Advanced Algorithms

Winter term 2019/20

Lecture 4. Randomized Algorithms
(based on lecture notes of Sabine Storandt)

Randomized Algorithms

Randomized Algorithms

- are faster or use less space than deterministic algorithms in practise,

Randomized Algorithms

- are faster or use less space than deterministic algorithms in practise,
- have theoretical runtimes beyond deterministic lower bounds,

Randomized Algorithms

- are faster or use less space than deterministic algorithms in practise,
- have theoretical runtimes beyond deterministic lower bounds,
- are easier to implement/more elegant than deterministic strategies,

Randomized Algorithms

- are faster or use less space than deterministic algorithms in practise,
- have theoretical runtimes beyond deterministic lower bounds,
- are easier to implement/more elegant than deterministic strategies,
- allow for trading runtime against output quality,

Randomized Algorithms

- are faster or use less space than deterministic algorithms in practise,
- have theoretical runtimes beyond deterministic lower bounds,
- are easier to implement/more elegant than deterministic strategies,
- allow for trading runtime against output quality,
- provide a good strategy for games or search in unknown environments.

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

The expected value of a discrete random variable X is

$$
\mathrm{E}[X]=
$$

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

The expected value of a discrete random variable X is

$$
\mathbf{E}[X]=\sum_{i \in \Omega^{\prime}} i \cdot \operatorname{Pr}[X=i] .
$$

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

The expected value of a discrete random variable X is

$$
\mathbf{E}[X]=\sum_{i \in \Omega^{\prime}} i \cdot \operatorname{Pr}[X=i] .
$$

Example: $\quad \mathbf{E}[$ fair dice $]=$

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

The expected value of a discrete random variable X is

$$
\mathbf{E}[X]=\sum_{i \in \Omega^{\prime}} i \cdot \operatorname{Pr}[X=i] .
$$

Example: $\quad \mathbf{E}[$ fair dice $]=(1+2+3+4+5+6) / 6=3.5$

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

The expected value of a discrete random variable X is

$$
\mathbf{E}[X]=\sum_{i \in \Omega^{\prime}} i \cdot \operatorname{Pr}[X=i] .
$$

Example: $\quad \mathbf{E}[$ fair dice] $=(1+2+3+4+5+6) / 6=3.5$

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

The expected value of a discrete random variable X is

$$
\mathbf{E}[X]=\sum_{i \in \Omega^{\prime}} i \cdot \operatorname{Pr}[X=i] .
$$

Example: $\quad \mathbf{E}[$ fair dice] $=(1+2+3+4+5+6) / 6=3.5$

$E[$ strange dice $]=$

Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω^{\prime} of observations (e.g., \mathbb{N} or \mathbb{R}).

The expected value of a discrete random variable X is

$$
\mathbf{E}[X]=\sum_{i \in \Omega^{\prime}} i \cdot \operatorname{Pr}[X=i] .
$$

Example: $\quad \mathbf{E}[$ fair dice $]=(1+2+3+4+5+6) / 6=3.5$

$$
\mathbf{E}[\text { strange dice }]=(1+1+1+6+6+6) / 6=3.5
$$

First Success

Let $X:\{$ failure, success $\} \rightarrow\{0,1\}$ be a random variable.

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable. Let $p=\operatorname{Pr}[X=1]$ be the success probability.

First Success

Let $X:\{$ failure, success $\} \rightarrow\{0,1\}$ be a random variable. Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.
$\Rightarrow \operatorname{Pr}[Y=j]=$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.
$\Rightarrow \operatorname{Pr}[Y=j]=q^{j-1} p$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.
$\Rightarrow \operatorname{Pr}[Y=j]=q^{j-1} p$
$\Rightarrow \mathbf{E}[Y]=$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.

$$
\begin{aligned}
& \Rightarrow \operatorname{Pr}[Y=j]=q^{j-1} p \\
& \Rightarrow \mathbf{E}[Y]=\sum_{j=1}^{\infty} j \cdot q^{j-1} p=
\end{aligned}
$$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.

$$
\begin{aligned}
& \Rightarrow \operatorname{Pr}[Y=j]=q^{j-1} p \\
& \Rightarrow \mathbf{E}[Y]=\sum_{j=1}^{\infty} j \cdot q^{j-1} p=p \cdot\left(\sum_{j=1}^{\infty} q^{j}\right)^{\prime}=
\end{aligned}
$$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.

