Advanced Algorithms

Winter term 2019/20
Lecture 3. 2D Linear Programming via sweep-lines and randomization
Source: CG: A\&A $\S 4$

Maximizing Profit

You are the boss of a small company that produces two products, P_{1} and P_{2}. If you produce x_{1} units of P_{1} and x_{2} units of P_{2}, your profit in $€$ is

$$
G\left(x_{1}, x_{2}\right)=300 x_{1}+500 x_{2}
$$

Maximizing Profit

You are the boss of a small company that produces two products, P_{1} and P_{2}. If you produce x_{1} units of P_{1} and x_{2} units of P_{2}, your profit in $€$ is

$$
G\left(x_{1}, x_{2}\right)=300 x_{1}+500 x_{2}
$$

Your production runs on three machines M_{A}, M_{B}, and M_{C} with the following capacities:

$$
\begin{array}{lrl}
M_{A}: & 4 x_{1}+11 x_{2} & \leq 880 \\
M_{B}: & x_{1}+x_{2} & \leq 150 \\
M_{C}: & & x_{2} \leq 60
\end{array}
$$

Maximizing Profit

You are the boss of a small company that produces two products, P_{1} and P_{2}. If you produce x_{1} units of P_{1} and x_{2} units of P_{2}, your profit in $€$ is

$$
G\left(x_{1}, x_{2}\right)=300 x_{1}+500 x_{2}
$$

Your production runs on three machines M_{A}, M_{B}, and M_{C} with the following capacities:

$$
\begin{array}{lrl}
M_{A}: & 4 x_{1}+11 x_{2} & \leq 880 \\
M_{B}: & x_{1}+ & x_{2} \leq 150 \\
M_{C}: & & x_{2} \leq 60
\end{array}
$$

Which choice of $\left(x_{1}, x_{2}\right)$ maximizes your profit?

The Answer

linear constraints:

$$
\begin{array}{lr}
M_{A}: & 4 x_{1}+11 x_{2} \leq 880 \\
M_{B}: & x_{1}+\quad x_{2} \leq 150 \\
M_{C}: & \\
x_{2} \leq 60
\end{array}
$$

The Answer x_{2}

The Answer x_{2}

The Answer x_{2}
150
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+\quad x_{2} \leq 150$
$M_{C}:$	$x_{2} \leq 60$

The Answer
x_{2} x_{2}
150
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq$

The Answer

The Answer
x_{2} x_{2}
150
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$	
$M_{B}:$	$x_{1}+$	$x_{2} \leq 150$
$M_{C}:$	$x_{2} \leq 60$	
		$x_{1} \geq$
		$x_{2} \geq$
		0

set of

feasible solutions
$\begin{array}{llllll}0 & 50 & 100 & 150 & 200 & x_{1}\end{array}$

The Answer x_{2} x_{2}
150
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq$

linear objective fct.:

$$
G\left(x_{1}, x_{2}\right)=300 x_{1}+500 x_{2}
$$

set of

feasible
solutions
$\begin{array}{llllll}0 & 50 & 100 & 150 & 200 & x_{1}\end{array}$

The Answer x_{2} 150

The Answer

linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq$

linear objective fct.:

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

set of
feasible
solutions
$\begin{array}{lccc}50 & 100 & 150 & 200 \\ \text {,,iso-profit line" } & \text { (orthogonal to }\binom{300}{500} \text {) }\end{array}$

The Answer x_{2}

linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq$

linear objective fct.:

$$
G\left(x_{1}, x_{2}\right)=300 x_{1}+500 x_{2}
$$

$$
=(300,500)\binom{x_{1}}{x_{2}}
$$

set of
feàsible
solutions
$\begin{array}{lccc}50 & 100 & 150 & 200 \\ \text {,,iso-profit line }\end{array}$

The Answer x_{2} 150

linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq$

linear objective fct.:

$$
G\left(x_{1}, x_{2}\right)=300 x_{1}+500 x_{2}
$$

$$
=(300,500)\binom{x_{1}}{x_{2}}
$$

set of feàsible solutions
$\begin{array}{lccc}50 & 100 & 150 & 200 \\ \text {,,iso-profit line" } & \text { (orthogonal to }\binom{300}{500} \text {) }\end{array}$

