strategies,

allow for trading runtime against output quality,

Randomized Algorithms

e are faster or use less space than deterministic algorithms in
practise,

e have theoretical runtimes beyond deterministic lower
bounds,

e are easier to implement/more elegant than deterministic
strategies,

e allow for trading runtime against output quality,

e provide a good strategy for games or search in unknown
environments.

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable
set (2’ of observations (e.g., N or R).

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable
set (2’ of observations (e.g., N or R).

Example: dice: {- I 1 FO I e B DO

}—{1,2,3,4,56}

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable
set (2’ of observations (e.g., N or R).

Example: dice: {- o |rle® |ile ols[e%l;

]|} — {1,2,3,4,5,6}

The expected value of a discrete random variable X is

E[X] =

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable
set (2’ of observations (e.g., N or R).

Example: dice: {- o |rle® |ile ols[e%l;

]|} — {1,2,3,4,5,6}

The expected value of a discrete random variable X is

E[X] =0 i-PrX =]

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable
set (2’ of observations (e.g., N or R).

Example: dice: {- o Llelle el e

]|} — {1,2,3,4,5,6}

The expected value of a discrete random variable X is

E[X] =0 i-PrX =]

Example: E[fair dice] =

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable
set (2’ of observations (e.g., N or R).

Example: dice: {- o Llelle el e

]|} — {1,2,3,4,5,6}

The expected value of a discrete random variable X is

E[X] =0 i-PrX =]

Example: Elfair dice] = (14+2+3+4+4+5+6)/6 =35

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable

set (2’ of observations (e.g., N or R).

Example: dice: {-

}—{1,2,3,4,56}

The expected value of a discrete random variable X is

E[X] =0 i-PrX =]

Example:

strange dice: { .

E[fair dice] = (1+2+3+4+5+6)/6 =3.5

}—{1,1,1,6,6,6}

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable

set (2’ of observations (e.g., N or R).

Example: dice: {-

}—{1,2,3,4,56}

The expected value of a discrete random variable X is

E[X] =0 i-PrX =]

Example:

strange dice: { .

E[strange dice| =

E[fair dice] = (1+2+3+4+5+6)/6 =3.5

}—{1,1,1,6,6,6}

Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable

set (2’ of observations (e.g., N or R).

Example: dice: {-

}—{1,2,3,4,56}

The expected value of a discrete random variable X is

E[X] =0 i-PrX =]

Example:

strange dice: { .

E[strange dice] = (1

E[fair dice] = (1+2+3+4+5+6)/6 =3.5

}—{1,1,1,6,6,6}

1+14+6+6-+6)/6=3.5

First Success

Let X: {failure, success} — {0, 1} be a random variable.

First Success

Let X: {failure, success} — {0, 1} be a random variable.
Let p = Pr[X = 1] be the success probability.

First Success

Let X: {fai
Let p = Pr

ure, success} — {0, 1} be a random variable.

X =1

= g := Pr

X =0

be the success probability.

= 1 — p is the failure probability (or rate).

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q := Pr[X = 0] =1 — p is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q:= Pr[X =0] =1 — pis the failure probability (or rate).
Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q := Pr[X = 0] =1 — p is the failure probability (or rate).
Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= PrlY =] =

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q := Pr[X = 0] =1 — p is the failure probability (or rate).
Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =j]= ¢ 'p

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q:= Pr[X =0] =1 — pis the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= PrlY =j]= ¢ 'p
= E[Y] =

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q := Pr[X = 0] =1 — p is the failure probability (or rate).
Repeat experiment many times.

Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =j]= ¢ 'p
=E[Y]= > /¢ p=

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q := Pr[X = 0] =1 — p is the failure probability (or rate).
Repeat experiment many times.

Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =jl=¢'p
= E[Y]= Y i dp=p 5 ¢) =

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q:= Pr[X =0] =1 — pis the failure probability (or rate).
Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =j]= ¢7'p
= E[Y]= Y - tp=p- (5 @) =p-(25) =

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q:= Pr[X =0] =1 — pis the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =j]= ¢7'p
= E[Y]= Y - tp=p- (5 @) =p-(25) =
=p-(3) =

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q:= Pr[X =0] =1 — pis the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =j]= ¢ 'p

= E[Y]= Y - tp=p- (5 @) =p-(25) =
:p.(%)/: p.#:

First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q := Pr[X = 0] =1 — p is the failure probability (or rate).
Repeat experiment many times.

Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =j]= ¢7'p
= E[Y]= Y - tp=p- (5 @) =p-(25) =

=p-(3)=p 5= 1/p

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
EX+X - Y]=

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory).

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n

Let X count the number of correct guesses.

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n

Let X count the number of correct guesses.
= X =

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n

Let X count the number of correct guesses.
= X=Xi4+ -+ X,

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n

Let X count the number of correct guesses.
= X=Xi4+ -+ X,

= E[X] =

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n

Let X count the number of correct guesses.
= X=Xi4+ -+ X,

= E[X]|=E[X1+ -+ X,] =

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.

= E[X;] = Pr[X; = 1] =pere 1/n

Let X count the number of correct guesses.

= X=Xi4+ -+ X,

= E[X]|=E[X1+ -+ X,] =E[X1]+ -+ E[X,] =

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n

Let X count the number of correct guesses.
= X=Xi4+ -+ X,

= E[X]=E[Xi + -+ X,] =E[X{]+ - +E[X,] =n-1

n

|
|
=

Linearity of Expectation

Let X and Y be two random variables and A € R. Then
E[X+X-Y]=E[X]+X:E[Y]

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let X;: {guessed, not guessed} — {0, 1} be a random variable
that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
= E[X;] = Pr[X; = 1] =pere 1/n
Let X count the number of correct guesses.

= E[X]|=E[X1+ -+ X,] =E[Xy] +--- E[X]—n = =1.
Note that this is /ndependent of n!

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now Pr[X; = 1] depends on the current size of the deck.

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now Pr[X; = 1] depends on the current size of the deck.

E[X,] — PI’[X,' —].] —

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now Pr[X; = 1] depends on the current size of the deck.

E[X.] = Pr[X; = 1] = 1/(n—i+1)

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now Pr[X; = 1] depends on the current size of the deck.

E[X]=Pr[X; =1] = 1/(n—i+1)
= E[X]|=E[X1+ -+ X,] =

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

= E[X] = E[X1 + -+ X;] = + 1 nil . ---—I—%—I—lz

n

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

S EX] = EXit b X =l Lol 1= H,

n

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

S EX] = EXit b X =l Lol 1= H,

n

H, is the n-th harmonic number;

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.

E[X;]]=Pr[X;=1=1/(n—i+1)

= E[X]=E[Xi+ -+ X;] = £ + L= - ---—I—%—I—lz
<

n n—1

H, is the n-th harmonic number; < H,

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.

E[X;]]=Pr[X;=1=1/(n—i+1)

SEX]=EX ot X = Ll 1=H,
<

n n—1

H, is the n-th harmonic number; In(n+1) < H,

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.

E[X;]]=Pr[X;=1=1/(n—i+1)

SEX]=EX ot X = Ll 1=H,
<

n n—1

H, is the n-th harmonic number; In(n+1) < H,

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.

E[X;]]=Pr[X;=1=1/(n—i+1)

= EX]=E[Xi+-+X,]=2+-1+ - +1+1=H,
<

n n—1

H, is the n-th harmonic number; In(n+1) < H,
= E[X] = H, € O(log n)

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

S EX] = EXit b X =l Lol 1= H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies
How often do you have to shop to collect all n goodies?

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies
How often do you have to shop to collect all n goodies? (X)

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

S EX] = EXit b X =l Lol 1= H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies
How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie.

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

S EX] = EXit b X =l Lol 1= H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies
How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

S EX] = EXit b X =l Lol 1= H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.

PT[X,' — 1] —

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.

PrIX; =1]=(n—i+4+1)/n

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.

PT[X,' — 1] — (n— I—I—].)/n — E[X,] —

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.

Pr[X, =1=(n—i+1)/n = E[X]|]=n/(n—17+1)

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)

=EX]|=EX i+ +X)]=2+-L+- - +2+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.
Pr[X, =1=(n—i+1)/n = E[X]|]=n/(n—17+1)

= E[X] =

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)
=EX]=EX;+ -+ X)]=++ -1+ +L1+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.
Pr[X, =1=(n—i+1)/n = E[X]|]=n/(n—17+1)

= E[X]=E[X1 + -+ X,] =

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)
=EX]=EX;+ -+ X)]=++ -1+ +L1+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.
Pr[X, =1=(n—i+1)/n = E[X]|]=n/(n—17+1)

S EX]=EXi+--+ X]=n(z+ - +3+1)=

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[X; = 1] depends on the current size of the deck.
E[X;]]=Pr[X;=1=1/(n—i+1)
=EX]=EX;+ -+ X)]=++ -1+ +L1+1=H,

H, is the n-th harmonic number; In(n+1) < H, < In(n) + 1.
= E[X] = H,, € O(log n) Note that this does depend on n!

