1

Julius-Maximilians- Chair for < .
UNIVERSITAT ~ INFORMATICS | I|||| | fl
WURZBURG Efficient Algorithms and

KnOWledge' Based SVStemS Institute for Informatics

Computational Geometry

Tr1angulat1ng Polygons
Guarding Art Galleries

Lecture #2

Thomas van Dijk Winter Semester 2019 /20

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

/P

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

/P

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

/P

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

/P

Observation. Camera ¢ “sees” a star-shaped region

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

Observation. Camera ¢ “sees” a star-shaped region

Definition. A ptg € P is visible from ¢ € P if gc C P.

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras!

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras!

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

) /
q discretize .

C —
simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras!

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.

Aim: Use few cameras! But minimizing this is NP-hard. ..

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.
Aim: Use few cameras!

Theorem. 1. Every simple polygon can be triangulated.

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.
Aim: Use few cameras!

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
p

q discretize
C e

simplify

Observation. Camera ¢ “sees” a star-shaped region
Definition. A ptg € P is visible from ¢ € P if gc C P.
Aim: Use few cameras!

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon

How can we .) . .
with n vertices consists of n — 2 triangles.

prove these?

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1— n:

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1— n:

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1— n:

W,

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1— n:

W,

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1— n:

W,

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

W,

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

W,

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

W

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

W

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

W

3 vtcs = 1 triangle

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

W

3 vtcs = 1 triangle

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

W

3 vtcs = 1 triangle

= n—2 triangles

v

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3,...,n—1—= n: x furthest from uw

w w.“
v v
3 vtcs = 1 triangle

= n—2 triangles

v

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3...,n—1—=>mn x furthest from uw
w Wa
” e
3 vtcs = 1 triangle m vtcs = m—2 triangles

= n—2 triangles

v

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3...,n—1—=mn: x furthest from uw
w
v
u
3 vtcs = 1 triangle m vtcs = m—2 triangles
n—1 vtcs = n—3 triangles n—m-+2 vtcs = n—m triangles

= n—2 triangles

v

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon
with n vertices consists of n — 2 triangles.

n = 3: A 1 triangle \/

3...,n—1—=mn: x furthest from uw
w
v
u
3 vtcs = 1 triangle m vtcs = m—2 triangles
n—1 vtcs = n—3 triangles n—m-+2 vtcs = n—m triangles
= n—2 triangles = n—2 triangles

v v

The Art Gallery Theorem [Chvital 75] |

4-2

The Art Gallery Theorem [Chvital '75]

Theorem. For surveilling a simple polygon with n
vertices, |n/3| cameras are sometimes
necessary and always sufficient.

Exercise. Find, for arbitrarily large n, a polygon with n
vertices, where ~ 1/3 cameras are necessary.

[2 minutes]

4-3

The Art Gallery Theorem [Chvital '75]

Theorem. For surveilling a simple polygon with n
vertices, |n/3| cameras are sometimes
necessary and always sufficient.

Exercise. Find, for arbitrarily large n, a polygon with n
vertices, where ~ 1/3 cameras are necessary.

[2 minutes]

O T O

[dBCvKO'08]

4-4

The Art Gallery Theorem [Chvital '75]

Theorem. For surveilling a simple polygon with n
vertices, |n/3| cameras are sometimes
necessary and always sufficient.

Exercise. Find, for arbitrarily large n, a polygon with n
vertices, where ~ 1/3 cameras are necessary.

[2 minutes]

O T O

[dBCvKO'08] ®

4-5

The Art Gallery Theorem [Chvital '75]

Theorem. For surveilling a simple polygon with n
vertices, |n/3| cameras are sometimes
necessary and always sufficient.

Exercise. Find, for arbitrarily large n, a polygon with n
vertices, where ~ 1/3 cameras are necessary.

[2 minutes]

O T O

[dBCvKO’08] 1_. o o o o o o o ._\

4-6

The Art Gallery Theorem [Chvital '75]

Theorem. For surveilling a simple polygon with n
vertices, |n/3| cameras are sometimes

necessary and always sufficient.
rectilinear

Exercise. l Find, for arbitrarily large , W with n
vertices, where ~ 1/3 cameras are necessary.

&ﬁf n/4
S| T Y R TR I Y

[dBCvKO’08] 1_. o o o o o o o ._\

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

e

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

- 13

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

-14

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

9
o v
3-color the vtcs e X
n \ﬁl\ ’::"I

Traverse the e

dual tree
’ —
, T ew

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes

necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

4,

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes

necessary and always sufficient.