$$
\begin{aligned}
& \Rightarrow \operatorname{Pr}[Y=j]=q^{j-1} p \\
& \Rightarrow \mathbf{E}[Y]=\sum_{j=1}^{\infty} j \cdot q^{j-1} p=p \cdot\left(\sum_{j=1}^{\infty} q^{j}\right)^{\prime}=p \cdot\left(\frac{1}{1-q}\right)^{\prime}=
\end{aligned}
$$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.

$$
\begin{aligned}
\Rightarrow \operatorname{Pr}[Y & =j]=q^{j-1} p \\
\Rightarrow \mathbf{E}[Y] & =\sum_{j=1}^{\infty} j \cdot q^{j-1} p=p \cdot\left(\sum_{j=1}^{\infty} q^{j}\right)^{\prime}=p \cdot\left(\frac{1}{1-q}\right)^{\prime}= \\
& =p \cdot\left(\frac{1}{p}\right)^{\prime}=
\end{aligned}
$$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.

$$
\begin{aligned}
\Rightarrow \operatorname{Pr}[Y & =j]=q^{j-1} p \\
\Rightarrow \mathbf{E}[Y] & =\sum_{j=1}^{\infty} j \cdot q^{j-1} p=p \cdot\left(\sum_{j=1}^{\infty} q^{j}\right)^{\prime}=p \cdot\left(\frac{1}{1-q}\right)^{\prime}= \\
& =p \cdot\left(\frac{1}{p}\right)^{\prime}=p \cdot \frac{1}{p^{2}}=
\end{aligned}
$$

First Success

Let X : \{failure, success $\} \rightarrow\{0,1\}$ be a random variable.
Let $p=\operatorname{Pr}[X=1]$ be the success probability.
$\Rightarrow q:=\operatorname{Pr}[X=0]=1-p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.
Random variable Y counts the number of rounds until $X=1$ for the first time.

$$
\begin{align*}
\Rightarrow \operatorname{Pr}[Y & =j]=q^{j-1} p \\
\Rightarrow \mathbf{E}[Y] & =\sum_{j=1}^{\infty} j \cdot q^{j-1} p=p \cdot\left(\sum_{j=1}^{\infty} q^{j}\right)^{\prime}=p \cdot\left(\frac{1}{1-q}\right)^{\prime}= \\
& =p \cdot\left(\frac{1}{p}\right)^{\prime}=p \cdot \frac{1}{p^{2}}=1 / p
\end{align*}
$$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables
Example I: Guessing cards (without memory).

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables
Example I: Guessing cards (without memory). Deck of n cards.

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$.

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=_{\text {here }}$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$
Let X count the number of correct guesses.

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$
Let X count the number of correct guesses.
$\Rightarrow \quad X=$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$
Let X count the number of correct guesses.
$\Rightarrow \quad X=X_{1}+\cdots+X_{n}$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$
Let X count the number of correct guesses.
$\Rightarrow \quad X=X_{1}+\cdots+X_{n}$
$\Rightarrow \mathbf{E}[X]=$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=$ here $1 / n$
Let X count the number of correct guesses.
$\Rightarrow \quad X=X_{1}+\cdots+X_{n}$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$
Let X count the number of correct guesses.
$\Rightarrow \quad X=X_{1}+\cdots+X_{n}$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]=$

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$
Let X count the number of correct guesses.
$\Rightarrow \quad X=X_{1}+\cdots+X_{n}$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]=n \cdot \frac{1}{n}=1$.

Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then $\mathbf{E}[X+\lambda \cdot Y]=\mathbf{E}[X]+\lambda \cdot \mathbf{E}[Y]$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards. Let $X_{i}:\{$ guessed, not guessed $\} \rightarrow\{0,1\}$ be a random variable that indicates whether card i was guessed or not $(i=1, \ldots, n)$. X_{1}, \ldots, X_{n} are indicator random variables.
$\Rightarrow \mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]={ }_{\text {here }} 1 / n$
Let X count the number of correct guesses.
$\Rightarrow \quad X=X_{1}+\cdots+X_{n}$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]=n \cdot \frac{1}{n}=1$.
Note that this is independent of n !

Using Indicator Random Variables

Example II: Guessing cards (with memory).

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number;

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number;

$$
\leq H_{n} \leq
$$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n)$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies?