Example [ll: Collecting goodies

How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
X; := number of times you must shop to get /-th new goodie.
Pr[X, =1=(n—i+1)/n = E[X]|]=n/(n—17+1)

= EX]=E[Xi+ -+ X,] = n(2+---+1+1)=06(nlogn)

Conditional Probabilities

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA:

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: — Compute random permutation of the lockers.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: — Compute random permutation of the lockers.
— Break lockers in this order.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: — Compute random permutation of the lockers.

— Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: — Compute random permutation of the lockers.

— Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

RandO: — Compute random permutation of k < 5 + 1 lockers.
— Break lockers in this order.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: — Compute random permutation of the lockers.

— Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

RandO: — Compute random permutation of k < 5 + 1 lockers.

— Break lockers in this order.
We don’'t damage so many lockers, but may not find any drugs.

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)
Deterministic approach:

Need to break n/2 4 1 lockers in the worst case.
If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: — Compute random permutation of the lockers.

— Break lockers in this order. Las Vegas Algorithm
We break n/2 + 1 lockers in w-c, but expect to break fewer.

RandO: — Compute random permutation of k < 5 + 1 lockers.

— Break lockers in this order. Monte Carlo Algorithm
We don’'t damage so many lockers, but may not find any drugs.

Analysis

RandA: expected number of broken lockers =

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2
RandO: failure probability for 1 locker = 1/2

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers =

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers =

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers = 1 — 27K

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)k
success probability for k lockers = 1 — 27K

Las Vegas Algorithm

Monte Carlo Algorithm

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers = 1 — 27K

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Monte Carlo Algorithm

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers = 1 — 27K

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers = 1 — 27K

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.
Examples:

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Example:

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers = 1 — 27K

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Examples: RandomizedQuickSort, RandomizedSelect (Median)

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Example:

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers = 1 — 27K

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Examples: RandomizedQuickSort, RandomizedSelect (Median)

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Example: Karger's randomized MinCut algorithm

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)
pick ai,...,ax € {1,...,n} u.a.r.: ooy

at random|

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)
pick ay, ..., ax € {1,...,n} uar. N00)
m = max{Ala1], ..., Alak]}

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)
pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}

return m

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)

pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}
return m

The algorithm has error probability <

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)

pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}
return m

The algorithm has error probability < 27,

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)

pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}
return m

The algorithm has error probability < 27,
Set k := clog, n for some constant ¢ > 1.

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)

pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}
return m

The algorithm has error probability < 27,
Set k := clog, n for some constant ¢ > 1.

= Error probability <

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)

pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}
return m

The algorithm has error probability < 27,
Set k := clog, n for some constant ¢ > 1.

= Error probability < n™¢

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int kK > 1)

pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}
return m

The algorithm has error probability < 27,
Set k := clog, n for some constant ¢ > 1.

= Error probability < n™¢, runtime €

10 -

Monte Carlo Example

Example V: Find large number (> median, in array of n ints)

Deterministic approach:
Go through all elements, return maximum. runtime

(Actually, suffices to go through n/2 elements.) ©(n)

MonteCarloFind(int[] A, int kK > 1)

pick a1,...,ax €1{1,...,n} uar.
m = max{Ala1], ..., Alak]}
return m

The algorithm has error probability < 27,
Set k := clog, n for some constant ¢ > 1.

= Error probability < n™¢, runtime € O(log n)

10 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)
Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)
while true do

L

11 -

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)
while true do

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)
while true do

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)
Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

Algorithm always returns correct result —

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

Algorithm always returns correct result — but may take forever.

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

Algorithm always returns correct result — but may take forever.