3-color the vtcs

Traverse the
dual tree

Pick “smallest” color

4,

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

3-color the vtcs

Traverse the | A

dual tree

Pick “smallest” color

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

-25

The Art Gallery Theorem

Theorem.

To do:

Brute force:

For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

Find algo. for triangulating a simple polygon!

- 26

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time:

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:

— —

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)
Faster triangulation in two steps:

n-vtx polygon—» —r=

- 31

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:
n-vtx polygon——“nice” pieces, n’ vtc—

- 32

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:
n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles

- 33

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:

n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles
O(nlogn)

-34

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:

n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles
O(nlogn) O(n’)

- 35

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:
n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles
O(nlogn) O(n’)

Definition. A polygon P is y-monotone
if, for any horizontal line ¢, £ N P is connected.

- 36

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:
n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles
O(nlogn) O(n’)

Definition. A polygon P is y-monotone
O if, for any horizontal line ¢, £ N P is connected.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:

n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles
O(nlogn) O(n’)

Definition. A polygon P is y-monotone
O @ if, for any horizontal line ¢, £ N P is connected.

- 38

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:

n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles
O(nlogn) O(n’)

Definition. A polygon P is y-monotone
O @ M if, for any horizontal line ¢, £ N P is connected.

-39

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n
vertices, |n/3]| cameras are sometimes
necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: O(n?)

Faster triangulation in two steps:

n-vtx polygon——"“nice” pieces, n’ vtc——n" triangles
O(nlogn) O(n’)

Definition. A polygon P is y-monotone

O @& if, for any horizontal line ¢, £ N P is connected.

- 40

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P
— turn vertices:

— reqular vertices

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

— turn vertices:
vertical component of walking direction changes

— reqular vertices

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

— turn vertices:
vertical component of walking direction changes

® start vertex /@\ if « < 180°

— reqular vertices

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

— turn vertices:
vertical component of walking direction changes

® start vertex /@\ if « < 180°
.@‘ if B > 180°

® split vertex

— reqular vertices

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

— turn vertices:
vertical component of walking direction changes

® start vertex /@\ if « < 180°
° split vertex .@‘ if B > 180°
® ¢nd vertex \@/ if v < 180°

— reqular vertices

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

— turn vertices:
vertical component of walking direction changes

® start vertex /@\ if « < 180°
° split vertex .@‘ if B > 180°
® end vertex \@/ if v < 180°
® merge vertex M if 5 > 180°

— reqular vertices

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

— turn vertices:
vertical component of walking direction changes

® start vertex /@\ if « < 180°
° split vertex .@‘ if B > 180°
® end vertex \@/ if v < 180°
® merge vertex M if 5 > 180°

— reqular vertices

Lemma: Let P be a simple polygon. Then P is y-monotone
& P has neither split vertices nor merge vertices.

Towards an Algorithm 2N N

P
Idea: Add diagonals to “destroy” split and merge vtcs.

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross:

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

/N

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

Towards an Algorithm = 7/'

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

Towards an Algorithm = 7/'

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

Towards an Algorithm = 7/'

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

Towards an Algorithm = 7/'

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

v

Think of a sweep-line algorithm:

Towards an Algorithm = 7/'

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y- coordinate
among all vertices w above v and with left(w) = left(v

Think of a sweep-line algonthm ‘VY/\/\ f\‘\

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

/’\[7«%

Think of a sweep-line algorithm:
4

Ao

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm: /\\
¢ N

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:
4

8

Towards an Algorithm .p/< 7{

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

Connect v to helper(left(v)).

Towards an Algorithm = 7/'

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: — each other
— edges of P

1) Treating split vertices

left(v)
right(v)

Connect v to vertex w* having minimum y-coordinate
among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:
Connect v to helper(left(v)). .)(/R