The Answer
x_{2}

The Answer
x_{2}

The Answer

25000 set of $\quad \partial M_{A} \cap \partial M_{B}=$
linear objective fct.:

$$
=
$$

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$	
$M_{B}:$	$x_{1}+$	$x_{2} \leq 150$
$M_{C}:$	$x_{2} \leq 60$	
		$x_{1} \geq 0$
		$x_{2} \geq$

$$
\begin{array}{ccc}
1 & \begin{array}{c}
\text { feàsibl } \\
0
\end{array} & \begin{array}{c}
\text { solutic } \\
0
\end{array} \\
\hline
\end{array}
$$

50
„,iso-profit line" (orthogonal to $\binom{300}{500}$)

The Answer

$$
\begin{array}{lr}
\hline M_{A}: & 4 x_{1}+11 x_{2} \leq 880 \\
\hline M_{B}: & x_{1}+r \\
x_{2} \leq 150 \\
\hline M_{C}: & x_{2} \leq 60 \\
\hline & \\
& x_{1} \geq 0 \\
& \\
& x_{2} \geq
\end{array}
$$

TSO 000 - set of feàsible solutions

50
,,iso-profit line" (orthogonal to $\binom{300}{500}$)
linear objective fct.:

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

The Answer

$$
\begin{array}{lr}
\hline M_{A}: & 4 x_{1}+11 x_{2} \leq 880 \\
\hline M_{B}: & x_{1}+r \\
x_{2} \leq 150 \\
\hline M_{C}: & x_{2} \leq 60 \\
\hline & \\
& x_{1} \geq 0 \\
& \\
& x_{2} \geq
\end{array}
$$

linear objective fct.:

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

$$
25050-\because \ddots \text { set of } \because \because \ddots \cdot G(110,40)=
$$

solutions
„iso-profit line" (orthogonal to $\binom{300}{500}$)

The Answer

$75,050-\because \because \ddots$, set of
feàsible solutions

50100
,,iso-profit line" (orthogonal to $\binom{300}{500}$)

The Answer

$75,050-\because \because \ddots$ set of feàsible solutions

50
linear objective fct.:
linear constraints:

$$
G(110,40)=53,000
$$

„iso-profit line" (orthogonal to $\binom{300}{500}$)

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

$$
\begin{array}{|lr}
\hline M_{A}: & 4 x_{1}+11 x_{2} \leq 880 \\
\hline M_{B}: & x_{1}+r \\
\hline
\end{array}
$$

The Answer
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+r$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq$

linear objective fct.:

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

7, $050-\because \ddots$ set of
$G(110,40)=53,000$ feàsible solutions

,,iso-profit line" (orthogonal to $\binom{300}{500}$)

The Answer

The Answer

The Answer
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq 0$

\end{array}\right.\)
linear objective fct.:

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

TS, $50-\because \ddots$ set of
$G(110,40)=53,000$
feàsible
solutions
$50 \quad 100$
„iso-profit line" (orthogonal to $\binom{300}{500}$)

The Answer
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$
$M_{B}:$	$x_{1}+$
$x_{2} \leq 150$	
$M_{C}:$	$x_{2} \leq 60$
	$x_{1} \geq 0$
	$x_{2} \geq 0$

\end{array}\right.\)
linear objective fct.: \quad maximize $c^{\mathrm{T}} x$

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

25, $50-\because \ddots$ set of
$G(110,40)=53,000$
feàsible
solutions

50100
„iso-profit line" (orthogonal to $\binom{300}{500}$)

The Answer
linear constraints:
$\left.\begin{array}{|lrr|}\hline M_{A}: & 4 x_{1}+11 x_{2} \leq 880 \\ \hline M_{B}: & x_{1}+ & x_{2} \leq 150 \\ \hline M_{C}: & x_{2} \leq 60 \\ \hline & x_{1} \geq 0 & \\ & x_{2} \geq & 0\end{array}\right) A x \leq b$
linear objective fct.: \quad maximize $c^{T} x$

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

${ }^{2}=050-\because \ddots$ set of feàsible solutions tive fct. given constraints

The Answer
linear constraints:

$M_{A}:$	$4 x_{1}+11 x_{2} \leq 880$	
$M_{B}:$	$x_{1}+$	$x_{2} \leq 150$
$M_{C}:$	$x_{2} \leq 60$	
	$x_{1} \geq 0$	
	$x_{2} \geq 0$	
		$x \geq 0$

linear objective fct.: \quad maximize $c^{\mathrm{T}} x$

$$
\begin{aligned}
G\left(x_{1}, x_{2}\right) & =300 x_{1}+500 x_{2} \\
& =(300,500)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

${ }^{2}=050-\because \ddots$ set of
feàsible solutions $=$ maximum value of objec$=\max \left\{c^{\mathrm{T}} x \mid A x \leq b, x \geq 0\right\}$
„iso-profit line" (orthogonal to $\binom{300}{500}$)

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method [Khatchiyan '79]

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
- Ellipsoid method
- Inner-point method [Karmakar' 84]

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
- Ellipsoid method
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
- Ellipsoid method
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
[Khatchiyan '79]

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]

$\cap H=\varnothing$

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]

$\cap H=\varnothing$

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]

$\cap H=\varnothing \quad \cap H$ unbnd. in dir. c

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]

$\cap H=\varnothing \quad \cap H$ unbnd. in dir. c

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]

$\cap H=\varnothing \quad \cap H$ unbnd. in dir. c

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method
- Inner-point method
[Khatchiyan '79]
[Karmakar' 84]
Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]
$\cap H$ bounded.

$\cap H=\varnothing \quad \cap H$ unbnd. in dir. c

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
- Ellipsoid method
- Inner-point method
[Dantzig '47]
[Khatchiyan '79]
[Karmakar' 84]
Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]
$\cap H$ bounded.

$\cap H=\varnothing$

$\cap H$ unbnd. in dir. c

set of optima: segment

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method
- Inner-point method
[Khatchiyan '79]
[Karmakar' 84]
Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]
$\cap H$ bounded.

$\cap H=\varnothing$

set of optima: segment vs. point

First Approach

- compute $\cap H$ iteratively

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\bigcap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do
$\left\lfloor C \leftarrow C \cap h_{i}\right.$
return C

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do
$\left\lfloor C \leftarrow C \cap h_{i}\right.$
return C
Running time:

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do
$L C \leftarrow C \cap h_{i}$
return C
How??
Running time: $T_{\mathrm{IH}}(n)=n$.

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do

$$
\left\lfloor C \leftarrow C \cap h_{i}\right.
$$

return C
Running time: $T_{\mathrm{IH}}(n)=n$.
$C:=$ chain of line segments $\left(s_{1}, \ldots, s_{t}\right)$

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do

$$
C \leftarrow C \cap h_{i}
$$

return C
Running time: $T_{\mathrm{IH}}(n)=n$.
$C:=$ chain of line segments $\left(s_{1}, \ldots, s_{t}\right)$

Walk around C to find $s_{j}, s_{j^{\prime}} \in C$ intersecting h_{i}

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do

$$
\left\lfloor C \leftarrow C \cap h_{i}\right.
$$

return C
Running time: $T_{\mathrm{IH}}(n)=n$.
$C:=$ chain of line segments $\left(s_{1}, \ldots, s_{t}\right)$

Walk around C to find $s_{j}, s_{j^{\prime}} \in C$ intersecting h_{i}
Update C

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do

$$
C \leftarrow C \cap h_{i}
$$

return C
Running time: $T_{\mathrm{IH}}(n)=n \cdot O(n)$
segments $\left(s_{1}, \ldots, s_{t}\right)$

Walk around C to find $s_{j}, s_{j^{\prime}} \in C$ intersecting h_{i}
Update C

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do

$$
C \leftarrow C \cap h_{i}
$$

return C
Running time: $T_{\mathrm{IH}}(n)=n \cdot O(n)$
Total Time: $O\left(n^{2}\right):($

First Approach

- compute $\cap H$ iteratively
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
Let $H=\left(h_{1}, \ldots, h_{n}\right)$
$C \leftarrow h_{1}$
foreach i from 2 to n do

$$
C \leftarrow C \cap h_{i}
$$

return C
Running time: $T_{\mathrm{IH}}(n)=n \cdot O(n)$
Total Time: $O\left(n^{2}\right):($
Exercise: Compute $C \cap h_{i}$ faster.

Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial(\bigcap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

Second Approach

- compute $\cap H$ via divide and conquer
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time IntersectHalfplanes (H)
if $|H|=1$ then
$C \leftarrow h$, where $\{h\}=H$
else
L
return C

Second Approach

- compute $\cap H$ via divide and conquer
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)

if $|H|=1$ then
$C \leftarrow h$, where $\{h\}=H$
else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C

Second Approach

- compute $\cap H$ via divide and conquer
- walk $\partial(\cap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
 if $|H|=1$ then
 $C \leftarrow h$, where $\{h\}=H$

else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
Running time:

Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial(\bigcap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
if $|H|=1$ then
$C \leftarrow h$, where $\{h\}=H$
else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$C_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial(\bigcap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
if $|H|=1$ then
$C \leftarrow h$, where $\{h\}=H$
else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
How??
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial(\bigcap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
if $|H|=1$ then
How complex can the new region be?
$C \leftarrow h$, where $\{h\}=H$

else

split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$ $\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
How??
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial(\bigcap H)$, find vertex $x \mathrm{w} / c x$ maximum, $O(n)$ time

IntersectHalfplanes (H)
if $|H|=1$ then
$C \leftarrow h$, where $\{h\}=H$

How complex can the new region be?

else

split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$ $\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
How??
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

Intersecting Convex Regions

How does this help us?

Intersecting Convex Regions

How does this help us?
\rightsquigarrow sweep-line algorithm!
Theorem. The intersection of two convex polygonal regions can be computed in linear time.

Sweep-Line Algorithm

Sweep-Line Algorithm

sweep line

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

next event?

events

Sweep-Line Algorithm

next event?

events

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

Sweep-Line Algorithm

next event?

Sweep-Line Algorithm

next event?

Sweep-Line Algorithm

Sweep-Line Algorithm

Data Structures

1) event (-point) queue \mathcal{Q}
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. }
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. } \quad y_{p}>y_{q}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. } \quad y_{p}>y_{q}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{array}{r}
p \prec q \Leftrightarrow \text { def. } \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
p \stackrel{\imath}{\bullet}
\end{array}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[p]{ } \quad
\end{aligned}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow[q]{p}
\end{aligned}
$$

2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \frac{p_{q}}{q}
\end{aligned}
$$

Store event pts in sorted order acc. to \prec
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. } \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right)
$$

Store event pts in sorted order acc. to $\prec \quad$... linear time?
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \frac{p_{q}}{q}
\end{aligned}
$$

Store event pts in sorted order acc. to \prec nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right)
$$

Store event pts in sorted order acc. to \prec nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)
... runtime?
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right)
$$

Store event pts in sorted order acc. to \prec nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)
... runtime? $O(1)$, since num. active segments ≤ 4 :)
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. } \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right)
$$

Store event pts in sorted order acc. to \prec nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)
... runtime? $O(1)$, since num. active segments ≤ 4 :)
2) (sweep-line) status \mathcal{T}

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. } \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right)
$$

Store event pts in sorted order acc. to \prec nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)
... runtime? $O(1)$, since num. active segments $\leq 4:$)
2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order.

Data Structures

1) event (-point) queue \mathcal{Q}

$$
p \prec q \quad \Leftrightarrow \text { def. } \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right)
$$

Store event pts in sorted order acc. to \prec
nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)
... runtime? $O(1)$, since num. active segments $\leq 4:$)
2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order. Also, maintain the new convex hull.

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.
IntersectHalfplanes (H)
if $|H|=1$ then $C \leftarrow h$, where $\{h\}=H$
else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.
IntersectHalfplanes (H)
if $|H|=1$ then $C \leftarrow h$, where $\{h\}=H$
else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$
Corollary. The intersection of n half planes can be computed in $O(n \log n)$ time.

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.
IntersectHalfplanes (H)
if $|H|=1$ then $C \leftarrow h$, where $\{h\}=H$
else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$
Corollary. The intersection of n half planes can be computed in $O(n \log n)$ time.