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X)

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie.

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose.

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=(n-i+1) / n$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=(n-i+1) / n \Rightarrow \mathbf{E}\left[X_{i}\right]=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=(n-i+1) / n \Rightarrow \mathbf{E}\left[X_{i}\right]=n /(n-i+1)$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=(n-i+1) / n \Rightarrow \mathbf{E}\left[X_{i}\right]=n /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=(n-i+1) / n \Rightarrow \mathbf{E}\left[X_{i}\right]=n /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$
H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X)
Assume: Each time you get a random goodie. You can't choose.
$X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=(n-i+1) / n \Rightarrow \mathbf{E}\left[X_{i}\right]=n /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=n\left(\frac{1}{n}+\cdots+\frac{1}{2}+1\right)=$

Using Indicator Random Variables

Example II: Guessing cards (with memory).
Now $\operatorname{Pr}\left[X_{i}=1\right]$ depends on the current size of the deck.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1=H_{n}$ H_{n} is the n-th harmonic number; $\ln (n+1) \leq H_{n} \leq \ln (n)+1$.
$\Rightarrow \mathbf{E}[X]=H_{n} \in \Theta(\log n) \quad$ Note that this does depend on $n!$
Example III: Collecting goodies
How often do you have to shop to collect all n goodies? (X) Assume: Each time you get a random goodie. You can't choose. $X_{i}:=$ number of times you must shop to get i-th new goodie.
$\operatorname{Pr}\left[X_{i}=1\right]=(n-i+1) / n \Rightarrow \mathbf{E}\left[X_{i}\right]=n /(n-i+1)$
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=n\left(\frac{1}{n}+\cdots+\frac{1}{2}+1\right)=\Theta(n \log n)$

Conditional Probabilities

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$.
Randomization removes the adversary.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$. Randomization removes the adversary.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$. Randomization removes the adversary.

RandA: - Compute random permutation of the lockers.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$.
Randomization removes the adversary.
RandA: - Compute random permutation of the lockers.

- Break lockers in this order.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$.
Randomization removes the adversary.
RandA: - Compute random permutation of the lockers.

- Break lockers in this order.

We break $n / 2+1$ lockers in $w-c$, but expect to break fewer.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$.
Randomization removes the adversary.
RandA: - Compute random permutation of the lockers.

- Break lockers in this order.

We break $n / 2+1$ lockers in $w-c$, but expect to break fewer.
RandO: - Compute random permutation of $k \leq \frac{n}{2}+1$ lockers.

- Break lockers in this order.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$.
Randomization removes the adversary.
RandA: - Compute random permutation of the lockers.

- Break lockers in this order.

We break $n / 2+1$ lockers in $w-c$, but expect to break fewer.
RandO: - Compute random permutation of $k \leq \frac{n}{2}+1$ lockers.

- Break lockers in this order.

We don't damage so many lockers, but may not find any drugs.

Las Vegas \& Monte Carlo

Example IV: Drug detection (n lockers, $n / 2$ with drugs)
Deterministic approach:
Need to break $n / 2+1$ lockers in the worst case.
If students know your strategy, you must break exactly $n / 2+1$.
Randomization removes the adversary.
RandA: - Compute random permutation of the lockers.

- Break lockers in this order. Las Vegas Algorithm

We break $n / 2+1$ lockers in $w-c$, but expect to break fewer.
RandO: - Compute random permutation of $k \leq \frac{n}{2}+1$ lockers.

- Break lockers in this order. Monte Carlo Algorithm

We don't damage so many lockers, but may not find any drugs.

Analysis

RandA: expected number of broken lockers $=$

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=$

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=$

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=1-2^{-k}$

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=1-2^{-k}$

Las Vegas Algorithm

Monte Carlo Algorithm

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=1-2^{-k}$

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a random variable.

Monte Carlo Algorithm

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=1-2^{-k}$

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a random variable.

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime does not depend on random choices.

