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Intersecting Convex Regions

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

leftEdgeC1

rightEdgeC1

leftEdgeC2

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

Is > 4 possible?
No!

rightEdgeC2

Lright(C2)

How many segments on `?

How does this help us?
 sweep-line algorithm!
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Sweep-Line Algorithm

C1 C2

events

Done, since we have
finished C!
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1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺
nextEvent() : either, next point (by ≺), or the intersection
pt. of two active segments (below the sweep-line)
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`

`

Also, maintain the new convex hull.

... runtime? O(1), since num. active segments ≤ 4 :)
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{
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x ≥ M otherwise,

for some sufficiently large M

m1

m2

m2 =

{
y ≤ M if cy > 0,
y ≥ M otherwise.

• Take the lexicographically largest solution.
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c

Idea: M based on obj.fct. c.
see §4.5 of CG: A&A for more
on unbounded LPs.



12 - 1

Incremental Approach
Idea: Don’t compute

⋂
H, but just one (optimal) point!



12 - 2

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!



12 - 3

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!



12 - 4

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!



12 - 5

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!



12 - 6

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!



12 - 7

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!



12 - 8

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!



12 - 9

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi



12 - 10

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi



12 - 11

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi



12 - 12

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi



12 - 13

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi



12 - 14

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c



12 - 15

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)



12 - 16

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)



12 - 17

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)



12 - 18

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)



12 - 19

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)



12 - 20

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)



12 - 21

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

= O(n2) :-(

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)



12 - 22

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

= O(n2) :-(

Randomized
Idea: Don’t compute

⋂
H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)



12 - 23

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

= O(n2) :-(

Randomized

compute random permutation of H

Idea: Don’t compute
⋂

H, but just one (optimal) point!
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Proof technique:
Backward analysis!
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Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.

Running time TIH(n) = 2TIH(n/2) + TICR(n)

here: nI ≤

≤ 2TIH(n/2) + O(n log n)

∈ O(n log2 n)
As this is more general, it is unsurprisingly worse ... ∗

 Better to use specialized algorithm for intersecting
convex regions/polygons

CG: A & A §2

O(n log n) for ICR

∗ it can happen sometimes that general algorithms give optimal runtimes for special cases
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