Can we do better?

A Small Trick: Make Solution Unique

$\cap H$ bounded.

A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_{1} and m_{2}

A Small Trick: Make Solution Unique

$\cap H$ bounded.

- Add two bounding halfplanes m_{1} and m_{2}

A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_{1} and m_{2}

A Small Trick: Make Solution Unique

$\cap H$ bounded.

- Add two bounding halfplanes m_{1} and m_{2}

A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_{1} and m_{2}

$$
m_{1}=\left\{\begin{array}{ll}
x \leq M & \text { if } c_{x}>0, \\
x \geq M & \text { otherwise }
\end{array} \text { for some sufficiently large } M\right.
$$

A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_{1} and m_{2}

$$
\begin{aligned}
& m_{1}=\left\{\begin{array}{ll}
x \leq M & \text { if } c_{x}>0, \\
x \geq M & \text { otherwise },
\end{array} \text { for some sufficiently large } M\right. \\
& m_{2}= \begin{cases}y \leq M & \text { if } c_{y}>0 \\
y \geq M & \text { otherwise }\end{cases}
\end{aligned}
$$

A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_{1} and m_{2}

$$
m_{1}=\left\{\begin{array}{ll}
x \leq M & \text { if } c_{x}>0, \\
x \geq M & \text { otherwise }
\end{array} \text { for some sufficiently large } M\right.
$$

$$
m_{2}= \begin{cases}y \leq M & \text { if } c_{y}>0 \\ y \geq M & \text { otherwise }\end{cases}
$$

Idea: M based on obj.fct. c. see $\S 4.5$ of CG: A\&A for more on unbounded LPs.

A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_{1} and m_{2}

$$
\begin{aligned}
& m_{1}=\left\{\begin{array}{lll}
x \leq M & \text { if } c_{x}>0, \\
x \geq M & \text { otherwise, }
\end{array} \text { for some sufficiently large } M\right. \\
& m_{2}=\left\{\begin{array}{lll}
y \leq M & \text { if } c_{y}>0, & \text { Idea: } M \text { based on obj.fct. } c . \\
y \geq 4.5 \text { of CG: A\&A for more } \\
y & \text { otherwise. } & \text { on unbounded LPs. }
\end{array}\right.
\end{aligned}
$$

- Take the lexicographically largest solution.

A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_{1} and m_{2}

$$
\begin{aligned}
& m_{1}=\left\{\begin{array}{lll}
x \leq M & \text { if } c_{x}>0, \\
x \geq M & \text { otherwise, }
\end{array} \text { for some sufficiently large } M\right. \\
& m_{2}=\left\{\begin{array}{lll}
y \leq M & \text { if } c_{y}>0, & \text { Idea: } M \text { based on obj.fct. } c . \\
y \geq 4.5 \text { of CG: A\&A for more } \\
y & \text { otherwise. } & \text { on unbounded LPs. }
\end{array}\right.
\end{aligned}
$$

- Take the lexicographically largest solution.

A Small Trick: Make Solution Unique

$\cap H$ bounded.

- Add two bounding halfplanes m_{1} and m_{2}

$$
\begin{aligned}
& m_{1}=\left\{\begin{array}{ll}
x \leq M & \text { if } c_{x}>0, \\
x \geq M & \text { otherwise }
\end{array} \text { for some sufficiently large } M\right. \\
& m_{2}= \begin{cases}y \leq M & \text { if } c_{y}>0, \\
y \geq M & \text { otherwise } .\end{cases} \\
& \text { Idea: } M \text { based on obj.fct. } c \text {. } \\
& \text { see } \S 4.5 \text { of CG: A\&A for more } \\
& \text { on unbounded LPs. }
\end{aligned}
$$

- Take the lexicographically largest solution.
\Rightarrow Set of solutions is either empty or a uniquely defined pt.

