
1

Steven Chaplick & Alexander Wolff Chair for Computer Science I

Advanced Algorithms

Winter term 2019/20

Lecture 4. Randomized Algorithms

(based on lecture notes of Sabine Storandt)

2 - 1

Randomized Algorithms

2 - 2

Randomized Algorithms

• are faster or use less space than deterministic algorithms in
practise,

2 - 3

Randomized Algorithms

• are faster or use less space than deterministic algorithms in
practise,

• have theoretical runtimes beyond deterministic lower
bounds,

2 - 4

Randomized Algorithms

• are faster or use less space than deterministic algorithms in
practise,

• have theoretical runtimes beyond deterministic lower
bounds,

• are easier to implement/more elegant than deterministic
strategies,

2 - 5

Randomized Algorithms

• are faster or use less space than deterministic algorithms in
practise,

• have theoretical runtimes beyond deterministic lower
bounds,

• are easier to implement/more elegant than deterministic
strategies,

• allow for trading runtime against output quality,

2 - 6

Randomized Algorithms

• are faster or use less space than deterministic algorithms in
practise,

• have theoretical runtimes beyond deterministic lower
bounds,

• are easier to implement/more elegant than deterministic
strategies,

• allow for trading runtime against output quality,

• provide a good strategy for games or search in unknown
environments.

3 - 1

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

3 - 2

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

3 - 3

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is

3 - 4

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is∑
i∈Ω′ i · Pr[X = i].

3 - 5

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is

Example: E[fair dice] =

∑
i∈Ω′ i · Pr[X = i].

3 - 6

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is

Example: E[fair dice] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

∑
i∈Ω′ i · Pr[X = i].

3 - 7

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is

Example: E[fair dice] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

∑
i∈Ω′ i · Pr[X = i].

strange dice: { }, , → {1, 1, 1, 6, 6, 6}, , ,

3 - 8

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is

Example: E[fair dice] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

∑
i∈Ω′ i · Pr[X = i].

strange dice: { }, , → {1, 1, 1, 6, 6, 6}, , ,

E[strange dice] =

3 - 9

Some Basics

A (discrete) random variable X maps a (finite) set Ω of
possible outcomes of a random experiment to some measurable
set Ω ′ of observations (e.g., N or R).

E[X] =

Example: dice: { }, , → {1, 2, 3, 4, 5, 6}, , ,

The expected value of a discrete random variable X is

Example: E[fair dice] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

∑
i∈Ω′ i · Pr[X = i].

strange dice: { }, , → {1, 1, 1, 6, 6, 6}, , ,

E[strange dice] = (1 + 1 + 1 + 6 + 6 + 6)/6 = 3.5

4 - 1

First Success

Let X : {failure, success} → {0, 1} be a random variable.

4 - 2

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Let p = Pr[X = 1] be the success probability.

4 - 3

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).⇒

4 - 4

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).⇒

4 - 5

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).⇒

4 - 6

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] =

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).⇒

4 - 7

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).⇒

4 - 8

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y] =

⇒

4 - 9

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y] =
∑∞

j=1 j · qj−1p =

⇒

4 - 10

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y] =
∑∞

j=1 j · qj−1p = p · (
∑∞

j=1 qj)′ =

⇒

4 - 11

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y] =
∑∞

j=1 j · qj−1p = p · (
∑∞

j=1 qj)′ = p · (1
1−q)′ =

⇒

4 - 12

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y] =
∑∞

j=1 j · qj−1p = p · (
∑∞

j=1 qj)′ =

= p · (1
p)′ =

p · (1
1−q)′ =

⇒

4 - 13

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y] =
∑∞

j=1 j · qj−1p = p · (
∑∞

j=1 qj)′ =

= p · (1
p)′ = p · 1

p2 =

p · (1
1−q)′ =

⇒

4 - 14

First Success

Let X : {failure, success} → {0, 1} be a random variable.

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X = 1
for the first time.

⇒ Pr[Y = j] = qj−1p

Let p = Pr[X = 1] be the success probability.

q := Pr[X = 0] = 1− p is the failure probability (or rate).