Success probability =

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)
Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

Algorithm always returns correct result — but may take forever.
n/2 n/2-—1
n n—1

Success probability =

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)
Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

Algorithm always returns correct result — but may take forever.
n/2 n/2-1 1
n n—1 4

Success probability =

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)
Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

Algorithm always returns correct result — but may take forever.
n/2 n/2-1 1

n n—1 4
= Expected number of iterations ~

Success probability =

11 -

Las Vegas Example

Example VI: Find repeated element
(array of n > 4 ints, n/2 distinct, n/2 identical)
Deterministic approach:
Sort and find repeated element. @(nlogn) time
Faster: Find median. ©(n) time

LasVegasFindRepeated(int[] A)

while true do

pick i € {1, ..., n} and j € {1,..., n} \ {i}, both u.a.r.
if A[/] == A[j] then return A[/]

Algorithm always returns correct result — but may take forever.
n/2 n/2-1 1

n n—1 4
= Expected number of iterations &~ 4 € O(1).

Success probability =

11 -

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] <

12 -

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] < E[X]/t.

12 -

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] < E[X]/t.
Equivalently,
Pr[X > t-E[X]] <

12 -

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] < E[X]/t.
Equivalently,
Pr[X > t-E[X]] < 1/t

12 -

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] < E[X]/t.
Equivalently,
Pr[X > t-E[X]] < 1/t

Let X be the running time of a Las Vegas algorithm and
f(n) = E[X] its expected running time and « > 1. Then

Pr[X > a-f(n)] <

12 -

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] < E[X]/t.
Equivalently,
Pr[X > t-E[X]] < 1/t

Let X be the running time of a Las Vegas algorithm and
f(n) = E[X] its expected running time and « > 1. Then

PrX > - f(n)] < 1/a

12 -

12 -

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] < E[X]/t.
Equivalently,
Pr[X > t-E[X]] < 1/t

Let X be the running time of a Las Vegas algorithm and
f(n) = E[X] its expected running time and « > 1. Then

PrX > - f(n)] < 1/a

So the probability that the Las Vegas algorithm does not find a
solution in the first - f(n) steps is less than 1/a , which is
the error probability of the respective Monte Carlo algorithm.

Closest Pair

Given a set P ={p1,..., pn} of points in the plane,

find a pair in (

2

P) whose Euclidean distance is minimum.

13 -

Closest Pair

Given a set P ={p1,..., pn} of points in the plane,
find a pair in (g) whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,
worst-case runtime O(nlog n).

13 -

13 -

Closest Pair

Given a set P ={p1,..., pn} of points in the plane,
find a pair in (g) whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,
worst-case runtime O(nlog n).

Element Uniqueness Problem: Given n numbers, are they unique?

13 -

Closest Pair

Given a set P ={p1,..., pn} of points in the plane,
find a pair in (g) whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,
worst-case runtime O(nlog n).

Element Uniqueness Problem: Given n numbers, are they unique?
Cannot be solved in o(nlog n) w-c time.

(under some assumption concerning the arithmetic model)

13 -

Closest Pair

Given a set P ={p1,..., pn} of points in the plane,
find a pair in (g) whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,
worst-case runtime O(nlog n).

Element Uniqueness Problem: Given n numbers, are they unique?
Cannot be solved in o(nlog n) w-c time.

(under some assumption concerning the arithmetic model)

= Closest Pair cannot be solved in o(nlog n) w-c time.

(under the same assumption concerning the arithmetic model)

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.
— Can use hashing in O(1) time.

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.
— Can use hashing in O(1) time.

Define: Py ={p1,..., pi}
0; = distance of the closest pair in P;.

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.
— Can use hashing in O(1) time.
Define: P; ={p1,..., p;t

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.
— Can use hashing in O(1) time.
Define: P; ={p1,..., p;t

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

|dea: Consider a square grid with cells of size 0;_1 X 0;_1:

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.
— Can use hashing in O(1) time.
Define: P; ={p1,..., p;t

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

|dea: Consider a square grid with cells of size 0;_1 X 0;_1:
. . . How many points in P;_1 can lie
. in the same grid cell?

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.

— Can use hashing in O(1) time.

Define: P; = {p1, ..

pi }

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

|dea: Consider a square grid with cells of size 0;_1 X 0;_1:

How many points in P;_1 can lie
in the same grid cell?

At most 4 (in the corners).

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.

— Can use hashing in O(1) time.

Define: P;

’ . .

pi }

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

|dea: Consider a square grid with cells of size 0;_1 X 0;_1:

How many points in P;_1 can lie
in the same grid cell?

At most 4 (in the corners).

After finding p;'s cell, need to
check only O(1) points in vicinity.

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.

— Can use hashing in O(1) time.

