1

Julius-Maximilians- Chair for Y .
UNIVERSITAT ~ INFORMATICS | I U I | f |
WURZBURG Efficient Algorithms and

Knowledge-Based Systems

Institute for Informatics

Advanced Algorithms

Winter term 2019/20

Lecture 3. 2D Linear Programming via sweep-lines and
randomization

Source: CG: A&A 34

Steven Chaplick & Alexander Wolff Chair for Computer Science I

Maximizing Profit

You are the boss of a small company that produces two
products, P; and P,. If you produce x1 units of P; and x»
units of P,, your profit in € is

G(x1,x2) = 300x7 + 500x;

Maximizing Profit

You are the boss of a small company that produces two
products, P; and P;. If you produce x; units of P; and x»
units of P,, your profit in € is

G(x1,x2) = 300x7 + 500x;

Your production runs on three machines M4, Mg, and M
with the following capacities:

MAZ 4x1 T 11X2 < 880
MB : X1 T+ X2 < 150
MC: Xy < 60

Maximizing Profit

You are the boss of a small company that produces two
products, P; and P;. If you produce x; units of P; and x»
units of P,, your profit in € is

G(x1,x2) = 300x7 + 500x;

Your production runs on three machines M4, Mg, and M
with the following capacities:

MAZ 4x1 T 11X2 < 880
MB : X1 T+ X2 < 150
MC: Xy < 60

Which choice of (x1, xp) maximizes your profit?

The Answer

XD

150

100

50

A

linear constraints:

MAI
MBZ
MC:

4X1 n

- 11x, < 880

X1

- X9 < 150
X2 < 60

The Answer

XD

150

100

50

linear constraints:

Mu: 4x; + 11x, < 880
B MB : X1 T Xy < 150
WC : X9 < 60
I —— ——— ——>
0 50 100 150 200 X1

The Answer

linear constraints:
MA .

4X1 n

- 11x, < 880

X2 < 150

ng 60

The Answer

linear constraints:
MA .

4X1 —

- 11xy < 880

X2 < 150

ng 60

The Answer linear constraints:

My: 4x1 + 11xp < 880
1 T Xy < 150

X2 < 60

x1 2> 0

xp > 0

The Answer linear constraints:
My: 4x + 11x; < 880

0 50 100 150 200 X1

The Answer linear constraints:
My: 4x + 11x; < 880

0 50 100 150 200 X1

The Answer linear constraints:

% My: 4xqy + 11x, < 880
4 Mp: x1+ xp <150
150 MC: Xy < 60
X1 Z 0
X9 Z 0
100 linear objective fct.:
G(x1,x2) = 300x7 + 500x;
50 set of
feasible
solutions
0 2

0 50 100 150 200 x

The Answer linear constraints:

% My: 4x1 + 11x, < 880
i MB . xl T X2 S 150
150 MC: Xy < 60
X1 > 0
X2 > 0
100 linear objective fct.:
G(x1,x2) = 300x7 + 500x;
= (300, 500)(2)
50 set of
feasible
solutions
0 ———————

0 50 100 150 200 x

The Answer linear constraints:

. Mpy: 4x1 + 11x; < 880
A Mp: x1+ xp <150
150 M - X2 < 60
X1 > 0
X2 > 0
100 linear objective fct.:
G(x1,x2) = 300x7 + 500x;
= (300, 500)(2)
]€00500 set of
S feasible
§oluti0ns
0 — e
50 100 150 200 X
,iso-profit line” (orthogonal to (388))

The Answer linear constraints:
My: 4x) + 11xp; < 880

X
> A Mp: x1+ xp <150
150 M - X2 < 60
X1 > 0
X9 Z 0
100 linear objective fct.:
S G(x1,x2) = 300x7 + 500x;
W0 ~ = (300,500) (')
]5:00500 Set of
€1 feasible
.....,~§OIUti(~)’nS\
0 — = e
50 100 150 200 X
,iso-profit line” (orthogonal to (ggg))