An Algorithm

2) Treating merge vertices

A

left(v) v

An Algorithm

2) Treating merge vertices

\,

An Algorithm

2) Treating merge vertices

An Algorithm

2) Treating merge vertices f\/\v/ \?\

Zl&lk/"//ﬁ L/\/A¢

An Algorithm

2) Treating merge vertices NXJ/ \¢\

An Algorithm

2) Treating merge vertices f\/ v \f\

w I regular Y

An Algorithm

2) Treating merge vertices

w\

makeMonotone(polygon P)
D < DCEL(V

Q <+ pr10r1ty queue on V(P)
T < empty bin. search tree

An Algorithm
2) Treating merge vertices r\/ U

{/\Y/ \ /\/\/*

makeMonotone(polygon P)
D « DCEL(V(P),E(P))
Q <+ pr10r1ty queue on V(P)
T < empty bin. search tree

doubly-connected edge list:
data structure for planar subdivisions

An Algorithm
2) Treating merge vertices f\/ U

P EA

makeMonotone(polygon P)
D < DCEL(V(P),E(P))

Q <+ pr10r1ty queue on V(P)
T < empty bin. search tree

doubly-connected edge list:
data structure for planar subdivisions

(x,y) =< (1) i
y>y vV (y=y N x<x)

An Algorithm
2) Treating merge vertices r\/ U

{/\Y/ \ /\/\/*

makeMonotone(polygon P)
D + DCEL(V(P),E(P))

Q <+ pr10r1ty queue on V(P)
T < empty bin. search tree
while O # @ do

v+ Q.extractMax()

type < type of vertex v ¢ start, split, end, merge, regular

 handleVertextype(v) /é\ ﬂ \Qf .M

return DCEL D

doubly-connected edge list:
data structure for planar subdivisions

(x,y) < (X, y") &
y>y vV (y=vy Nx<x)

An Algorithm

2) Treating merge vertices \/X}/ \(\

makeMonotone(polygon P) handleVertexpmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while Q # @ do T .delete(e)
v Q.extractMax() ¢/ + T .edgeLeftOf(v)
type < type of vertex v g helper(e’) merge vtx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

2) Treating merge vertices \/X}/ \(\

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while Q # @ do T .delete(e)
v Q.extractMax() ¢/ + T .edgeLeftOf(v)
type < type of vertex v g helper(e’) merge vtx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\
e’ v

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\
e’ v

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\
e’ v

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\
e’ v

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

An Algorithm

e
2) Treating merge vertices \/X)/ \(\
e’ v

makeMonotone(polygon P) handleVertexmerge (Vertex v)

D + DCEL(V(P),E(P)) e < edge following v ccw

Q < priority queue on V(P) if helper(e) merge vtx then

T < empty bin. search tree | D.insert(diag(v, helper(e)))

while O # © do T .delete(e)
v < Q.extractMax() e’ + T .edgeLeftOf(v)
type < type of vertex v ;¢ helper(e’) merge vitx then
 handleVertextype(v) L D.insert(diag(v, helper(e’)))

return DCEL D helper(¢’) + v

Analysis

Lemma. makeMonotone() adds a set of non-intersecting
diagonals to P such that P is partitioned into
y-monotone subpolygons.

Analysis

Lemma.

Lemma.

makeMonotone() adds a set of non-intersecting
diagonals to P such that P is partitioned into
y-monotone subpolygons.

A simple polygon with n vertices can be
subdivided into y-monotone polygons in
O(nlogn) time.

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 -

10 -10

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10-11

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10-12

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10-13

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10- 14

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10-15

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 16

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10-17

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 18

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10-19

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 20

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10-21

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 22

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 23

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 24

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 25

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 26

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 27

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 28

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 29

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 30

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

10 - 31

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

10 - 32

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

10 - 33

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

10 - 34

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

10 - 35

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

10 - 36

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

10 - 37

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we
have seen but not yet
triangulated is a funnel.

A

10 - 38

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we
have seen but not yet
triangulated is a funnel.

chains of
reflex vtc
ﬂ

10 - 39

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?
angle in P The part of P that we
> 180 have seen but not yet
reflex vtc triangulated is a funnel.

chains of
reflex vtc
ﬂ

10 - 40

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?
angle in P The part of P that we
> 180 have seen but not yet
reflex vtc triangulated is a funnel.

chains of
reflex vtc

convex vtc

10 - 41

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?
angle in P The part of P that we
> 180 have seen but not yet
reflex vtc triangulated is a funnel.

chains of
reflex vtc

Our funnels are special:

convex vtc

10 - 42

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?
angle in P The part of P that we
> 180 have seen but not yet
reflex vtc triangulated is a funnel.

chains of
reflex vtc

Our funnels are special:

convex vtc

just 1 chain!

10 - 43

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?
angle in P The part of P that we
> 180 have seen but not yet
reflex vtc triangulated is a funnel.

chains of
reflex vtc

Our funnels are special:

convex vtc

just 1 chain!

