

Advanced Algorithms

Winter term 2019/20

Lecture 3. 2D Linear Programming via sweep-lines and randomization Source: CG: A&A §4

Steven Chaplick & Alexander Wolff

Chair for Computer Science I

Maximizing Profit

You are the boss of a small company that produces two products, P_1 and P_2 . If you produce x_1 units of P_1 and x_2 units of P_2 , your profit in \in is

$$G(x_1, x_2) = 300x_1 + 500x_2$$

Maximizing Profit

You are the boss of a small company that produces two products, P_1 and P_2 . If you produce x_1 units of P_1 and x_2 units of P_2 , your profit in \in is

$$G(x_1, x_2) = 300x_1 + 500x_2$$

Your production runs on three machines M_A , M_B , and M_C with the following capacities:

$$M_A: 4x_1 + 11x_2 \le 880 M_B: x_1 + x_2 \le 150 M_C: x_2 \le 60$$

Maximizing Profit

You are the boss of a small company that produces two products, P_1 and P_2 . If you produce x_1 units of P_1 and x_2 units of P_2 , your profit in \in is

$$G(x_1, x_2) = 300x_1 + 500x_2$$

Your production runs on three machines M_A , M_B , and M_C with the following capacities:

$$\begin{array}{ll} M_A: & 4x_1 + 11x_2 \leq 880 \\ M_B: & x_1 + & x_2 \leq 150 \\ M_C: & & x_2 \leq 60 \end{array}$$

Which choice of (x_1, x_2) maximizes your profit?

 x_2

linear constraints:

$$M_A: 4x_1 + 11x_2 \le 880 M_B: x_1 + x_2 \le 150 M_C: x_2 \le 60$$

linear constraints:

^{3 - 6}

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum). Many algorithms known, e.g.:

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.: – Simplex [Dantzig '47]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:

- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large. We consider d = 2.

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

 $H = \emptyset$

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

 $H = \emptyset$

		

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

 $\bigcap H = \emptyset$ $\bigcap H$ unbnd. in dir. *c*

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

 $() H = \emptyset$

 \cap H unbnd. in dir. c

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

 $() H = \emptyset$

 \cap *H* unbnd. in dir. *c*

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.

 $() H = \emptyset$

 $\bigcap H$ unbnd. in dir. *c*

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.

 $\bigcap H = \emptyset$

 $\bigcap H$ unbnd. in dir. *c*

set of optima: segment

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.

 $\bigcap H = \emptyset$

 \cap *H* unbnd. in dir. *c*

• compute $\cap H$ iteratively

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

- compute \cap *H* iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

- compute \cap *H* iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)

Let H = (h_1, ..., h_n)

C \leftarrow h_1

foreach i from 2 to n do

\[ C \leftarrow C \cap h_i \]

return C
```

Running time:

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)

Let H = (h_1, ..., h_n)

C \leftarrow h_1

foreach i from 2 to n do

\begin{bmatrix} C \leftarrow C \cap h_i \\ return C \end{bmatrix} How??

Running time: T_{IH}(n) = n.
```

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)C :=Let H = (h_1, \dots, h_n)segC \leftarrow h_1segforeach i from 2 to n do\begin{bmatrix} C \leftarrow C \cap h_i \\ return C \end{bmatrix}Running time:T_{\rm IH}(n) = n \cdot
```

C := chain of line segments (s_1, \ldots, s_t)

- compute \cap *H* iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)

Let H = (h_1, ..., h_n)

C \leftarrow h_1

foreach i from 2 to n do

\lfloor C \leftarrow C \cap h_i

return C How??

Running time: T_{\text{IH}}(n) = n.
```

C := chain of line segments (s_1, \ldots, s_t)

Walk around *C* to find $s_j, s_{j'} \in C$ intersecting h_i

- compute \cap *H* iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)

Let H = (h_1, ..., h_n)

C \leftarrow h_1

foreach i from 2 to n do

\begin{bmatrix} C \leftarrow C \cap h_i \\ \text{return } C \end{bmatrix} How??

