
1

Lecture 3. 2D Linear Programming via sweep-lines and
randomization

Advanced Algorithms
Winter term 2019/20

Steven Chaplick & Alexander Wolff Chair for Computer Science I

Source: CG: A&A §4

2 - 1

Maximizing Profit
You are the boss of a small company that produces two
products, P1 and P2. If you produce x1 units of P1 and x2
units of P2, your profit in e is

G(x1, x2) = 300x1 + 500x2

2 - 2

Maximizing Profit
You are the boss of a small company that produces two
products, P1 and P2. If you produce x1 units of P1 and x2
units of P2, your profit in e is

G(x1, x2) = 300x1 + 500x2

Your production runs on three machines MA, MB, and MC
with the following capacities:

MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

2 - 3

Maximizing Profit
You are the boss of a small company that produces two
products, P1 and P2. If you produce x1 units of P1 and x2
units of P2, your profit in e is

G(x1, x2) = 300x1 + 500x2

Your production runs on three machines MA, MB, and MC
with the following capacities:

Which choice of (x1, x2) maximizes your profit?

MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

3 - 1

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150
0

0

linear constraints:

3 - 2

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150
0

0

linear constraints:

3 - 3

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150
0

0

linear constraints:

3 - 4

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150
0

0

linear constraints:

3 - 5

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

0
0

linear constraints:

3 - 6

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

0
0

linear constraints:

3 - 7

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

0
0

linear constraints:

set of
feasible
solutions

3 - 8

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2

0
0

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 9

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 10

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 11

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

30,000e

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 12

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 13

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 14

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 15

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

linear constraints:

linear objective fct.:

∂MA ∩ ∂MB =set of
feasible
solutions

3 - 16

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

linear constraints:

linear objective fct.:

∂MA ∩ ∂MB =
{
(110

40)
}

set of
feasible
solutions

3 - 17

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

G(110, 40) =

linear constraints:

linear objective fct.:

set of
feasible
solutions

3 - 18

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000set of
feasible
solutions

3 - 19

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000set of
feasible
solutions

3 - 20

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000set of
feasible
solutions

3 - 21

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000

Ax ≤ b

set of
feasible
solutions

3 - 22

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000

Ax ≤ b

x ≥ 0

set of
feasible
solutions

3 - 23

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000

Ax ≤ b

x ≥ 0

set of
feasible
solutions

3 - 24

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000

Ax ≤ b

maximize cTx

x ≥ 0

set of
feasible
solutions

3 - 25

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000

Ax ≤ b

maximize cTx

x ≥ 0

maximum value of objec-
tive fct. given constraints

=
set of
feasible
solutions

3 - 26

The Answer
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60

50

100

150

200

x2

x150 100 150

x1 ≥ 0
x2 ≥ 0

G(x1, x2) = 300x1 + 500x2
= (300, 500)(x1

x2
)

0
0

”iso-profit line“ (orthogonal to (300
500))

15,000e

45,000e
30,000e

53,000e

G(110, 40) =

linear constraints:

linear objective fct.:

53,000

Ax ≤ b

maximize cTx

x ≥ 0

maximum value of objec-
tive fct. given constraints

=

max{cTx | Ax ≤ b, x ≥ 0}=

set of
feasible
solutions

4 - 1

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

4 - 2

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).
Many algorithms known, e.g.:

4 - 3

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).
Many algorithms known, e.g.:
– Simplex [Dantzig ’47]

4 - 4

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).
Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

4 - 5

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).
Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

4 - 6

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).
Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

4 - 7

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

4 - 8

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

[“Book” application: casting]

4 - 9

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

[“Book” application: casting]

4 - 10

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

[“Book” application: casting]

4 - 11

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

c

[“Book” application: casting]

4 - 12

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

⋂
H unbnd. in dir. c

c

[“Book” application: casting]

4 - 13

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

⋂
H unbnd. in dir. c

c
c

[“Book” application: casting]

4 - 14

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

⋂
H unbnd. in dir. c

c
c

[“Book” application: casting]

4 - 15

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

⋂
H unbnd. in dir. c

c
c

⋂
H bounded.[“Book” application: casting]

4 - 16

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

⋂
H unbnd. in dir. c

c
c

⋂
H bounded.

set of optima: segment vs. point

[“Book” application: casting]

4 - 17

Definition and Known Algorithms

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

⋂
H unbnd. in dir. c

c
c c

⋂
H bounded.

set of optima: segment vs. point

[“Book” application: casting]

5 - 1

First Approach

• compute
⋂

H iteratively

5 - 2

First Approach

• compute
⋂

H iteratively

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

5 - 3

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

5 - 4

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

Running time:

5 - 5

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

TIH(n) = n·

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

Running time:

5 - 6

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

TIH(n) = n·

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

C := chain of line
segments (s1, . . . , st)