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

$$
\begin{aligned}
& H_{0}=\left\{m_{1}, m_{2}\right\} \\
& v_{0} \leftarrow \text { corner of } m_{1} \cap m_{2}
\end{aligned}
$$

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

$$
\begin{aligned}
& H_{0}=\left\{m_{1}, m_{2}\right\} \\
& v_{0} \leftarrow \text { corner of } m_{1} \cap m_{2} \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \quad \text { if } v_{i-1} \in h_{i} \text { then }
\end{aligned}
$$

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
H0}={\mp@subsup{m}{1}{},\mp@subsup{m}{2}{}
vo}\leftarrow\mathrm{ corner of m
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
        if }\mp@subsup{v}{i-1}{}\in\mp@subsup{h}{i}{}\mathrm{ then
        vi}
        else
                vi}
    Hi}=\mp@subsup{H}{i-1}{}\cup{\mp@subsup{h}{i}{}
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
H0}={\mp@subsup{m}{1}{},\mp@subsup{m}{2}{}
vo}\leftarrow\mathrm{ corner of m
for }i\leftarrow
        if }\mp@subsup{v}{i-1}{}\in\mp@subsup{h}{i}{}\mathrm{ then
        vi}\leftarrow\mp@subsup{v}{i-1}{
        else
                vi}
    Hi}=\mp@subsup{H}{i-1}{}\cup{\mp@subsup{h}{i}{}
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
        \(v_{i} \leftarrow v_{i-1}\)
        else
                \(v_{i} \leftarrow 1\) DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
return \(v_{n}\)
```


Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
        \(v_{i} \leftarrow v_{i-1}\)
        else
                \(v_{i} \leftarrow\) 1DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
                if \(v_{i}=\) nil then
            \(L\) return nil
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
        \(v_{i} \leftarrow v_{i-1}\)
        else
                \(v_{i} \leftarrow\) 1DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
                if \(v_{i}=\) nil then
            \(L\) return nil
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
        \(v_{i} \leftarrow v_{i-1}\)
        else
                \(v_{i} \leftarrow 1\) DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
                if \(v_{i}=\) nil then
            \(L\) return nil
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
                \(v_{i} \leftarrow v_{i-1}\)
        else
                \(v_{i} \leftarrow\) 1DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
                if \(v_{i}=\) nil then
            \(L\) return nil
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
        \(v_{i} \leftarrow v_{i-1}\)
        else
                \(v_{i} \leftarrow\) 1DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
                if \(v_{i}=\) nil then
            \(L\) return nil
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
        \(v_{i} \leftarrow v_{i-1}\)
        else
                \(v_{i} \leftarrow\) 1DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
                if \(v_{i}=\) nil then
            \(\llcorner\) return nil
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$

```
\(H_{0}=\left\{m_{1}, m_{2}\right\}\)
\(v_{0} \leftarrow\) corner of \(m_{1} \cap m_{2}\)
for \(i \leftarrow 1\) to \(n\) do
        if \(v_{i-1} \in h_{i}\) then
        \(v_{i} \leftarrow v_{i-1}\)
```