Running time: T_{\text{IH}}(n) = n.
```

C := chain of linesegments (s_1, \dots, s_t) Walk around *C* to find $s_j, s_{j'} \in C$ intersecting h_i

Update C

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)<br/>Let H = (h_1, \dots, h_n)<br/>C \leftarrow h_1<br/>foreach i from 2 to n do<br/>\lfloor C \leftarrow C \cap h_i<br/>return CC := \text{chain of line}<br/>segments (s_1, \dots, s_t)<br/>Walk around C to find<br/>s_j, s_{j'} \in C intersecting h_i<br/>Update CRunning time:T_{\text{IH}}(n) = n \cdot O(n)
```

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

- compute \cap *H* iteratively
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

- compute \cap *H* via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
  return C
```

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)
  if |H| = 1 then
      C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
```

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)
  if |H| = 1 then
      C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
```

Running time:

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)
  if |H| = 1 then
      C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
```

Running time: $T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)$

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

```
IntersectHalfplanes(H)
  if |H| = 1 then
      C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
                                                                How??
Running time: T_{\rm IH}(n) = 2T_{\rm IH}(n/2) + \frac{T_{\rm ICR}(n)}{T_{\rm ICR}(n)}
```

- compute $\bigcap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

- compute $\bigcap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex *x* w/ *cx* maximum, O(n) time

How does this help us?

How does this help us? → sweep-line algorithm!

Theorem. The intersection of two convex polygonal regions can be computed in linear time.

sweep line

1) event (-point) queue \mathcal{Q}

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}}$

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q$

1) event (-point) queue ${\cal Q}$

 $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q$

1) event (-point) queue Q

 $p \prec q \quad \Leftrightarrow_{\text{def.}} \quad y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$

1) event (-point) queue Q

 $p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$ $\ell \quad p \quad q$

1) event (-point) queue Q

1) event (-point) queue Q

Store event pts in *sorted order* acc. to \prec

1) event (-point) queue Q

 $p \prec q \iff_{\text{def.}} y_p > y_q \text{ or } (y_p = y_q \text{ and } x_p < x_q)$ $\ell \xrightarrow{p \qquad q}$ Store event pts in *sorted order* acc. to \prec ... linear time?

1) event (-point) queue \mathcal{Q}

Store event pts in *sorted order* acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

1) event (-point) queue \mathcal{Q}

Store event pts in *sorted order* acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line) ... runtime?

1) event (-point) queue Q

Store event pts in *sorted order* acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? O(1), since num. active segments ≤ 4 :)

1) event (-point) queue \mathcal{Q}

Store event pts in *sorted order* acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? O(1), since num. active segments ≤ 4 :)

1) event (-point) queue \mathcal{Q}

Store event pts in *sorted order* acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? O(1), since num. active segments ≤ 4 :)

2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order.
Data Structures

1) event (-point) queue \mathcal{Q}

Store event pts in *sorted order* acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? O(1), since num. active segments ≤ 4 :)

2) (sweep-line) status \mathcal{T}

l

Store the segments intersected by ℓ in left-to-right order. Also, maintain the new convex hull.

Second Approach: Halfplane Intersection

10 - 1

Theorem. The intersection of two convex polygonal regions can be computed in linear time.

Second Approach: Halfplane Intersection **Theorem.** The intersection of two convex polygonal regions can be computed in linear time. IntersectHalfplanes(H)if |H| = 1 then $C \leftarrow h$, where $\{h\} = H$ else split *H* into sets H_1 and H_2 with $|H_1|, |H_2| \approx |H|/2$ $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$ $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$ $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$ return C Running time: $T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)$

10 - 2

Second Approach: Halfplane Intersection **Theorem.** The intersection of two convex polygonal regions can be computed in linear time. IntersectHalfplanes(H)if |H| = 1 then $C \leftarrow h$, where $\{h\} = H$ else split *H* into sets H_1 and H_2 with $|H_1|, |H_2| \approx |H|/2$ $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$ $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$ $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$ return C Running time: $T_{\rm IH}(n) = 2T_{\rm IH}(n/2) + \frac{T_{\rm ICR}(n)}{T_{\rm ICR}(n)}$

Corollary. The intersection of *n* half planes can be computed in $O(n \log n)$ time.

Second Approach: Halfplane Intersection **Theorem.** The intersection of two convex polygonal regions can be computed in linear time. IntersectHalfplanes(H)if |H| = 1 then $C \leftarrow h$, where $\{h\} = H$ else split *H* into sets H_1 and H_2 with $|H_1|, |H_2| \approx |H|/2$ $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$ $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$ $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$ return C Running time: $T_{\rm IH}(n) = 2T_{\rm IH}(n/2) + \frac{T_{\rm ICR}(n)}{T_{\rm ICR}(n)}$

Corollary. The intersection of *n* half planes can be computed in $O(n \log n)$ time.