Running time:

5 - 7

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

TIH(n) = n·

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

C := chain of line
segments (s1, . . . , st)

Walk around C to find
sj, sj′ ∈ C intersecting hi

Running time:

5 - 8

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

TIH(n) = n·

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

C := chain of line
segments (s1, . . . , st)

Walk around C to find
sj, sj′ ∈ C intersecting hi

Update C

Running time:

5 - 9

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

TIH(n) = n·

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

C := chain of line
segments (s1, . . . , st)

Walk around C to find
sj, sj′ ∈ C intersecting hi

Update C

O(n)Running time:

5 - 10

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

TIH(n) = n·

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

C := chain of line
segments (s1, . . . , st)

Walk around C to find
sj, sj′ ∈ C intersecting hi

Update C

Total Time: O(n2) :(

O(n)Running time:

5 - 11

First Approach

• compute
⋂

H iteratively

IntersectHalfplanes(H)

Let H = (h1, . . . , hn)
C ← h1
foreach i from 2 to n do

C ← C ∩ hi

return C

TIH(n) = n·

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

C := chain of line
segments (s1, . . . , st)

Walk around C to find
sj, sj′ ∈ C intersecting hi

Update C

Exercise: Compute C ∩ hi faster.

Total Time: O(n2) :(

O(n)Running time:

6 - 1

Second Approach

• compute
⋂

H via divide and conquer

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

6 - 2

Second Approach

• compute
⋂

H via divide and conquer

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

6 - 3

Second Approach

• compute
⋂

H via divide and conquer

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

6 - 4

Second Approach

• compute
⋂

H via divide and conquer

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

Running time:

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

6 - 5

Second Approach

• compute
⋂

H via divide and conquer

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

Running time: TIH(n) = 2TIH(n/2) + TICR(n)

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

6 - 6

Second Approach

• compute
⋂

H via divide and conquer

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

Running time: TIH(n) = 2TIH(n/2) + TICR(n)

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

6 - 7

Second Approach

• compute
⋂

H via divide and conquer

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

Running time: TIH(n) = 2TIH(n/2) + TICR(n)

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

How complex can
the new region be?

6 - 8

Second Approach

• compute
⋂

H via divide and conquer

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

Running time: TIH(n) = 2TIH(n/2) + TICR(n)

How??

• walk ∂ (
⋂

H), find vertex x w/ cx maximum, O(n) time

How complex can
the new region be?

7 - 1

Intersecting Convex Regions

C1
C2

7 - 2

Intersecting Convex Regions

C1
C2

`

7 - 3

Intersecting Convex Regions

C1
C2

`
How many segments on `?

7 - 4

Intersecting Convex Regions

C1
C2

`
How many segments on `?

7 - 5

Intersecting Convex Regions

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

Lright(C2)

How many segments on `?

7 - 6

Intersecting Convex Regions

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

leftEdgeC1

rightEdgeC1

leftEdgeC2

rightEdgeC2

Lright(C2)

How many segments on `?

7 - 7

Intersecting Convex Regions

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

leftEdgeC1

rightEdgeC1

leftEdgeC2

Is > 4 possible?

rightEdgeC2

Lright(C2)

How many segments on `?

7 - 8

Intersecting Convex Regions

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

leftEdgeC1

rightEdgeC1

leftEdgeC2

Is > 4 possible?
No!

rightEdgeC2

Lright(C2)

How many segments on `?

7 - 9

Intersecting Convex Regions

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

leftEdgeC1

rightEdgeC1

leftEdgeC2

Is > 4 possible?
No!

rightEdgeC2

Lright(C2)

How many segments on `?

How does this help us?

7 - 10

Intersecting Convex Regions

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

leftEdgeC1

rightEdgeC1

leftEdgeC2

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

Is > 4 possible?
No!

rightEdgeC2

Lright(C2)

How many segments on `?

How does this help us?
 sweep-line algorithm!

8 - 1

Sweep-Line Algorithm

C1 C2

8 - 2

Sweep-Line Algorithm

C1 C2

sweep line

events

8 - 3

Sweep-Line Algorithm

C1 C2

events

8 - 4

Sweep-Line Algorithm

C1 C2

events

8 - 5

Sweep-Line Algorithm

C1 C2

events

8 - 6

Sweep-Line Algorithm

C1 C2

events

8 - 7

Sweep-Line Algorithm

C1 C2

events

next event?

8 - 8

Sweep-Line Algorithm

C1 C2

events

next event?

8 - 9

Sweep-Line Algorithm

C1 C2

events

8 - 10

Sweep-Line Algorithm

C1 C2

events

8 - 11

Sweep-Line Algorithm

C1 C2

events

8 - 12

Sweep-Line Algorithm

C1 C2

events

8 - 13

Sweep-Line Algorithm

C1 C2

events

8 - 14

Sweep-Line Algorithm

C1 C2

events

8 - 15

Sweep-Line Algorithm

C1 C2

events

next event?