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=1-2^{-k}$

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a random variable.
Examples:

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime does not depend on random choices.
Example:

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=1-2^{-k}$

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a random variable.
Examples: RandomizedQuickSort, RandomizedSelect (Median)

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime does not depend on random choices.
Example:

Analysis

RandA: expected number of broken lockers $=1 /(1 / 2)=2$
RandO: failure probability for 1 locker $=1 / 2$
failure probability for k lockers $=(1 / 2)^{k}$
success probability for k lockers $=1-2^{-k}$

Las Vegas Algorithm

Algorithm returns correct result, but resource (runtime) is a random variable.
Examples: RandomizedQuickSort, RandomizedSelect (Median)

Monte Carlo Algorithm

Algorithm errs or fails with certain probability, but runtime does not depend on random choices.
Example: Karger's randomized MinCut algorithm

Monte Carlo Example

Example V : Find large number (\geq median, in array of n ints)

Monte Carlo Example

Example V : Find large number (\geq median, in array of n ints)
Deterministic approach:

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.

Monte Carlo Example

Example V : Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)

Monte Carlo Example

Example V : Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\begin{aligned} & \text { Lunformly } \\ & \text { art andom] }\end{aligned}$

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\begin{aligned} & \text { Luniformly } \\ & \text { at andom] }\end{aligned}$
$m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\begin{aligned} & \text { Lunformly } \\ & \text { at andom] }\end{aligned}$ $m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $: \begin{aligned} & \text { Luniformly } \\ & \text { at andom] }\end{aligned}$ $m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m
The algorithm has error probability \leq

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $: \begin{aligned} & \text { Luniformly } \\ & \text { at andom] }\end{aligned}$ $m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m
The algorithm has error probability $\leq 2^{-k}$.

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\begin{aligned} & \text { Lunformly } \\ & \text { art andom] }\end{aligned}$ $m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m
The algorithm has error probability $\leq 2^{-k}$.
Set $k:=c \log _{2} n$ for some constant $c>1$.

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\begin{aligned} & \text { Lunformly } \\ & \text { art andom] }\end{aligned}$
$m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m
The algorithm has error probability $\leq 2^{-k}$.
Set $k:=c \log _{2} n$ for some constant $c>1$.
\Rightarrow Error probability \leq

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\left\{\begin{array}{l}\text { Uniformly } \\ \text { ar andom] }\end{array}\right.$
$m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m
The algorithm has error probability $\leq 2^{-k}$.
Set $k:=c \log _{2} n$ for some constant $c>1$.
\Rightarrow Error probability $\leq n^{-c}$

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\begin{aligned} & \text { Uniformly } \\ & \text { art andom] }\end{aligned}$
$m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m
The algorithm has error probability $\leq 2^{-k}$.
Set $k:=c \log _{2} n$ for some constant $c>1$.
\Rightarrow Error probability $\leq n^{-c}$, runtime \in

Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)
Deterministic approach:
Go through all elements, return maximum.
(Actually, suffices to go through $n / 2$ elements.)
runtime
$\Theta(n)$

MonteCarloFind(int[] A, int $k \geq 1$)
pick $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ u.a.r. $\begin{aligned} & \text { Luniformly } \\ & \text { art andom }\end{aligned}$
$m=\max \left\{A\left[a_{1}\right], \ldots, A\left[a_{k}\right]\right\}$
return m
The algorithm has error probability $\leq 2^{-k}$.
Set $k:=c \log _{2} n$ for some constant $c>1$.
\Rightarrow Error probability $\leq n^{-c}$, runtime $\in O(\log n)$

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time Faster: Find median. $\Theta(n)$ time

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median.
$\Theta(n)$ time
LasVegasFindRepeated(int[] A)

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time
LasVegasFindRepeated(int[] A)
while true do

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time

LasVegasFindRepeated(int[] A)
while true do
pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r.

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time

LasVegasFindRepeated(int[] A)
while true do
pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r.

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time

LasVegasFindRepeated(int[] A)
while true do
pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time
LasVegasFindRepeated(int[] A)
while true do pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Algorithm always returns correct result -

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time
LasVegasFindRepeated(int[] A)
while true do pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Algorithm always returns correct result - but may take forever.

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time
LasVegasFindRepeated(int[] A)
while true do pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Algorithm always returns correct result - but may take forever.
Success probability $=$

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time
LasVegasFindRepeated(int[] A)
while true do pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Algorithm always returns correct result - but may take forever.
Success probability $=\frac{n / 2}{n} \cdot \frac{n / 2-1}{n-1} \approx$

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time
LasVegasFindRepeated(int[] A)
while true do
pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Algorithm always returns correct result - but may take forever.
Success probability $=\frac{n / 2}{n} \cdot \frac{n / 2-1}{n-1} \approx \frac{1}{4}$.