Algorithm

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)
forj < 3ton—1do
if u; and S.top() lie on different chains then

else S.top()

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else S.top()

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else S.top()

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else
v < S.pop()

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v <+ S.pop() S.top()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v <+ S.pop() S.top()

draw diagonal (u;,v)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v <+ S.pop() S.top()

draw diagonal (u;,v)

 S.push(v); S.push(u;)
c u% Se

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)
 S.push(v); S.push(u;)

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)
 S.push(v); S.push(u;)

draw diagonals from u;, to all vtc on S except first

Alg()rithm Running time?

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

 S.push(v); S.push(u;) §>.
draw diagonals from u; to all vtc on S except first Uj

Al gorlthm Running time? @(n)

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain — seq. uq,...,u, withy; >... > y,

Stack S; S.push(uq); S.push(uy)

forj < 3ton—1do

if u; and S.top() lie on different chains then
while not S.empty() do

v < S.pop()
if not S.empty() then draw diag. (u;,v)

S.push(u;_1); S.push(u;)
else

v < S.pop()
while not S.empty() and u; sees S.top() do

L v + S.pop()

draw diagonal (u;,v)

 S.push(v); S.push(u;) §>.
draw diagonals from u; to all vtc on S except first Uj

12 -2

1n-vtx polygon=—=_g»“nice” pieces| n’ vtc—_ppsn'" triangles
Summary Sl O(nlogn) P O(n') &

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

12-3

1n-vtx polygon=—=_gps“nice” pieces| n’ vtc—_psn'" triangles
Summary Sl O(nlogn) P O(n') &

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

12 -

O(nlogn) O(n')

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

12 -

Summ ary n-vtx polygon—i»“nice” pieces| n’ Vtc—lbn’ ' triangles

O(nlogn) O(n’)

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.

12 -

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

O(nlogn) O(n')

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.

Is this it?

12 -

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

O(nlogn) O(n')

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.

IS thiS it? Tarjan & van Wyk [1988]:

12 -

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

O(nlogn) O(n')

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.

Is this it? Tasan & van Wyk [1985] O(nloglogn)

12 -

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

O(nlogn) O(n')

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.

Is this it? Tasan & van Wyk [1985] O(nloglogn)
Clarkson, Tarjan, van Wyk [1989]:

12 - 10

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

O(nlogn) O(n')

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.

Is this it? Tasan & van Wyk [1985] O(nloglogn)
Clarkson, Tarjan, van Wyk [1989]: O (Yl log* Tl)

12 -11

O(nlogn) O(n')

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.
Is this it? Tasan & van Wyk [1985] O(nloglogn)

Clarkson, Tarjan, van Wyk [1989]: O (Yl log* Tl)
Chazelle [1991]:

12 -12

O(nlogn) O(n')

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.
Is this it? Tasan & van Wyk [1985] O(nloglogn)

Clarkson, Tarjan, van Wyk [1989]: O (Yl log* Tl)
Chazelle [1991]: @) (7’1)

12 -13

O(nlogn) O(n')

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.
Is this it? Tasan & van Wyk [1985] O(nloglogn)

Clarkson, Tarjan, van Wyk [1989]: O (Yl log* Tl)
Chazelle [1991]: @) (7’1)

12 - 14

O(nlogn) O(n')

Summ ary n-vtx polygon—_»“nice” pieces| n’ vtc—_psn'" triangles

Lemma. A simple polygon with n vertices can be

subdivided into y-monotone polygons in
O(nlogn) time.

Lemma. A y-monotone polygon with n vertices can be

triangulated in O(n) time.

Lemma. , Subdividing a simple polygon with n vertices
by drawing d (pairwise non-crossing)
diagonals yields d + 1 simple polygons of total
complexity O(n).

Theorem. A simple polygon with n vertices can be
triangulated in O(nlogn) time.
Is this it? Tasan & van Wyk [1985] O(nloglogn)

Clarkson, Tarjan, van Wyk [1989]: O (Yl log* Tl)
Chazelle [1991]: @) (7’1)

	Titel
	Guarding an Art Gallery
	The Art Gallery Theorem
	The Art Gallery Theorem
	Part. a Polygon into Monotone Pieces
	Towards an Algorithm
	An Algorithm
	Analysis
	Triangulating a y-Monotone Polygon P
	Algorithm
	Summary

