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Which choice of (x1, xp) maximizes your profit?
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Intersecting Convex Regions
Lright(CZ)
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How does this help us?
~ sweep-line algorithm!

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.
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Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

IntersectHalfplanes(H)

if |[H| =1 then C < h, where {h} = H
else
split H into sets H; and Hj, with |H;|, |Hy| =~ |H|/2
Cq < IntersectHalfplanes(H)
C, < IntersectHalfplanes(H)
C < IntersectConvexRegions(Cy, C;)

return C
Running time: Tig(n) = 2T (n/2) + Ticr(7)
Corollary. The intersection of n half planes can be
computed in O(nlogn) time.
Can we do better?
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= O(n) + LE[Xi] - O(i)
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Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifo,_1¢&h;, | . .. :
Let X; = {O 1101 1 & B } (indicator random variable).
else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)
We fix the i random halfplanes in H;.
Pr|X; =1] = probability that the optimal solution

i.e., when v; € dh;
and v; € dh; for

changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

exactly one j <. < 2/i. This is independent of the choice of H;.
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Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 ifo;_ :
Proof. Let X; = o & I (indicator random variable).
0 else.

Then the expected running time is

E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=O(n)+ Y Pr[X; =1]|-0(i)

We fix the i random halfplanes in H;.

Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

< 2/i. This is independent of the choice of H;.
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Theorem. The 2D bounded LP problem can be solved in

Proof.

O(n) expected time.

1 ifo,_1¢&h;, | . .. :
Let X; = {O 1102 1 & B } (indicator random variable).
else.

Then the expected running time is
E[Tp4(n)] = B[, (1= X;) - O(1) + X; - O(i)]
= O(n) + LE[Xi] - O(i)
=0(n)+YPrX;=1]-0(i) =0(n).
We fix the i random halfplanes in H;.

Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.
— probability that the optimal solution
changes when h; is removed from H;.

< 2/i. This is independent of the choice of Hi.D
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Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.

1 ifo;_ '
Proof. Let X; = o & I (indicator random variable).
0 else.
Then the expected running time is
E[Tpq(n)] = E[Li (1 = Xi) - O(1) + X; - O(i)]
= O(n) + L E[X;] - O(i)
=O0(n)+ Y. Pr[X; =1]-0(i) = O(n).
We fix the i random halfplanes in H;.
Pr|X; =1] = probability that the optimal solution
changes when h; is added to H;_1.
Proof technique: —= probability that the optimal solution
Backward analysis! changes when F; is removed from H;.

< 2/i. This is independent of the choice of Hi.D
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Use sweep—line alg for map overlay (line-segment intersections) '
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Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '
Running time Tyo(n) = O((n + I)logn),

VAN where | = # intersection points.
<\v /> here: 1 < n —» O(nlogn) for ICR
Running time Tyy(n) = 2Tig(n/2) + Ticr(n)

<2Tg(n/2) +O(nlogn)
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Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '

Running time Tyo(n) = O((n + I)logn),

AN
Z\

<

N/
Y

()

where | = # intersection points.
here: 1 < n —» O(nlogn) for ICR

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)
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Alt. for Intersecting Convex Regions

CG:A&AQJ2

Use sweep—line alg for map overlay (line-segment intersections) '
Running time Tyo(n) = O((n + I)logn),

VAN where | = # intersection points.
<\v /> here: 1 < n —» O(nlogn) for ICR
Running time Tyy(n) = 2Tig(n/2) + Ticr(n)

<2Tg(n/2) +O(nlogn)
c O(nlog” n)
As this is more general, it is unsurprisingly worse ...

~ Better to use specialized algorithm for intersecting
convex regions/polygons

S

>k

it can happen sometimes that general algorithms give optimal runtimes for special cases
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