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time
LasVegasFindRepeated(int[] A)
while true do
pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Algorithm always returns correct result - but may take forever.
Success probability $=\frac{n / 2}{n} \cdot \frac{n / 2-1}{n-1} \approx \frac{1}{4}$.
\Rightarrow Expected number of iterations \approx

Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n / 2$ distinct, $n / 2$ identical)
Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median.
LasVegasFindRepeated(int[] A)
while true do
pick $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\} \backslash\{i\}$, both u.a.r. if $A[i]==A[j]$ then return $A[i]$

Algorithm always returns correct result - but may take forever.
Success probability $=\frac{n / 2}{n} \cdot \frac{n / 2-1}{n-1} \approx \frac{1}{4}$.
\Rightarrow Expected number of iterations $\approx 4 \in O(1)$.

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and $t \geq 1$,

$$
\operatorname{Pr}[X>t] \leq
$$

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and $t \geq 1$,

$$
\operatorname{Pr}[X>t] \leq \mathbf{E}[X] / t
$$

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and $t \geq 1$,

$$
\operatorname{Pr}[X>t] \leq \mathbf{E}[X] / t
$$

Equivalently,

$$
\operatorname{Pr}[X>t \cdot \mathbf{E}[X]] \leq
$$

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and $t \geq 1$,

$$
\operatorname{Pr}[X>t] \leq \mathbf{E}[X] / t
$$

Equivalently,

$$
\operatorname{Pr}[X>t \cdot \mathbf{E}[X]] \leq 1 / t
$$

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and $t \geq 1$,

$$
\operatorname{Pr}[X>t] \leq \mathbf{E}[X] / t
$$

Equivalently,

$$
\operatorname{Pr}[X>t \cdot \mathbf{E}[X]] \leq 1 / t
$$

Let X be the running time of a Las Vegas algorithm and $f(n)=\mathbf{E}[X]$ its expected running time and $\alpha>1$. Then

$$
\operatorname{Pr}[X>\alpha \cdot f(n)] \leq
$$

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and $t \geq 1$,

$$
\operatorname{Pr}[X>t] \leq \mathbf{E}[X] / t
$$

Equivalently,

$$
\operatorname{Pr}[X>t \cdot \mathbf{E}[X]] \leq 1 / t
$$

Let X be the running time of a Las Vegas algorithm and $f(n)=\mathbf{E}[X]$ its expected running time and $\alpha>1$. Then

$$
\operatorname{Pr}[X>\alpha \cdot f(n)] \leq 1 / \alpha
$$

From Las Vegas to Monte Carlo

Theorem. (Markov inequality)
For any non-negative random variable X and $t \geq 1$,

$$
\operatorname{Pr}[X>t] \leq \mathbf{E}[X] / t
$$

Equivalently,

$$
\operatorname{Pr}[X>t \cdot \mathbf{E}[X]] \leq 1 / t
$$

Let X be the running time of a Las Vegas algorithm and $f(n)=\mathbf{E}[X]$ its expected running time and $\alpha>1$. Then

$$
\operatorname{Pr}[X>\alpha \cdot f(n)] \leq 1 / \alpha
$$

So the probability that the Las Vegas algorithm does not find a solution in the first $\alpha \cdot f(n)$ steps is less than $1 / \alpha$, which is the error probability of the respective Monte Carlo algorithm.

Closest Pair

Given a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of points in the plane, find a pair in $\binom{P}{2}$ whose Euclidean distance is minimum.

Closest Pair

Given a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of points in the plane, find a pair in $\binom{P}{2}$ whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm, worst-case runtime $O(n \log n)$.

Closest Pair

Given a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of points in the plane, find a pair in $\binom{P}{2}$ whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm, worst-case runtime $O(n \log n)$.

Element Uniqueness Problem: Given n numbers, are they unique?

Closest Pair

Given a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of points in the plane, find a pair in $\binom{P}{2}$ whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm, worst-case runtime $O(n \log n)$.

Element Uniqueness Problem: Given n numbers, are they unique? Cannot be solved in $o(n \log n) w-c$ time.

Closest Pair

Given a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of points in the plane, find a pair in $\binom{P}{2}$ whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm, worst-case runtime $O(n \log n)$.