The Answer linear constraints:

o My: 4xy + 11x, < 880
fh MB : X1 T X2 < 150
150 M - X2 < 60
X1 > 0
Xy > 0
%:000 linear objective fct.:
N}
£ T G(xl,xz) = 300x1 + 500x,
'000§-- = (300, 500)(2)
]€00500 Tosetof
&1 feasible
.....,~§OIUti(~)’nS\
0 — — T+t
50 100 150 200 X
,iso-profit line” (orthogonal to (ggg))

The Answer linear constraints:
My: 4x1 + 11x, < 880

X2
! Mp: x1+ x <150
150 Mc : Yy < 60
x1 2> 0
xp > 0

:6) : . L
'000§ 3 linear objective fct.:
3 T G(x1,xp) = 300x; + 500x;
o0 — (300,500) (1)
N i _ / X9
]5:00500 Set of
&1 feasible
.. solutions
0 — — N
50 100 150 200 X

,iso-profit line” (orthogonal to (ggg))

- 13

The Answer linear constraints:
My: 4x1 + 11x, < 880

X2
! Mp: x1+ x <150
150 Mc : Yy < 60
x1 2> 0
xp > 0

:6) : . L
'000§ 3 linear objective fct.:
3 T G(x1,xp) = 300x; + 500x;
o0 — (300,500) (1)
N i _ / X9
]5:00500 Set of
&1 feasible
.. solutions
0 — — N
50 100 150 200 X

,iso-profit line” (orthogonal to (ggg))

The Answer linear constraints:

X2 Mpy: 4x1 + 11xp < 880
! Mp: x1+ x <150
150 MC: %, < 60
x1 2> 0

xp > 0

'000§ linear objective fct.:
% T G(x1,x2) = 300x7 + 500x;
Mot = (300,500)(!)
]5:00500 set of oM NodMpg =
&1 feasible
~s~oluti~(’)’ns\
0 = - N e
50 100 150 200 X

,iso-profit line” (orthogonal to (ggg))

- 15

The Answer

linear constraints:

“ My: 4x; + 11x; < 880
i MB : X1 T X2 < 150

150 Mc : X2 <60
X1 > 0

X2 > 0

linear objective fct.:
G(x1,x2) = 300x7 + 500x;

(300,500) ()

~Qn,, _L>-
0§_"_~
30 -
,00 1
0§ ~ T
]5:00500 \‘xS,et of :
€] feasible

“.._solutions

50 100

oM 019My = {(4)}

150

,Aso-profit line” (orthogonal to (3,

Ft———+—
X

200
300))

- 16

The Answer linear constraints:

- My: 4x; 4 11x; < 880
A Mp: x+ xp< 150
150 Mc: —
X1 > 0
xp > 0
<
6:000§ linear objective fct.:
N T G(x1,x2) = 300x1 + 500x,
20), 1 — ;
ek N\ = (300,500) (%))
1@00500 ‘*~~..§¢t of G(110,40) =
€1 feasible
.....,~§OIUti(~)’nS\
0 S o N e
50 100 150 200 x

,iso-profit line” (orthogonal to (ggg))

-17

The Answer linear constraints:

X2 Mpy: 4x1 + 11xp < 880
! Mp: x1+ x <150
150 MC: %, < 60
x1 2> 0

xp > 0

'000§ linear objective fct.:
R
SL ’ X2
]5:0050() Set Of q(110’40) — 53,000

- feasible
“.._solutions

’ : N e+
50 100 150 200 X
,iso-profit line” (orthogonal to (ggg))

- 18

The Answer

Tisetof T\ G(110,40) = 53,000

linear constraints:

My: 4xq + 11x, < 880
MB : X1 T Xy < 150
MC : X9 < 60
X1 > 0
X2 > 0

linear objective fct.:

G(x1,x2) = 300x7 + 500x;
= (300,500) (1)

feasible

“.._solutions

50

]
&

100

150

e

,iso-profit line” (orthogonal to (

1 1 : >
200 X
300
500))

- 19

The Answer

linear objective fct.:

G(x1,x2) = 300x7 + 500x;
= (300,500)(*1)

~\ G(110,40) = 53,000

et
50 100 150 200 X
,iso-profit line” (orthogonal to (23)))

The Answer

linear objective fct.:

G(x1,x2) = 300x7 + 500x;
= (300,500)(*1)