Can we do better?

$$m_1 = \begin{cases} x \le M & \text{if } c_x > 0, \\ x \ge M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases}$$

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases} \text{ for some sufficiently large } M$$

• Add two bounding halfplanes m_1 and m_2

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases} \text{ for some sufficiently large } M$$

• Take the lexicographically largest solution.

• Add two bounding halfplanes m_1 and m_2

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases} \text{ for some sufficiently large } M$$

• Take the lexicographically largest solution.

• Add two bounding halfplanes m_1 and m_2

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases} \text{ for some sufficiently large } M$$

• Take the lexicographically largest solution.

 \Rightarrow Set of solutions is either empty or a uniquely defined pt.

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

 $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$

return v_n

Idea: Don't compute $\bigcap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

```
H_0 = \{m_1, m_2\}

v_0 \leftarrow \text{corner of } m_1 \cap m_2

for i \leftarrow 1 to n do

| \text{ if } v_{i-1} \in h_i \text{ then}
```


Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

```
H_0 = \{m_1, m_2\}
v_0 \leftarrow \text{corner of } m_1 \cap m_2
for i \leftarrow 1 to n do
     if v_{i-1} \in h_i then
           v_i \leftarrow
     else
           v_i \leftarrow
     H_i = H_{i-1} \cup \{h_i\}
return v_n
```

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

```
H_0 = \{m_1, m_2\}
v_0 \leftarrow \text{corner of } m_1 \cap m_2
for i \leftarrow 1 to n do
     if v_{i-1} \in h_i then
           v_i \leftarrow v_{i-1}
     else
           v_i \leftarrow
     H_i = H_{i-1} \cup \{h_i\}
return v_n
```

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2) $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_i$ then $v_i \leftarrow v_{i-1}$ else $v_i \leftarrow 1\text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$ $H_i = H_{i-1} \cup \{h_i\}$ return v_n

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2) $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_i$ then $v_i \leftarrow v_{i-1}$ else $v_i \leftarrow 1\text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$ if $v_i = \text{nil then}$ L return nil $H_i = H_{i-1} \cup \{h_i\}$ return v_n

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2) $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_i$ then $v_i \leftarrow v_{i-1}$ else $v_i \leftarrow 1 \text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$ if $v_i = \text{nil then}$ L return nil $H_i = H_{i-1} \cup \{h_i\}$ return v_n

```
2DBoundedLP(H, c, m_1, m_2)
   H_0 = \{m_1, m_2\}
   v_0 \leftarrow \text{corner of } m_1 \cap m_2
   for i \leftarrow 1 to n do
        if v_{i-1} \in h_i then
                                           \partial h_i
              v_i \leftarrow v_{i-1}
        else
              v_i \leftarrow 1 \text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
              if v_i = \text{nil then}
                L return nil
        H_i = H_{i-1} \cup \{h_i\}
   return v_n
```


Idea: Don't compute $\cap H$, but just *one* (optimal) point!

```
2DBoundedLP(H, c, m_1, m_2)
   H_0 = \{m_1, m_2\}
   v_0 \leftarrow \text{corner of } m_1 \cap m_2
   for i \leftarrow 1 to n do
        if v_{i-1} \in h_i then
                                           \partial h_i - H_i
              v_i \leftarrow v_{i-1}
        else
              v_i \leftarrow 1 \text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
              if v_i = \text{nil then}
                L return nil
        H_i = H_{i-1} \cup \{h_i\}
   return v_n
```

12 - 11

Incremental Approach

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

Incremental Approach

Don't compute $\bigcap H$, but just *one* (optimal) point! Idea: Randomized 2DBoundedLP(H, c, m_1, m_2) $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_i$ then $\partial h_i \longrightarrow \mathbf{X}$ $\pi_{\partial h_i}(c)$ $v_i \leftarrow v_{i-1}$ O(1)else $v_i \leftarrow 1 \text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)) | O(i)$ if $v_i = \text{nil then}$ L return nil w-c running time: $T(n) = \sum_{i=1}^{n} O(i) =$ $H_i = H_{i-1} \cup \{h_i\} O(1)$ $= O(n^2)$:-(return v_n

Incremental Approach

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof. Let
$$X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$$
 (indicator random variable).