⇒ E[Y] =
∑∞

j=1 j · qj−1p = p · (
∑∞

j=1 qj)′ =

= p · (1
p)′ = p · 1

p2 = 1/p

p · (1
1−q)′ =

�

⇒

5 - 1

Linearity of Expectation

E[X + λ · Y] =
Let X and Y be two random variables and λ ∈ R. Then

5 - 2

Linearity of Expectation

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

5 - 3

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

5 - 4

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory). Deck of n cards.

5 - 5

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Deck of n cards.

5 - 6

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Deck of n cards.

X1, . . . , Xn are indicator random variables.

5 - 7

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Deck of n cards.

⇒ E[Xi] = Pr[Xi = 1] =here

X1, . . . , Xn are indicator random variables.

5 - 8

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Deck of n cards.

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

X1, . . . , Xn are indicator random variables.

5 - 9

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

X1, . . . , Xn are indicator random variables.

5 - 10

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

⇒ X =

X1, . . . , Xn are indicator random variables.

5 - 11

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

X1 + · · ·+ Xn

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

⇒ X =

X1, . . . , Xn are indicator random variables.

5 - 12

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

X1 + · · ·+ Xn

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

⇒ E[X] =

⇒ X =

X1, . . . , Xn are indicator random variables.

5 - 13

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

X1 + · · ·+ Xn

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

⇒ E[X] = E[X1 + · · ·+ Xn] =

⇒ X =

X1, . . . , Xn are indicator random variables.

5 - 14

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

X1 + · · ·+ Xn

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

⇒ E[X] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] =

⇒ X =

X1, . . . , Xn are indicator random variables.

5 - 15

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

X1 + · · ·+ Xn

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

⇒ E[X] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = n · 1n = 1.

⇒ X =

X1, . . . , Xn are indicator random variables.

5 - 16

Linearity of Expectation

Indicator Random Variables

E[X + λ · Y] = E[X] + λ · E[Y]
Let X and Y be two random variables and λ ∈ R. Then

Example I: Guessing cards (without memory).

Let Xi : {guessed, not guessed} → {0, 1} be a random variable
that indicates whether card i was guessed or not (i = 1, . . . , n).

Let X count the number of correct guesses.

Deck of n cards.

X1 + · · ·+ Xn

⇒ E[Xi] = Pr[Xi = 1] =here 1/n

⇒ E[X] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = n · 1n = 1.

⇒ X =

Note that this is independent of n!

X1, . . . , Xn are indicator random variables.

6 - 1

Using Indicator Random Variables

Example II: Guessing cards (with memory).

6 - 2

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

6 - 3

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] =

6 - 4

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

6 - 5

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] =

6 - 6

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 =

6 - 7

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

6 - 8

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number;

6 - 9

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ≤ Hn ≤

6 - 10

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤

6 - 11

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

6 - 12

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n)

6 - 13

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

6 - 14

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

6 - 15

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

6 - 16

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies? (X)

6 - 17

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

6 - 18

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

You can’t choose.

6 - 19

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

You can’t choose.

6 - 20

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] =

You can’t choose.

6 - 21

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] = (n − i + 1)/n

You can’t choose.

6 - 22

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] = (n − i + 1)/n ⇒ E[Xi] =

You can’t choose.

6 - 23

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] = (n − i + 1)/n ⇒ E[Xi] = n/(n − i + 1)

You can’t choose.

6 - 24

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] = (n − i + 1)/n ⇒ E[Xi] = n/(n − i + 1)

⇒ E[X] =

You can’t choose.

6 - 25

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] = (n − i + 1)/n ⇒ E[Xi] = n/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] =

You can’t choose.

6 - 26

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] = (n − i + 1)/n ⇒ E[Xi] = n/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = n(1
n + · · ·+ 1

2 + 1) =

You can’t choose.

6 - 27

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now Pr[Xi = 1] depends on the current size of the deck.

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = 1
n + 1

n−1 + · · ·+ 1
2 + 1 = Hn

Hn is the n-th harmonic number; ln(n + 1) ≤ Hn ≤ ln(n) + 1.

⇒ E[X] = Hn ∈ Θ(log n) Note that this does depend on n!

Example III: Collecting goodies

How often do you have to shop to collect all n goodies?

Assume: Each time you get a random goodie.

(X)

Xi := number of times you must shop to get i-th new goodie.