8 - 16

Sweep-Line Algorithm

C1 C2

events

next event?

8 - 17

Sweep-Line Algorithm

C1 C2

events

8 - 18

Sweep-Line Algorithm

C1 C2

events

Done, since we have
finished C!

9 - 1

Data Structures
1) event (-point) queue Q

2) (sweep-line) status T

9 - 2

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def.

2) (sweep-line) status T

9 - 3

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. yp > yq

2) (sweep-line) status T

9 - 4

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def.

p q

yp > yq

2) (sweep-line) status T

9 - 5

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

2) (sweep-line) status T

9 - 6

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

2) (sweep-line) status T

`

9 - 7

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

2) (sweep-line) status T

`

9 - 8

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺

2) (sweep-line) status T

`

9 - 9

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺

2) (sweep-line) status T

`

... linear time?

9 - 10

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺
nextEvent() : either, next point (by ≺), or the intersection
pt. of two active segments (below the sweep-line)

2) (sweep-line) status T

`

9 - 11

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺
nextEvent() : either, next point (by ≺), or the intersection
pt. of two active segments (below the sweep-line)

2) (sweep-line) status T

`

... runtime?

9 - 12

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺
nextEvent() : either, next point (by ≺), or the intersection
pt. of two active segments (below the sweep-line)

2) (sweep-line) status T

`

... runtime? O(1), since num. active segments ≤ 4 :)

9 - 13

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺
nextEvent() : either, next point (by ≺), or the intersection
pt. of two active segments (below the sweep-line)

2) (sweep-line) status T

`

`

... runtime? O(1), since num. active segments ≤ 4 :)

9 - 14

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺
nextEvent() : either, next point (by ≺), or the intersection
pt. of two active segments (below the sweep-line)

2) (sweep-line) status T

Store the segments intersected by ` in left-to-right order.

`

`

... runtime? O(1), since num. active segments ≤ 4 :)

9 - 15

Data Structures
1) event (-point) queue Q

p ≺ q ⇔def. or (yp = yq and xp < xq)

p q

yp > yq

Store event pts in sorted order acc. to ≺
nextEvent() : either, next point (by ≺), or the intersection
pt. of two active segments (below the sweep-line)

2) (sweep-line) status T

Store the segments intersected by ` in left-to-right order.

`

`

Also, maintain the new convex hull.

... runtime? O(1), since num. active segments ≤ 4 :)

10 - 1

Second Approach: Halfplane Intersection
Theorem. The intersection of two convex polygonal

regions can be computed in linear time.

10 - 2

Second Approach: Halfplane Intersection
Theorem. The intersection of two convex polygonal

regions can be computed in linear time.

IntersectHalfplanes(H)

if |H| = 1 then C ← h, where {h} = H
else

split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C
Running time: TIH(n) = 2TIH(n/2) + TICR(n)

10 - 3

Second Approach: Halfplane Intersection
Theorem. The intersection of two convex polygonal

regions can be computed in linear time.

Corollary. The intersection of n half planes can be
computed in O(n log n) time.

IntersectHalfplanes(H)

if |H| = 1 then C ← h, where {h} = H
else

split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C
Running time: TIH(n) = 2TIH(n/2) + TICR(n)

10 - 4

Second Approach: Halfplane Intersection
Theorem. The intersection of two convex polygonal

regions can be computed in linear time.

Corollary. The intersection of n half planes can be
computed in O(n log n) time.

Can we do better?

IntersectHalfplanes(H)

if |H| = 1 then C ← h, where {h} = H
else

split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C
Running time: TIH(n) = 2TIH(n/2) + TICR(n)

11 - 1

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

c

11 - 2

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

c

11 - 3

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1 c

11 - 4

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1

m2

c

11 - 5

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1

m2

c

11 - 6

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1 =

{
x ≤ M if cx > 0,
x ≥ M otherwise,

for some sufficiently large M

m1

m2

c

11 - 7

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1 =

{
x ≤ M if cx > 0,
x ≥ M otherwise,

for some sufficiently large M

m1

m2

m2 =

{
y ≤ M if cy > 0,
y ≥ M otherwise.

c

11 - 8

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1 =

{
x ≤ M if cx > 0,
x ≥ M otherwise,

for some sufficiently large M

m1

m2

m2 =

{
y ≤ M if cy > 0,
y ≥ M otherwise.

c

Idea: M based on obj.fct. c.
see §4.5 of CG: A&A for more
on unbounded LPs.

11 - 9

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1 =

{
x ≤ M if cx > 0,
x ≥ M otherwise,

for some sufficiently large M

m1

m2

m2 =

{
y ≤ M if cy > 0,
y ≥ M otherwise.

