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e are faster or use less space than deterministic algorithms in
practise,

e have theoretical runtimes beyond deterministic lower
bounds,

e are easier to implement/more elegant than deterministic
strategies,

e allow for trading runtime against output quality,

e provide a good strategy for games or search in unknown
environments.
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Some Basics

A (discrete) random variable X maps a (finite) set {2 of
possible outcomes of a random experiment to some measurable

set (2’ of observations (e.g., N or R).

Example: dice: {-

}—{1,2,3,4,56}

The expected value of a discrete random variable X is

E[X] =0 i-PrX =]

Example:

strange dice: { .

E[strange dice] = (1

E[fair dice] = (1+2+3+4+5+6)/6 =3.5

}—{1,1,1,6,6,6}

1+14+6+6-+6)/6=3.5
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First Success

Let X: {failure, success} — {0,1} be a random variable.
Let p = Pr[X = 1] be the success probability.

= q := Pr[X = 0] =1 — p is the failure probability (or rate).
Repeat experiment many times.

Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until X =1
for the first time.

= Pr[Y =j]= ¢7'p
= E[Y]= Y - tp=p- (5 @) =p-(25) =

=p-(3)=p 5= 1/p
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Let X and Y be two random variables and A € R. Then
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that indicates whether card i was guessed or not (i =1, ..., n).

X1, ..., X, are indicator random variables.
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RandA: expected number of broken lockers = 1/(1/2) = 2

RandO: failure probability for 1 locker = 1/2
failure probability for k lockers = (1/2)*
success probability for k lockers = 1 — 27K

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a
random variable.

Examples: RandomizedQuickSort, RandomizedSelect (Median)

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime
does not depend on random choices.

Example: Karger's randomized MinCut algorithm
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From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and t > 1,

Pr[X > t] < E[X]/t.
Equivalently,
Pr[X > t-E[X]] < 1/t

Let X be the running time of a Las Vegas algorithm and
f(n) = E[X] its expected running time and « > 1. Then

PrX > - f(n)] < 1/a

So the probability that the Las Vegas algorithm does not find a
solution in the first - f(n) steps is less than 1/a , which is
the error probability of the respective Monte Carlo algorithm.
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Given a set P ={p1,..., pn} of points in the plane,
find a pair in (g) whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm,
worst-case runtime O(nlog n).

Element Uniqueness Problem: Given n numbers, are they unique?
Cannot be solved in o(nlog n) w-c time.

(under some assumption concerning the arithmetic model)

= Closest Pair cannot be solved in o(nlog n) w-c time.

(under the same assumption concerning the arithmetic model)
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Problem: Given 90;_1, how can we compute 0;?
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How many points in P;_1 can lie
in the same grid cell?

At most 4 (in the corners).

After finding p;'s cell, need to
check only O(1) points in vicinity.

Cases: ® )i < dj_1: Need to recompute grid in O(/) time.
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