Pr[Xi = 1] = (n − i + 1)/n ⇒ E[Xi] = n/(n − i + 1)

⇒ E[X] = E[X1 + · · ·+ Xn] = n(1
n + · · ·+ 1

2 + 1) = Θ(n log n)

You can’t choose.

7

Conditional Probabilities

8 - 1

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

8 - 2

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

8 - 3

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

8 - 4

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

8 - 5

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

8 - 6

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA:

8 - 7

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.

8 - 8

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.

– Break lockers in this order.

8 - 9

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.

– Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

8 - 10

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.

– Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

RandO: – Compute random permutation of k ≤ n
2 + 1 lockers.

– Break lockers in this order.

8 - 11

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.

– Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

RandO: – Compute random permutation of k ≤ n
2 + 1 lockers.

– Break lockers in this order.
We don’t damage so many lockers, but may not find any drugs.

8 - 12

Las Vegas & Monte Carlo

Example IV: Drug detection (n lockers, n/2 with drugs)

Deterministic approach:

Need to break n/2 + 1 lockers in the worst case.

If students know your strategy, you must break exactly n/2 + 1.

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.

– Break lockers in this order.
We break n/2 + 1 lockers in w-c, but expect to break fewer.

RandO: – Compute random permutation of k ≤ n
2 + 1 lockers.

– Break lockers in this order.
We don’t damage so many lockers, but may not find any drugs.

Las Vegas Algorithm

Monte Carlo Algorithm

9 - 1

Analysis

RandA: expected number of broken lockers =

9 - 2

Analysis

RandA: expected number of broken lockers = 1/(1/2) = 2

9 - 3

Analysis

RandO: failure probability for 1 locker = 1/2

RandA: expected number of broken lockers = 1/(1/2) = 2

9 - 4

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers =

RandA: expected number of broken lockers = 1/(1/2) = 2

9 - 5

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

RandA: expected number of broken lockers = 1/(1/2) = 2

9 - 6

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers =

RandA: expected number of broken lockers = 1/(1/2) = 2

9 - 7

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

9 - 8

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

Las Vegas Algorithm

Monte Carlo Algorithm

9 - 9

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

Las Vegas Algorithm

Monte Carlo Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

9 - 10

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

Las Vegas Algorithm

Monte Carlo Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

9 - 11

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

Las Vegas Algorithm

Monte Carlo Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Example:

Examples:

9 - 12

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

Las Vegas Algorithm

Monte Carlo Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Example:

Examples: RandomizedQuickSort, RandomizedSelect (Median)

9 - 13

Analysis

RandO: failure probability for 1 locker = 1/2

failure probability for k lockers = (1/2)k

success probability for k lockers = 1− 2−k

RandA: expected number of broken lockers = 1/(1/2) = 2

Las Vegas Algorithm

Monte Carlo Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Example: Karger’s randomized MinCut algorithm

Examples: RandomizedQuickSort, RandomizedSelect (Median)

10 - 1

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

10 - 2

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

10 - 3

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

10 - 4

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

10 - 5

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

10 - 6

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r. [uniformly
at random]

10 - 7

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
[uniformly
at random]

10 - 8

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

[uniformly
at random]

10 - 9

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

The algorithm has error probability ≤

[uniformly
at random]

10 - 10

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

The algorithm has error probability ≤ 2−k .

[uniformly
at random]

10 - 11

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

The algorithm has error probability ≤ 2−k .

Set k := c log2 n for some constant c > 1.

[uniformly
at random]

10 - 12

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

The algorithm has error probability ≤ 2−k .

Set k := c log2 n for some constant c > 1.

⇒ Error probability ≤

[uniformly
at random]

10 - 13

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

The algorithm has error probability ≤ 2−k .

Set k := c log2 n for some constant c > 1.

⇒ Error probability ≤ n−c

[uniformly
at random]

10 - 14

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

The algorithm has error probability ≤ 2−k .

Set k := c log2 n for some constant c > 1.

⇒ Error probability ≤ n−c , runtime ∈

[uniformly
at random]

10 - 15

Monte Carlo Example

Example V: Find large number (≥ median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.

(Actually, suffices to go through n/2 elements.)

MonteCarloFind(int[] A, int k ≥ 1)

pick a1, . . . , ak ∈ {1, . . . , n} u.a.r.

m = max{A[a1], . . . , A[ak]}
return m

The algorithm has error probability ≤ 2−k .