~\ G(110,40) = 53,000

et
50 100 150 200 X
,iso-profit line” (orthogonal to (23)))

The Answer

X2 A
150
33
>0
%5, Ve o
‘) <t linear objective fct.:
3 T G(x1,x2) = 300x7 + 500x;
W0 = (300,500) 3!)
25450 ~ G(110,40) = 53,000
0 et
50 100 150 200 X
iso-profit line” (orthogonal to (ggg))

The Answer

G(x1,x2) = 300x7 4+ 500x,
— (300,500) (%)
2

“.“\ G(110,4()) _ 53,000

et
50 100 150 200 X
,iso-profit line” (orthogonal to (288))

The Answer

G(x1,x2) = 300x7 4+ 500x,
— (300,500) (%)
2

“.“\ G(110,4()) _ 53,000

et
50 100 150 200 X
,iso-profit line” (orthogonal to (288))

The Answer

My: 4x; + 11x, < 880

G(x1,x2) = 300x7 + 500x;
= (300,500) (1)

~\ G(110,40) = 53,000

~§
| e ’
1 1 1 1 | 1 1

50 100 150 200 X1
,iso-profit line” (orthogonal to (23)))

The Answer

My: 4x; + 11x, < 880

G(x1,x2) = 300x7 + 500x;
= (300,500) (1)

~\ G(110,40) = 53,000

~§
| e ’
1 1 1 1 | 1 1

50 100 150 200 X1
,iso-profit line” (orthogonal to (23)))

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex |Dantzig "47]

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex |Dantzig "47]

— Ellipsoid method | Khatchiyan "79]

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

—~—

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

~
~
~
~
~
~
~
~
~

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

~
~
~
~
~
~
~
~
~

NH=0 (H unbnd. in dir. ¢

-12

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

\
wh
~)\\“
b -
U -
F -
F -
&y -
& -
F -
& -

NH=0 (H unbnd. in dir. ¢

- 13

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

ré s

NH=0 (H unbnd. in dir. ¢

-14

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:

— Simplex Dantzig "47]
— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.

We consider d = 2.

VERY important problem, e.g.,

[“Book” application: casting]

in Operations Research.
(N H bounded.

~
~
~
~
~
~
~
~
~

e

-
-
-
-
-
-
-

NH=0 (H unbnd. in dir. ¢

- 15

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
Dantzig "47]

Khatchiyan "79]
Karmakar’ 84]

— Simplex

— Ellipsoid method

— Inner-point method

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

(N H bounded.

—~—

C

~
~
~
~
~
~
~
~
~

e

-
-
-
-
-
-
-

NH=0

(N H unbnd. in dir. ¢

set of optima: segment

- 16

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
Dantzig "47]

Khatchiyan "79]
Karmakar’ 84]

— Simplex

— Ellipsoid method

— Inner-point method

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

(N H bounded.

—~—

C

~
~
~
~
~
~
~
~
~

P
\\\\\
- -

-
-
-
-
-
-
-

\c

-
-
-
-
-
-
-

NH=0

(N H unbnd. in dir. ¢

set of optima: segment vs. point

-17

First Approach

e compute (| H iteratively

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)

Let H = (hl,. . .,hn)
C <« I’ll
foreach i from 2 to n do

LC%Cﬂhi

return C

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)

Let H = (hl,. . .,hn)
C <« I’ll
foreach i from 2 to n do

LC%Cﬂhi

return C

Running time:

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)
Let H = (hl,. . .,hn)

C <« I’ll
foreach i from 2 to n do
L C<+ Cnh;
return C ‘\How??

A

Running time: ' Tig(n) = n-

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H) C := chain of line

Let H= (hy,..., hy,) segments (s1,...,5¢)
C <« I’ll
foreach i from 2 to n do

LC%Cﬂhi

N
return C How??

