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Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

— turn vertices:
vertical component of walking direction changes

® start vertex /@\ if « < 180°
° split vertex .@‘ if B > 180°
® end vertex \@/ if v < 180°
® merge vertex M if 5 > 180°

— reqular vertices

Lemma: Let P be a simple polygon. Then P is y-monotone
& P has neither split vertices nor merge vertices.
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Lemma.

makeMonotone() adds a set of non-intersecting
diagonals to P such that P is partitioned into
y-monotone subpolygons.

A simple polygon with n vertices can be
subdivided into y-monotone polygons in
O(nlogn) time.
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