Set k := c log2 n for some constant c > 1.

⇒ Error probability ≤ n−c , runtime ∈O(log n)

runtime
Θ(n)

[uniformly
at random]

11 - 1

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

11 - 2

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

11 - 3

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element. Θ(n log n) time

11 - 4

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

11 - 5

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

LasVegasFindRepeated(int[] A)

11 - 6

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do

LasVegasFindRepeated(int[] A)

11 - 7

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

LasVegasFindRepeated(int[] A)

11 - 8

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

LasVegasFindRepeated(int[] A)

11 - 9

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

11 - 10

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

Algorithm always returns correct result –

11 - 11

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

Algorithm always returns correct result – but may take forever.

11 - 12

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

Algorithm always returns correct result – but may take forever.

Success probability =

11 - 13

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

Algorithm always returns correct result – but may take forever.

Success probability =
n/2

n
· n/2− 1

n − 1
≈

11 - 14

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

Algorithm always returns correct result – but may take forever.

Success probability =
n/2

n
· n/2− 1

n − 1
≈ 1

4
.

11 - 15

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

Algorithm always returns correct result – but may take forever.

Success probability =
n/2

n
· n/2− 1

n − 1
≈ 1

4
.

⇒ Expected number of iterations ≈

11 - 16

Las Vegas Example

Example VI: Find repeated element
(array of n ≥ 4 ints, n/2 distinct, n/2 identical)

Deterministic approach:

Sort and find repeated element.

Faster: Find median.

Θ(n log n) time

Θ(n) time

while true do
pick i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, both u.a.r.

if A[i] == A[j] then return A[i]

LasVegasFindRepeated(int[] A)

Algorithm always returns correct result – but may take forever.

Success probability =
n/2

n
· n/2− 1

n − 1
≈ 1

4
.

⇒ Expected number of iterations ≈ 4 ∈ O(1).

12 - 1

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X]/t.

(Markov inequality)

12 - 2

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X]/t.

(Markov inequality)

12 - 3

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X]] ≤

12 - 4

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X]] ≤ 1/t.

12 - 5

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X]] ≤ 1/t.

Let X be the running time of a Las Vegas algorithm and
f (n) = E[X] its expected running time and α > 1. Then

Pr[X > α · f (n)] ≤

12 - 6

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X]] ≤ 1/t.

Let X be the running time of a Las Vegas algorithm and
f (n) = E[X] its expected running time and α > 1. Then

Pr[X > α · f (n)] ≤ 1/α

12 - 7

From Las Vegas to Monte Carlo

Theorem.

For any non-negative random variable X and t ≥ 1,

Pr[X > t] ≤ E[X]/t.

(Markov inequality)

Equivalently,

Pr[X > t · E[X]] ≤ 1/t.

Let X be the running time of a Las Vegas algorithm and
f (n) = E[X] its expected running time and α > 1. Then

So the probability that the Las Vegas algorithm does not find a
solution in the first α · f (n) steps is less than 1/α , which is
the error probability of the respective Monte Carlo algorithm.

Pr[X > α · f (n)] ≤ 1/α

13 - 1

Closest Pair

Given a set P = {p1, . . . , pn} of points in the plane,
find a pair in

(
P
2

)
whose Euclidean distance is minimum.

13 - 2

Closest Pair

Given a set P = {p1, . . . , pn} of points in the plane,
find a pair in

(
P
2

)
whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,

worst-case runtime O(n log n).

13 - 3

Closest Pair

Given a set P = {p1, . . . , pn} of points in the plane,
find a pair in

(
P
2

)
whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,

worst-case runtime O(n log n).

Element Uniqueness Problem: Given n numbers, are they unique?

13 - 4

Closest Pair

Given a set P = {p1, . . . , pn} of points in the plane,
find a pair in

(
P
2

)
whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,

worst-case runtime O(n log n).

Element Uniqueness Problem: Given n numbers, are they unique?

Cannot be solved in o(n log n) w-c time.
(under some assumption concerning the arithmetic model)

13 - 5

Closest Pair

Given a set P = {p1, . . . , pn} of points in the plane,
find a pair in

(
P
2

)
whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,

worst-case runtime O(n log n).