A

Running time: ' Tig(n) = n-

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H) C := chain of line
Let H= (hy,..., hy,) segments (s1,...,5¢)
C<m | Walk around C to find
foreach 7 from 2 to n do 5,51 € C intersecting h;
L C+Cn hi
return C ‘\How??
A

Running time: ' Tig(n) = n-

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H) C := chain of line
Let H= (hy,..., hy,) segments (s1,...,5¢)
C < M | Walk around C to find
foreach 7 from 2 to n do 5,51 € C intersecting h;
L C+CnNn hi Update C
ate
return C ‘\How?? P
A

Running time: ' Tig(n) = n-

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H) C := chain of line
Let H= (hy,..., hy,) segments (s1,...,5¢)
C < M | Walk around C to find
foreach 7 from 2 to n do 5,51 € C intersecting h;
L C+CnNn hi Update C
ate
return C ‘\How?? P
A

Running time: Tjg(n) =n: O(n)

5-10

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H) C := chain of line
Let H= (hy,..., hy,) segments (s1,...,5¢)
C < M | Walk around C to find
foreach 7 from 2 to n do 5,51 € C intersecting h;
L C+CnNn hi Update C
ate
return C ‘\How?? P
A

Running time: Tjg(n) =n: O(n)

Total Time: O(n?) <(

First Approach

e compute (| H iteratively

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H) C := chain of line
Let H= (hy,..., hy,) segments (s1,...,5¢)
C < M | Walk around C to find
foreach 7 from 2 to n do 5,51 € C intersecting h;
L C+CnNn hi Update C
ate
return C T ~How?? P
A

Running time: Tjg(n) =n: O(n)
Total Time: O(n?) <(

Exercise: Compute C N k; faster.

-11

Second Approach

e compute () H via divide and conquer

e walk d () H), find vertex x w/ cx maximum, O(n) time

Second Approach

e walk d () H), find vertex x w/ cx maximum, O(n) time

Second Approach

e compute () H via divide and conquer

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(H)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C

Second Approach

e compute () H via divide and conquer

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(H)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C

Running time:

Second Approach

e compute () H via divide and conquer

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(H)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C

Running time: Tig(n) = 2Tg(n/2) + Ticr(n)

Second Approach

e compute () H via divide and conquer

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(H)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C How??

Ve

Running time: Tig(n) = 2Tg(n/2) + Ticr(n)

Second Approach

e compute () H via divide and conquer

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H)

How complex can

if |H| = 1 then the new region be?
| C < h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(H)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C How??

Ve

Running time: Tig(n) = 2Tg(n/2) + Ticr(n)

Second Approach

e compute () H via divide and conquer

e walk d () H), find vertex x w/ cx maximum, O(n) time

IntersectHalfplanes(H) How complex can 7\ @
< D

if |H| = 1 then the new region be? \
| C + h, where {h} = H 0
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(H)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C How??

Ve

Running time: Tig(n) = 2Tg(n/2) + Ticr(n)

Intersecting Convex Regions

C

Intersecting Convex Regions

Intersecting Convex Regions

G C;
/ How many segments on £?

Intersecting Convex Regions

Cy G2
/ How many segments on £?

Intersecting Convex Regions

E Eright(CZ)
C1 2
/ How many segments on £?

Cright (Cl)

Lieft(Co2) ™+

Intersecting Convex Regions

leftEdgeC>

leftEdgeC,
4

How many segments on /-

rightEdgeCy

Liet (C1) Lright(C1)

rightEdgeC,

Lieft(Co2) ™+

Intersecting Convex Regions
Eright(CZ)

How many segments on /-

leftEdgeC>

leftEdgeC,
4

rightEdgeCy
Cright (Cl)

Is > 4 possible?
Liet(C1)

rightEdgeC,

Lieft(Co2) ™+

Intersecting Convex Regions
Eright(CZ)

How many segments on /-

leftEdgeC>

leftEdgeC,
4

rightEdgeC :
S C possible?

Liet (C1) Lright(C1) No!

rightEdgeC,

Lieft(Co2) ™+

Intersecting Convex Regions
Lright(CZ)

How many segments on /-

leftEdgeC>

leftEdgeC,
4

(Bhhaset Is > 4 possible?

Liet (C1) Lright(C1) No!

rightEdgeC,

Liet(C2) ™F
How does this help us?

Intersecting Convex Regions
Lright(CZ)

How many segments on /-

leftEdgeC>

leftEdgeC,

14

rightEdgeC
ST s> 4 possible?