Define: P;

’ . .

pi }

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

|dea: Consider a square grid with cells of size 0;_1 X 0;_1:

Cases: ® 0; <0;_1:

How many points in P;_1 can lie
in the same grid cell?

At most 4 (in the corners).
After finding p;'s cell, need to

check only O(1) points in vicinity.

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.
— Can use hashing in O(1) time.
Define: P; ={p1,..., p;t

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

|dea: Consider a square grid with cells of size 0;_1 X 0;_1:
. . . How many points in P;_1 can lie
s in the same grid cell?
J | J Atmost4 (in the corners).

After finding p;'s cell, need to

o

Cases: ®)i < dj_1: Need to recompute grid in O(/) time.
® 0; = 0j_1:

check only O(1) points in vicinity.

14 -

A Randomized Incremental Algorithm

Assume: — Can use the floor function in O(1) time.

— Can use hashing in O(1) time.

Define: P;

’ . .

pi }

0; = distance of the closest pair in P;.
Problem: Given 90;_1, how can we compute 0;?

|dea: Consider a square grid with cells of size 0;_1 X 0;_1:

o

How many points in P;_1 can lie
in the same grid cell?

At most 4 (in the corners).

After finding p;'s cell, need to
check only O(1) points in vicinity.

Cases: ®)i < dj_1: Need to recompute grid in O(/) time.
e 0; = 0;—1: Need to store p; in its cell in O(1) time.

14 -

Backwards Analysis

What is the w-c running time of the algorithm?

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)
How do we randomize?

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)
How do we randomize? Randomly permute points at beginning.

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)

t

How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property

nat the minimum distance in P; \ {p} is larger than in P;?
e [he closest distance in P; is unique:

e One point has the same smallest distance to several points:

e [here are at least two disjoint closest pairs:

15 -

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)
How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property
that the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique: 2 points.

e One point has the same smallest distance to several points:

e [here are at least two disjoint closest pairs:

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)
How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property
that the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique: 2 points.

e One point has the same smallest distance to several points:

1 point.
e [here are at least two disjoint closest pairs:

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)
How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property
that the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique: 2 points.

e One point has the same smallest distance to several points:

1 point.
e [here are at least two disjoint closest pairs: 0 points.

15 -

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)
How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property
that the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique:

2 points.
e One point has the same smallest distance to several points:

1 point.

e [here are at least two disjoint closest pairs: 0 points.

Let X; be the work for adding p;.

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)
How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property
that the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique:

2 points.

e One point has the same smallest distance to several points:

1 point.
e [here are at least two disjoint closest pairs: 0 points.
Let X; be the work for adding p;.

= E[X]] < 2/i-O(i)+ (i —2)/i - O(1) = O(1)

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)

t

How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property

nat the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique: 2 points.
e One point has the same smallest distance to several points:

1 point.
e [here are at least two disjoint closest pairs: 0 points.

Let X; be the work for adding p;.
= E[X;] <2/i-O0@i)+(i—2)/i-0O(1) = O(1)

Let X be the total work done by the algorithm.
= E[X] =

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)

t

How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property

nat the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique: 2 points.
e One point has the same smallest distance to several points:

1 point.
e [here are at least two disjoint closest pairs: 0 points.

Let X; be the work for adding p;.
= E[X;] <2/i-O0@i)+(i—2)/i-0O(1) = O(1)

Let X be the total work done by the algorithm.
= E[X] = E[X1 + -+ X}]

15 -

Backwards Analysis

What is the w-c running time of the algorithm? ©(n?)

t

How do we randomize? Randomly permute points at beginning.

How many points p in P; have the property

nat the minimum distance in P; \ {p} is larger than in P;?

e [he closest distance in P; is unique: 2 points.
e One point has the same smallest distance to several points:

1 point.
e [here are at least two disjoint closest pairs: 0 points.

Let X; be the work for adding p;.
= E[X;] <2/i-O0@i)+(i—2)/i-0O(1) = O(1)

Let X be the total work done by the algorithm.

— E[X] = E[X; +---+ X,] € O(n)

15 -

	Titel
	Randomized Algorithms
	Some Basics
	First Success
	Linearity of Expectation
	Using Indicator Random Variables
	Conditional Probabilities
	Las Vegas \& Monte Carlo
	Analysis
	Monte Carlo Example
	Las Vegas Example
	From Las Vegas to Monte Carlo
	Closest Pair
	A Randomized Incremental Algorithm
	Backwards Analysis