Element Uniqueness Problem: Given n numbers, are they unique?

Cannot be solved in o(n log n) w-c time.

⇒ Closest Pair cannot be solved in o(n log n) w-c time.

(under some assumption concerning the arithmetic model)

(under the same assumption concerning the arithmetic model)

14 - 1

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

14 - 2

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Define:

14 - 3

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Define:

14 - 4

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

Define:

14 - 5

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

How many points in Pi−1 can lie
in the same grid cell?

Define:

14 - 6

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

How many points in Pi−1 can lie
in the same grid cell?

At most 4 (in the corners).

Define:

14 - 7

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

How many points in Pi−1 can lie
in the same grid cell?

At most 4 (in the corners).

After finding pi ’s cell, need to
check only O(1) points in vicinity.

Define:

14 - 8

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

How many points in Pi−1 can lie
in the same grid cell?

At most 4 (in the corners).

Cases: • δi < δi−1:

• δi = δi−1:

After finding pi ’s cell, need to
check only O(1) points in vicinity.

Define:

14 - 9

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

How many points in Pi−1 can lie
in the same grid cell?

At most 4 (in the corners).

Cases: • δi < δi−1:

• δi = δi−1:

After finding pi ’s cell, need to
check only O(1) points in vicinity.

Need to recompute grid in O(i) time.

Define:

14 - 10

A Randomized Incremental Algorithm

Assume: – Can use the floor function in O(1) time.

– Can use hashing in O(1) time.

Problem: Given δi−1, how can we compute δi ?

Pi = {p1, . . . , pi}
δi = distance of the closest pair in Pi .

Consider a square grid with cells of size δi−1 × δi−1:Idea:

How many points in Pi−1 can lie
in the same grid cell?

At most 4 (in the corners).

Cases: • δi < δi−1:

• δi = δi−1:

After finding pi ’s cell, need to
check only O(1) points in vicinity.

Need to recompute grid in O(i) time.

Need to store pi in its cell in O(1) time.

Define:

15 - 1

Backwards Analysis

What is the w-c running time of the algorithm?

15 - 2

Backwards Analysis

What is the w-c running time of the algorithm? Θ(n2)

15 - 3

Backwards Analysis

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize?

15 - 4

Backwards Analysis

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 5

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique:

• One point has the same smallest distance to several points:

• There are at least two disjoint closest pairs:

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 6

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:

• There are at least two disjoint closest pairs:

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 7

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs:

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 8

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs: 0 points.

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 9

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs: 0 points.

Let Xi be the work for adding pi .

⇒ E[Xi] ≤

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 10

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs: 0 points.

Let Xi be the work for adding pi .

⇒ E[Xi] ≤ 2/i · O(i) + (i − 2)/i · O(1) = O(1)

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 11

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs: 0 points.

Let X be the total work done by the algorithm.

Let Xi be the work for adding pi .

⇒ E[Xi] ≤ 2/i · O(i) + (i − 2)/i · O(1) = O(1)

⇒ E[X] =

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

15 - 12

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs: 0 points.

Let X be the total work done by the algorithm.

Let Xi be the work for adding pi .

⇒ E[Xi] ≤ 2/i · O(i) + (i − 2)/i · O(1) = O(1)

⇒ E[X] =

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

E[X1 + · · ·+ Xn]

15 - 13

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi ?

• The closest distance in Pi is unique: 2 points.

• One point has the same smallest distance to several points:
1 point.

• There are at least two disjoint closest pairs: 0 points.

Let X be the total work done by the algorithm.

Let Xi be the work for adding pi .

⇒ E[Xi] ≤ 2/i · O(i) + (i − 2)/i · O(1) = O(1)

⇒ E[X] = O(n)∈

What is the w-c running time of the algorithm? Θ(n2)
How do we randomize? Randomly permute points at beginning.

E[X1 + · · ·+ Xn] �

	Titel
	Randomized Algorithms
	Some Basics
	First Success
	Linearity of Expectation
	Using Indicator Random Variables
	Conditional Probabilities
	Las Vegas \& Monte Carlo
	Analysis
	Monte Carlo Example
	Las Vegas Example
	From Las Vegas to Monte Carlo
	Closest Pair
	A Randomized Incremental Algorithm
	Backwards Analysis