Liet (C1) Lright(C1) No!

rightEdgeC,

Liet(C2)

1+

How does this help us?
~ sweep-line algorithm!

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

Sweep-Line Algorithm

8-2

Sweep-Line Algorithm

sweep line

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

next event?

Co

events

Sweep-Line Algorithm

next event?

Co

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

events

Sweep-Line Algorithm

Cq

events

Sweep-Line Algorithm

Cq

events

Sweep-Line Algorithm

Cq

next event?

Co

events

- 15

Sweep-Line Algorithm

Cq

next event?

Co

events

- 16

Sweep-Line Algorithm

Cq

events

Sweep-Line Algorithm

Co

Done, since we have
finished C!

events

- 18

Data Structures

1) event (-point) queue O

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P =4 <=det

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

p <5] <7 def.]/p >y¢]

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

p <5] <7 def.]/p >y¢]

2) (sweep-line) status T

Pomooo——— o]

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)

Pomooo——— o]

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)

g—&+07—

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
Po—o—@-—

‘ T

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
Po—o—@—

£ v

Store event pts in sorted order acc. to <

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
Po—o-q-—

£ v

Store event pts in sorted order acc. to < . linear time?

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
po—o—@-—
0 4

Store event pts in sorted order acc. to <

nextEvent() : either, next point (by <), or the intersection
pt. of two active segments (below the sweep-line)

2) (sweep-line) status T

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
po—o—@-—
0 4

Store event pts in sorted order acc. to <

nextEvent() : either, next point (by <), or the intersection
pt. of two active segments (below the sweep-line)

... runtime?

2) (sweep-line) status T

-11

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
p.q.-q—_
0 4

Store event pts in sorted order acc. to <

nextEvent() : either, next point (by <), or the intersection
pt. of two active segments (below the sweep-line)

.. runtime? O(1), since num. active segments < 4 :)

2) (sweep-line) status T

-12

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
po—o—@——
0 4

Store event pts in sorted order acc. to <

nextEvent() : either, next point (by <), or the intersection
pt. of two active segments (below the sweep-line)

.. runtime? O(1), since num. active segments < 4 :)

2) (sweep-line) status 7 / \

- 13

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
p.q.-q—_

£ v

Store event pts in sorted order acc. to <

nextEvent() : either, next point (by <), or the intersection
pt. of two active segments (below the sweep-line)

.. runtime? O(1), since num. active segments < 4 :)

2) (sweep-line) status 7 / \

Store the segments intersected by ¢ in left-to-right order.

-14

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
p.q.-q_

£ v

Store event pts in sorted order acc. to <

nextEvent() : either, next point (by <), or the intersection
pt. of two active segments (below the sweep-line)

.. runtime? O(1), since num. active segments < 4 :)

2) (sweep-line) status 7 / \

Store the segments intersected by ¢ in left-to-right order.

Also, maintain the new convex hull.

- 15

1

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

IntersectHalfplanes(H)

if |H| =1 then C < h, where {h} = H
else
split H into sets H; and Hj, with |H;|, |Hy| =~ |H|/2
Cy < IntersectHalfplanes(Hy)
Cp < IntersectHalfplanes(Hy)
C < IntersectConvexRegions(Cy, C;)

return C
Running time: Tig(n) = 2T (n/2) + Ticr(7)

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

IntersectHalfplanes(H)

if |[H| =1 then C < h, where {h} = H
else
split H into sets H; and Hj, with |H;|, |Hy| =~ |H|/2
Cq < IntersectHalfplanes(H)
C, < IntersectHalfplanes(H)
C < IntersectConvexRegions(Cy, C;)

return C
Running time: Tig(n) = 2T (n/2) + Ticr(7)

Corollary. The intersection of n half planes can be
computed in O(nlogn) time.

Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

IntersectHalfplanes(H)

if |[H| =1 then C < h, where {h} = H
else
split H into sets H; and Hj, with |H;|, |Hy| =~ |H|/2
Cq < IntersectHalfplanes(H)
C, < IntersectHalfplanes(H)
C < IntersectConvexRegions(Cy, C;)

return C
Running time: Tig(n) = 2T (n/2) + Ticr(7)
Corollary. The intersection of n half planes can be
computed in O(nlogn) time.
Can we do better?