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

 $\mathbf{E}[T_{2d}(n)] =$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$

 $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in *H*.

We fix the *i* random halfplanes in H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i = 1] = \text{probability that the optimal solution}$ changes when h_i is added to H_{i-1} .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i = 1] =$ probability that the optimal solution changes when h_i is added to H_{i-1} .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i = 1] = \text{probability that the optimal solution}$ changes when h_i is added to H_{i-1} . = probability that the optimal solution changes when h_i is removed from H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i=1] = \text{probability that the optimal solution}$ changes when h_i is added to H_{i-1} . i.e., when $v_i \in \partial h_i$ = probability that the optimal solution and $v_i \in \partial h_i$ for changes when h_i is removed from H_i . exactly one j < i.

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i=1] = \text{probability that the optimal solution}$ changes when h_i is added to H_{i-1} . i.e., when $v_i \in \partial h_i$ = probability that the optimal solution and $v_i \in \partial h_i$ for changes when h_i is removed from H_i . exactly one j < i. < 2/i.

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i=1] = \text{probability that the optimal solution}$ changes when h_i is added to H_{i-1} . i.e., when $v_i \in \partial h_i$ = probability that the optimal solution and $v_i \in \partial h_j$ for changes when h_i is removed from H_i . exactly one j < i. $\leq 2/i$. This is independent of the choice of H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i = 1] =$ probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution changes when h_i is removed from H_i . $\leq 2/i$. This is independent of the choice of H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i) = O(n).$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i = 1] =$ probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution changes when h_i is removed from H_i . $\leq 2/i$. This is independent of the choice of H_{i} .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= O(n) + \sum \mathbf{E}[X_i] \cdot O(i)$ $= O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i) = O(n).$ We fix the *i* random halfplanes in H_i . $\mathbf{Pr}[X_i = 1] =$ probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution Proof technique: changes when h_i is removed from H_i . Backward analysis! $\leq 2/i$. This is independent of the choice of H_i

Use sweep-line alg. for map overlay (line-segment intersections) ! Running time $T_{MO}(n) =$

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time $T_{MO}(n) = O((n + I) \log n)$, where I = # intersection points.

→ CG: A & A §2

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time $T_{MO}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \leq$

→ CG: A & A §2

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time $T_{MO}(n) = O((n+I)\log n)$,

where I = # intersection points. *here:* $I \le n \rightarrow O(n \log n)$ for ICR

→ CG: A & A §2

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time $T_{MO}(n) = O((n+I)\log n)$,

where I = # intersection points. *here:* $I \le n \rightarrow O(n \log n)$ for ICR Running time $T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)$

→ CG: A & A §2

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time $T_{MO}(n) = O((n+I)\log n)$,

where I = # intersection points. *here:* $I \le n \rightarrow O(n \log n)$ for ICR Running time $T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)$

 $\leq 2T_{\rm IH}(n/2) + O(n\log n)$

→ CG: A & A §2

Use sweep-line alg. for map overlay (line-segment intersections) !

Running time $T_{MO}(n) = O((n+I)\log n)$,

where I = # intersection points. *here:* $I \le n \rightarrow O(n \log n)$ for ICR Running time $T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)$ $\le 2T_{\text{IH}}(n/2) + O(n \log n)$

 $\in O(n \log^2 n)$

14 - 7

Use sweep-line alg. for map overlay (line-segment intersections) ! Running time $T_{MO}(n) = O((n + I) \log n)$, where I = # intersection points. here: $I \le n \rightarrow O(n \log n)$ for ICR

Running time
$$T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$$

 $\leq 2T_{IH}(n/2) + O(n \log n)$
 $\in O(n \log^2 n)$

As this is more general, it is unsurprisingly worse ... [†]

^{*} it can happen sometimes that general algorithms give optimal runtimes for special cases

→ CG: A & A §2

Use sweep-line alg. for map overlay (line-segment intersections)

Running time $T_{MO}(n) = O((n+I)\log n)$,

where I = # intersection points. *here:* $I \le n \rightarrow O(n \log n)$ for ICR

Running time
$$T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)$$

 $\leq 2T_{\text{IH}}(n/2) + O(n \log n)$
 $\in O(n \log^2 n)$

As this is more general, it is unsurprisingly worse ... * → Better to use specialized algorithm for intersecting *convex* regions/polygons

 * it can happen sometimes that general algorithms give optimal runtimes for special cases