```
        else
                \(v_{i} \leftarrow 1\) DBoundedLP \(\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)\)
                if \(v_{i}=\) nil then
            \(L\) return nil
    \(H_{i}=H_{i-1} \cup\left\{h_{i}\right\}\)
```

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then

$$
v_{i} \leftarrow v_{i-1}
$$

else $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\}$
return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else
 $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\}$
return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else
 $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\}$
return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else
 $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\}$
return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else

$O(1)$ $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\} O(1)$
return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else

$O(1)$ $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right) O(i)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\} O(1)$
return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else

O(1) $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right) O(i)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\} O(1)$
$\mathrm{w}-\mathrm{c}$ running time:

$$
T(n)=\sum_{i=1}^{n} O(i)=
$$

return v_{n}

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point!
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$
for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else

$O(1)$ $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right) O(i)$ if $v_{i}=$ nil then
L return nil
$H_{i}=H_{i-1} \cup\left\{h_{i}\right\} O(1)$
return v_{n}
$\mathrm{w}-\mathrm{c}$ running time:

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n} O(i)= \\
& =O\left(n^{2}\right) \quad:-(
\end{aligned}
$$

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point! Randomized
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else
 if $v_{i}=$ nil then
L return nil

$$
H_{i}=H_{i-1} \cup\left\{h_{i}\right\} O(1)
$$

return v_{n}
$\mathrm{w}-\mathrm{c}$ running time:

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n} O(i)= \\
& =O\left(n^{2}\right) \quad:-(
\end{aligned}
$$

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point! Randomized
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
compute random permutation of H
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else

$O(1)$ $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right) O(i)$ if $v_{i}=$ nil then
L return nil

$$
H_{i}=H_{i-1} \cup\left\{h_{i}\right\} O(1)
$$

return v_{n}
$\mathrm{w}-\mathrm{c}$ running time:

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n} O(i)= \\
& =O\left(n^{2}\right) \quad:-(
\end{aligned}
$$

Result
Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Result
Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is
$\mathrm{E}\left[T_{2 d}(n)\right]=$

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\mathbf{E}\left[T_{2 d}(n)\right]=\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right]
$$

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i)
\end{aligned}
$$

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \mathbf{P r}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. \quad Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i,} \\ 0 & \text { else. }\end{array}\right\}$ (indic
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.
$=$ probability that the optimal solution changes when h_{i} is removed from H_{i}.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}. and $v_{i} \in \partial h_{i}$ for $=$ probability that the optimal solution changes when h_{i} is removed from H_{i}.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.
and $v_{i} \in \partial h_{\text {for }}$ for probability that the optimal solution changes when h_{i} is removed from H_{i}.
exactly one $j<i . \quad \leq 2 / i$.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.
and $v_{i} \in \partial h_{\text {for }}$ for probability that the optimal solution changes when h_{i} is removed from H_{i}.
exactly one $j<i$.
$\leq 2 / i$. This is independent of the choice of H_{i}.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.
$=$ probability that the optimal solution changes when h_{i} is removed from H_{i}.
$\leq 2 / i$. This is independent of the choice of H_{i}.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)=O(n) .
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.
$=$ probability that the optimal solution changes when h_{i} is removed from H_{i}.
$\leq 2 / i$. This is independent of the choice of H_{i}

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random variable).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =O(n)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& =O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)=O(n) .
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.
Proof technique: $\quad=$ probability that the optimal solution changes when h_{i} is removed from H_{i}.

Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) !
Running time $T_{\mathrm{MO}}(n)=$

Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) !
Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,
where $I=\#$ intersection points.

Alt. for Intersecting Convex Regions

 \rightarrow CG: A \& A §2Use sweep-line alg. for map overlay (line-segment intersections)!
Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,
where $I=$ \# intersection points.
here: $I \leq$

Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) !
Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,

where $I=\#$ intersection points. here: $I \leq n \rightarrow O(n \log n)$ for ICR

Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) ! Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,

Running time $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

$$
\leq
$$

Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) ! Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,

Running time $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

$$
\begin{aligned}
& \leq 2 T_{\mathrm{IH}}(n / 2)+O(n \log n) \\
& \in
\end{aligned}
$$

Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) ! Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,

where $I=\#$ intersection points. here: $I \leq n \rightarrow O(n \log n)$ for ICR

Running time $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

$$
\begin{aligned}
& \leq 2 T_{\mathrm{IH}}(n / 2)+O(n \log n) \\
& \in O\left(n \log ^{2} n\right)
\end{aligned}
$$

Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) ! Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,

Running time $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

$$
\begin{aligned}
& \leq 2 T_{\mathrm{IH}}(n / 2)+O(n \log n) \\
& \in O\left(n \log ^{2} n\right)
\end{aligned}
$$

As this is more general, it is unsurprisingly worse ... *

[^0]
Alt. for Intersecting Convex Regions

\rightarrow CG: A \& A §2

Use sweep-line alg. for map overlay (line-segment intersections) ! Running time $T_{\mathrm{MO}}(n)=O((n+I) \log n)$,

Running time $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\text {ICR }}(n)$

$$
\begin{aligned}
& \leq 2 T_{\mathrm{IH}}(n / 2)+O(n \log n) \\
& \in O\left(n \log ^{2} n\right)
\end{aligned}
$$

As this is more general, it is unsurprisingly worse ... * \rightsquigarrow Better to use specialized algorithm for intersecting convex regions/polygons

[^1]
[^0]: * it can happen sometimes that general algorithms give optimal runtimes for special cases

[^1]: * it can happen sometimes that general algorithms give optimal runtimes for special cases