Element Uniqueness Problem: Given n numbers, are they unique? Cannot be solved in o($n \log n$) w-c time.
(under some assumption concerning the arithmetic model)
\Rightarrow Closest Pair cannot be solved in $o(n \log n) w-c$ time.

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?
Idea: \quad Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?
Idea: \quad Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:
 How many points in P_{i-1} can lie in the same grid cell?

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?
Idea: \quad Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:
 How many points in P_{i-1} can lie in the same grid cell?
At most 4 (in the corners).

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?
Idea: \quad Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:
 How many points in P_{i-1} can lie in the same grid cell?
At most 4 (in the corners).
After finding p_{i} 's cell, need to check only $O(1)$ points in vicinity.

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?
Idea: \quad Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:
 How many points in P_{i-1} can lie in the same grid cell?
At most 4 (in the corners).
After finding p_{i} 's cell, need to check only $O(1)$ points in vicinity.
Cases: $\quad \delta_{i}<\delta_{i-1}$:

- $\delta_{i}=\delta_{i-1}$:

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?
Idea: \quad Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:
 How many points in P_{i-1} can lie in the same grid cell?
At most 4 (in the corners).
After finding p_{i} 's cell, need to check only $O(1)$ points in vicinity.

Cases: - $\delta_{i}<\delta_{i-1}$: Need to recompute grid in $O(i)$ time.

- $\delta_{i}=\delta_{i-1}$:

A Randomized Incremental Algorithm

Assume: - Can use the floor function in $O(1)$ time.

- Can use hashing in $O(1)$ time.

Define: $\quad P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$
$\delta_{i}=$ distance of the closest pair in P_{i}.
Problem: Given δ_{i-1}, how can we compute δ_{i} ?
Idea: \quad Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:
 How many points in P_{i-1} can lie in the same grid cell?
At most 4 (in the corners).
After finding p_{i} 's cell, need to check only $O(1)$ points in vicinity.

Cases:

- $\delta_{i}<\delta_{i-1}$: Need to recompute grid in $O(i)$ time.
- $\delta_{i}=\delta_{i-1}$: Need to store p_{i} in its cell in $O(1)$ time.

Backwards Analysis

What is the w-c running time of the algorithm?

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize?

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning.

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:
- One point has the same smallest distance to several points:
- There are at least two disjoint closest pairs:

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:
- There are at least two disjoint closest pairs:

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:

1 point.

- There are at least two disjoint closest pairs:

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:

1 point.

- There are at least two disjoint closest pairs:

0 points.

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:

1 point.

- There are at least two disjoint closest pairs:

0 points.
Let X_{i} be the work for adding p_{i}.
$\Rightarrow \mathbf{E}\left[X_{i}\right] \leq$

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:

1 point.

- There are at least two disjoint closest pairs:

0 points.
Let X_{i} be the work for adding p_{i}.
$\Rightarrow \mathbf{E}\left[X_{i}\right] \leq 2 / i \cdot O(i)+(i-2) / i \cdot O(1)=O(1)$

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:

1 point.

- There are at least two disjoint closest pairs:

0 points.
Let X_{i} be the work for adding p_{i}.
$\Rightarrow \mathbf{E}\left[X_{i}\right] \leq 2 / i \cdot O(i)+(i-2) / i \cdot O(1)=O(1)$
Let X be the total work done by the algorithm.
$\Rightarrow \mathbf{E}[X]=$

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:

1 point.

- There are at least two disjoint closest pairs:

0 points.
Let X_{i} be the work for adding p_{i}.
$\Rightarrow \mathbf{E}\left[X_{i}\right] \leq 2 / i \cdot O(i)+(i-2) / i \cdot O(1)=O(1)$
Let X be the total work done by the algorithm.
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]$

Backwards Analysis

What is the w-c running time of the algorithm? $\Theta\left(n^{2}\right)$ How do we randomize? Randomly permute points at beginning. How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- The closest distance in P_{i} is unique:

2 points.

- One point has the same smallest distance to several points:

1 point.

- There are at least two disjoint closest pairs:

0 points.
Let X_{i} be the work for adding p_{i}.
$\Rightarrow \mathbf{E}\left[X_{i}\right] \leq 2 / i \cdot O(i)+(i-2) / i \cdot O(1)=O(1)$
Let X be the total work done by the algorithm.
$\Rightarrow \mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right] \in O(n)$