• Take the lexicographically largest solution.

c

Idea: M based on obj.fct. c.
see §4.5 of CG: A&A for more
on unbounded LPs.

11 - 10

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1 =

{
x ≤ M if cx > 0,
x ≥ M otherwise,

for some sufficiently large M

m1

m2

m2 =

{
y ≤ M if cy > 0,
y ≥ M otherwise.

• Take the lexicographically largest solution.

c

Idea: M based on obj.fct. c.
see §4.5 of CG: A&A for more
on unbounded LPs.

11 - 11

A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

• Add two bounding halfplanes m1 and m2

m1 =

{
x ≤ M if cx > 0,
x ≥ M otherwise,

for some sufficiently large M

m1

m2

m2 =

{
y ≤ M if cy > 0,
y ≥ M otherwise.

• Take the lexicographically largest solution.

⇒ Set of solutions is either empty or a uniquely defined pt.

c

Idea: M based on obj.fct. c.
see §4.5 of CG: A&A for more
on unbounded LPs.

12 - 1

Incremental Approach
Idea: Don’t compute

⋂
H, but just one (optimal) point!

12 - 2

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

12 - 3

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

12 - 4

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

12 - 5

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

12 - 6

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

12 - 7

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

12 - 8

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

12 - 9

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

12 - 10

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

12 - 11

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

12 - 12

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

12 - 13

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

12 - 14

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

12 - 15

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

12 - 16

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

12 - 17

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

12 - 18

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)

12 - 19

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)

12 - 20

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)

12 - 21

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

= O(n2) :-(

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)

12 - 22

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

= O(n2) :-(

Randomized
Idea: Don’t compute

⋂
H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)

12 - 23

Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

= O(n2) :-(

Randomized

compute random permutation of H

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)

13 - 1

Result

:-)
Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.

13 - 2

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

13 - 3

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

Then the expected running time is

E[T2d(n)] =

13 - 4

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

13 - 5

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

13 - 6

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

13 - 7

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

We fix the i random halfplanes in Hi.

13 - 8

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

We fix the i random halfplanes in Hi.

13 - 9

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

We fix the i random halfplanes in Hi.

13 - 10

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

13 - 11

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

i.e., when vi ∈ ∂hi
and vi ∈ ∂hj for
exactly one j < i.

13 - 12

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

≤ 2/i.

i.e., when vi ∈ ∂hi
and vi ∈ ∂hj for
exactly one j < i.

13 - 13

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

≤ 2/i. This is independent of the choice of Hi.

i.e., when vi ∈ ∂hi
and vi ∈ ∂hj for
exactly one j < i.

13 - 14

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

≤ 2/i. This is independent of the choice of Hi.

13 - 15

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

≤ 2/i. This is independent of the choice of Hi.

= O(n).

�

13 - 16

Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random variable).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= O(n) + ∑ E[Xi] ·O(i)

= O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] = probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

≤ 2/i. This is independent of the choice of Hi.

= O(n).

�

Proof technique:
Backward analysis!

14 - 1

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) =

CG: A & A §2

14 - 2

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.

CG: A & A §2

14 - 3

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.
here: I ≤

CG: A & A §2

14 - 4

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.
here: nI ≤

CG: A & A §2

O(n log n) for ICR

14 - 5

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.

Running time TIH(n) = 2TIH(n/2) + TICR(n)

here: nI ≤

≤

CG: A & A §2

O(n log n) for ICR

14 - 6

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.

Running time TIH(n) = 2TIH(n/2) + TICR(n)

here: nI ≤

≤ 2TIH(n/2) + O(n log n)

∈

CG: A & A §2

O(n log n) for ICR

14 - 7

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.

Running time TIH(n) = 2TIH(n/2) + TICR(n)

here: nI ≤

≤ 2TIH(n/2) + O(n log n)

∈ O(n log2 n)

CG: A & A §2

O(n log n) for ICR

14 - 8

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.

Running time TIH(n) = 2TIH(n/2) + TICR(n)

here: nI ≤

≤ 2TIH(n/2) + O(n log n)

∈ O(n log2 n)
As this is more general, it is unsurprisingly worse ... ∗

CG: A & A §2

O(n log n) for ICR

∗ it can happen sometimes that general algorithms give optimal runtimes for special cases

14 - 9

Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time TMO(n) = O((n + I) log n),
where I = # intersection points.

Running time TIH(n) = 2TIH(n/2) + TICR(n)

here: nI ≤

≤ 2TIH(n/2) + O(n log n)

∈ O(n log2 n)
As this is more general, it is unsurprisingly worse ... ∗

 Better to use specialized algorithm for intersecting
convex regions/polygons

CG: A & A §2

O(n log n) for ICR

∗ it can happen sometimes that general algorithms give optimal runtimes for special cases

	Titel
	Sweep-Line Algorithm
	Data Structures