A Small Trick: Make Solution Unique

NH=0Q

(| H unbnd. in dir. ¢

(H bounded.

—~—

C

~
~
~
~
~
~
~
~
~

T

-
-
-
-
-
-
-

C

w
w

Ay
Y

-
-
-
-
-
-
-

C

A Small Trick: Make Solution Unique

NH=0Q

(| H unbnd. in dir. ¢

(H bounded.

——

C

~
~
~
~
~
~
~
~
~

o

-
-
-
-
-
-
-

C

P
v

Ay
Y

-
-
-
-
-
-
-

C

e Add two |

pounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.
5 ; ke L4
e Add two bounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=0Q

(| H unbnd. in dir. ¢

(H bounded.

—~—

P
v

Ay
Y

-
-
-
-
-
-
-

C

m| C \A:><i:
5 2 ke
ny

e Add two |

pounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.
: ke s 4
mo ’ ‘
e Add two bounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

m3

e Add two bounding halfplanes m and m>

)
<M ifcy >0, ..

my =4 = HE Y for some sufficiently large M

X > M otherwise,

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

m3

e Add two bounding halfplanes m and m>

)
<M ifcy >0, ..

my =4 = HE Y for some sufficiently large M

X > M otherwise,

B (ng ifcy>0,
¥ > M otherwise.

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

,” ‘: P
1 =]l e el
S 5
& - Y
5
3
<
<
&
y

- -

- -
- -
- -
- -
- -
- -

e Add two bounding halfplanes m and m>

)
x <M ifcy >0, .

my =14 = BT for some sufficiently large M
X > M otherwise,

my

) Idea: M based on obj.fct. c.
y<M ifc, >0, see §4.5 of CG: A&A for more
on unbounded LPs.

y > M otherwise.
\

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

,” ‘: P
1 =]l e el
S 5
& - Y
5
3
<
3
&
y

- -

- -
- -
- -
- -
- -
- -

® Add two bounding halfplanes m and m;

)
x <M ifcy >0, .

my =14 = BT for some sufficiently large M
X > M otherwise,

my

) Idea: M based on obj.fct. c.
y<M ifc, >0, see §4.5 of CG: A&A for more
on unbounded LPs.

y > M otherwise.
\

® Take the lexicographically largest solution.

11 - 10

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

,” ‘: P
1 = |] IS .| |
S 5
& - Y
5
3
<
3
&
y

- -

- -
- -
- -
- -
- -
- -

® Add two bounding halfplanes m and m;

)
x <M ifcy >0, .

my =14 = BT for some sufficiently large M
X > M otherwise,

my

) Idea: M based on obj.fct. c.
y<M ifc, >0, see §4.5 of CG: A&A for more
on unbounded LPs.

y > M otherwise.
\

® Take the lexicographically largest solution.

11-11

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

,” ‘: P
1 = |] IS .| |
S 5
& - Y
5
3
<
3
&
y

- -

- -
- -
- -
- -
- -
- -

® Add two bounding halfplanes m and m;

)
x <M ifcy >0, .

my =14 = BT for some sufficiently large M
X > M otherwise,

my

) Idea: M based on obj.fct. c.
y<M ifc, >0, see §4.5 of CG: A&A for more
on unbounded LPs.

y > M otherwise.
\

® Take the lexicographically largest solution.

= Set of solutions is either empty or a uniquely defined pt.

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

12 -

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {mq,my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7rahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

- H; = H; 1 U{h}
return v,

o,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

- H; = H; 1 U{h}
return v,

Il —\

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

- H; = H; 1 U{h}
return v,

ol —\

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

- H; = H; 1 U{h}
return v,

Il —\ <

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

- H; = H; 1 U{h}
return v,

Il —\ <

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my1, my}
Vo < corner of mq N my
fori <+ 1tondo C\
if v;_1 € h; then
| 0 < 01
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

- H; = H; 1 U{h}
return v,

Il —\ <

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

Hy = {my,my}
Vo < corner of mq N my
fori <+ 1tondo C\
if Ui—.l <]’ll then -\ <
| 0; 04 1 —
else ﬂahi(c)

U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))
if v; = nil then
[return nil

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

H() {ml,mz}
Vo < corner of mq N my
fori <+ 1tondo C\
if Ui—.l <]’ll then -\ <
| 0; 04 l —>
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))
if v; = nil then
[return nil W-C running time:

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

H() {ml,mz}
Vo < corner of mq N my
fori <+ 1tondo C\
if Ui—.l <]’ll then -\ <
| 0; 04 l —>
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))
if v; = nil then
[return nil W-C running time:

- H;=H; ;U {h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

HO — {ml/mZ}
Vo < corner of mq N my ;
fori <+ 1tondo W
if v;_1 € h; then .
| U< e O(1)
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))
if v; = nil then
[return nil W-C running time:

 Hi=H; 1 U{h} O(1)
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

HO — {ml/mZ}
Vo < corner of mq N my ;
fori <+ 1tondo W
if v;_1 € h; then .
| U< e O(1)
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C)) O(i)
if v; = nil then
[return nil W-C running time:

 Hi=H; 1 U{h} O(1)
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

HO — {ml/mZ}
Vo < corner of mq N my ;
fori <+ 1tondo W
if v;_1 € h; then .
| U< e O(1)
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C)) O(i)
if v; = nil then
[return nil W-C running time:

- H;=H; ;U {h} O(1) I'(n) =Y., 0(i) =
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

HO — {ml/mZ}
Vo < corner of mq N my ;
fori <+ 1tondo W
if v;_1 € h; then .
| U< e O(1)
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C)) O(i)
if v; = nil then
[return nil W-C running time:

| Hi=H;U{l} O(1) T(n) = T O() =
return v, = O0(n?)

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!
Randomized
2DBoundedLP(H, c, mq,m>)

HO — {ml/mZ}
Vo < corner of mq N my ;
fori <+ 1tondo W
if v;_1 € h; then .
| U< e O(1)
else nahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C)) O(i)
if v; = nil then
[return nil W-C running time:

| Hi=H;U{l} O(1) T(n) = T O() =
return v, = O0(n?)

12 - 23

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!
Randomized
2DBoundedLP(H, c, mq,m>)

compute random permutation of H

HO — {mllmZ}
Vo < corner of mq N my)
fori <+ 1tondo W
if v;_1 € h; then .
| U< e O(1)
else ﬂahi(c)

U; < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C)) O(i)
if v; = nil then
[return nil W-C running time:

| Hi=H;U{l} O(1) T(n) = T O() =
return v, = O0(n?)

13 -

Result

13 -

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 ifo;_ :
Proof. Let X; = o & I (indicator random variable).
0 else.

13 - ¢

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

Proof. Let X; = L ifoia & I (indicator random variable).
0 else.

Then the expected running time is
E[Ty4(n)] =

13 - 4

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

Proof. Let X; = L ifoia & I (indicator random variable).
0 else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]

13 -

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

Proof. Let X; = L ifoia & I (indicator random variable).
0 else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)

13 -

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

Proof. Let X; = L ifoia & I (indicator random variable).
0 else.

Then the expected running time is

E[Tas(n)] = E[Z7, (1 — X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)

13 -

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 ifo;_ :
Proof. Let X; = o & I (indicator random variable).
0 else.

Then the expected running time is

E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)

We fix the i random halfplanes in H;.

Result

13 -8

Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifv,_1 & h;
Let X; = {O 1102 1 ¢ 1'} (indicator random variable).
else.

Then the expected running time is

E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)

We fix the i random halfplanes in H;.

Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.

Result

13-9

Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifv,_1 & h;
Let X; = {O 1102 1 ¢ 1'} (indicator random variable).
else.

Then the expected running time is

E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)

We fix the i random halfplanes in H;.

Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.

13 - 10

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

if v;_1 & h;,

else.

1
Proof. Let X; = {O

} (indicator random variable).

Then the expected running time is

E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)

We fix the i random halfplanes in H;.

Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

Result

13-11

Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifo,_1¢&h;, | . .. :
Let X; = {O 1102 1 & B } (indicator random variable).
else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)
We fix the i random halfplanes in H;.
Pr|X; =1] = probability that the optimal solution

i.e., when v; € dh;
and v; € dh; for
exactly one j < 1.

changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

Result

13-12

Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifo,_1¢&h;, | . .. :
Let X; = {O 1102 1 & B } (indicator random variable).
else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)
We fix the i random halfplanes in H;.
Pr|X; =1] = probability that the optimal solution

i.e., when v; € dh;
and v; € dh; for

changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

exactly one j <i. | <q/;

Result

13-13

Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifo,_1¢&h;, | . .. :
Let X; = {O 1101 1 & B } (indicator random variable).
else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)
We fix the i random halfplanes in H;.
Pr|X; =1] = probability that the optimal solution

i.e., when v; € dh;
and v; € dh; for

changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

exactly one j <. < 2/i. This is independent of the choice of H;.

13-14

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 ifo;_ :
Proof. Let X; = o & I (indicator random variable).
0 else.

Then the expected running time is

E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)

We fix the i random halfplanes in H;.

Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

< 2/i. This is independent of the choice of H;.

Result

13-15

Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifo,_1¢&h;, | . .. :
Let X; = {O 1102 1 & B } (indicator random variable).
else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=0(n)+YPrX;=1]-0(i) =0(n).
We fix the i random halfplanes in H;.

Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

< 2/i. This is independent of the choice of Hi.D

Result

13-16

Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.

1 ifo;_ '
Proof. Let X; = o & I (indicator random variable).
0 else.
Then the expected running time is
E[Tpq(n)] = E[Li (1 = Xi) - O(1) + X; - O(i)]
= O(n) + L E[X;] - O(i)
=O0(n)+ Y. Pr[X; =1]-0(i) = O(n).
We fix the i random halfplanes in H;.
Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.
Proof technique: —= probability that the optimal solution
Backward analysis! changes when F; is removed from H;.

< 2/i. This is independent of the choice of Hi.D

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '

Running time Tyio(n) =

14 -

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '

Running time Tyo(n) = O((n + I)logn),
where | = # intersection points.

14 -

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '

Running time Tyo(n) = O((n + I)logn),
where [= # intersection points.
here: [<

14 -

14 -4

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '

Running time Tyo(n) = O((n + I)logn),

<

AN
Z\

N/
%

O

where | = # intersection points.
here: 1 < n —» O(nlogn) for ICR

14 -5

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '

Running time Tyo(n) = O((n + I)logn),

AN
Z\

<

N/
Y

()

where | = # intersection points.
here: I < n —»O(nlogn) for ICR

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)

14 -6

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '
Running time Tyo(n) = O((n + I)logn),

VAN where | = # intersection points.
<\v /> here: 1 < n —» O(nlogn) for ICR
Running time Tyy(n) = 2Tig(n/2) + Ticr(n)

<2Tg(n/2) +O(nlogn)
S

14 -7

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '
Running time Tyo(n) = O((n + I)logn),

VAN where | = # intersection points.
<\v /> here: 1 < n —» O(nlogn) for ICR
Running time Tyy(n) = 2Tig(n/2) + Ticr(n)

<2Tg(n/2) +O(nlogn)
c O(nlog” n)

14 -8

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '

Running time Tyo(n) = O((n + I)logn),

AN
Z\

<

N/
Y

()

where | = # intersection points.
here: 1 < n —» O(nlogn) for ICR

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)

S

<2Ti(n/2) +O(nlogn)
c O(nlog” n)
As this is more general, it is unsurprisingly worse ...

>k

it can happen sometimes that general algorithms give optimal runtimes for special cases

14 -9

Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '
Running time Tyo(n) = O((n + I)logn),

VAN where | = # intersection points.
<\v /> here: 1 < n —» O(nlogn) for ICR
Running time Tyy(n) = 2Tig(n/2) + Ticr(n)

<2Tg(n/2) +O(nlogn)
c O(nlog” n)
As this is more general, it is unsurprisingly worse ...

~ Better to use specialized algorithm for intersecting
convex regions/polygons

S

>k

it can happen sometimes that general algorithms give optimal runtimes for special cases

	Titel
	Sweep-Line Algorithm
	Data Structures

