Chair for
 INFORMATICS I

Efficient Algorithms and Knowledge-Based Systems

Computational Geometry

Triangulating Polygons
or
Guarding Art Galleries
Lecture \#2

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras!

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim:
Use few cameras! But minimizing this is NP-hard...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard...

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....
Theorem. 1. Every simple polygon can be triangulated.

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region
Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$.
Aim: Use few cameras! But minimizing this is NP-hard....
Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)..

Observation. Camera c "sees" a star-shaped region Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{q c} \subseteq P$. Aim: Use few cameras! But minimizing this is NP-hard....

Theorem.
How can we prove these?

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:<1 \text { triangle }
$$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

1 triangle $\sqrt{ }$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

1 triangle
x furthest from $u w$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

1 triangle
x furthest from $u w$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

1 triangle
x furthest from $u w$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

1 triangle
x furthest from $u w$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:
$$

$3, \ldots, n-1 \rightarrow n:$

3 vtcs $\Rightarrow 1$ triangle

1 triangle
x furthest from $u w$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3:
$$

$3, \ldots, n-1 \rightarrow n:$

3 vtcs $\Rightarrow 1$ triangle
$n-1$ vtcs $\Rightarrow n-3$ triangles
x furthest from $u w$

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3
$$

$3, \ldots, n-1 \rightarrow n$:

3 vtcs $\Rightarrow 1$ triangle
$n-1$ vtcs $\Rightarrow n-3$ triangles $\Rightarrow n-2$ triangles

1 triangle
x furthest from uw

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

3 vtcs $\Rightarrow 1$ triangle
$n-1$ vtcs $\Rightarrow n-3$ triangles $\Rightarrow n-2$ triangles

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

3 vtcs $\Rightarrow 1$ triangle
$n-1$ vtcs $\Rightarrow n-3$ triangles
$\Rightarrow n-2$ triangles

1 triangle
x furthest from $u w$

m vtcs $\Rightarrow m-2$ triangles

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3
$$

$$
3, \ldots, n-1 \rightarrow n:
$$

3 vtcs $\Rightarrow 1$ triangle
$n-1$ vtcs $\Rightarrow n-3$ triangles $\Rightarrow n-2$ triangles

1 triangle
x furthest from uw

m vtcs $\Rightarrow m-2$ triangles $n-m+2$ vtcs $\Rightarrow n-m$ triangles

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n-2$ triangles.

$$
n=3
$$

$3, \ldots, n-1 \rightarrow n:$

3 vtcs $\Rightarrow 1$ triangle
$n-1$ vtcs $\Rightarrow n-3$ triangles $\Rightarrow n-2$ triangles

1 triangle
x furthest from uw

m vtcs $\Rightarrow m-2$ triangles $n-m+2$ vtcs $\Rightarrow n-m$ triangles $\Rightarrow n-2$ triangles

The Art Gallery Theorem

For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.
Find, for arbitrarily large n, a polygon with n vertices, where $\approx n / 3$ cameras are necessary.
[2 minutes]

The Art Gallery Theorem

Theorem.
For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.
Find, for arbitrarily large n, a polygon with n vertices, where $\approx n / 3$ cameras are necessary.
[2 minutes]

The Art Gallery Theorem

Theorem.
For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.
Find, for arbitrarily large n, a polygon with n vertices, where $\approx n / 3$ cameras are necessary.
[2 minutes]

The Art Gallery Theorem

Theorem.
For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.
Find, for arbitrarily large n, a polygon with n vertices, where $\approx n / 3$ cameras are necessary.
[2 minutes]

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

Find, for arbitrarily large n, a polygon with n vertices, where $\approx n / 3$ cameras are necessary. $n / 4$

The Art Gallery Theorem

For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

The Art Gallery Theorem

Theorem.
For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3 -color the vtcs

Traverse the dual tree

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
Traverse the dual tree

Pick "smallest" color

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
Traverse the dual tree

Pick "smallest" color

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do:
Find algo. for triangulating a simple polygon!

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do:
Find algo. for triangulating a simple polygon!
Brute force:

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time:

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps:

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps: n-vtx polygon \longrightarrow

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps: n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc \longrightarrow

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps:
n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps: n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles $O(n \log n)$

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algor. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps: n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles $O(n \log n)$ $O\left(n^{\prime}\right)$

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps:
n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles $O(n \log n)$
$O\left(n^{\prime}\right)$
Definition. A polygon P is y-monotone
if, for any horizontal line $\ell, \ell \cap P$ is connected.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps: n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles $O(n \log n)$ $O\left(n^{\prime}\right)$

Definition.
A polygon P is y-monotone
\square if, for any horizontal line $\ell, \ell \cap P$ is connected.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps: n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles $O(n \log n)$ $O\left(n^{\prime}\right)$

Definition. $0 B$

A polygon P is y-monotone
if, for any horizontal line $\ell, \ell \cap P$ is connected.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$
Faster triangulation in two steps: n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles $O(n \log n)$ $O\left(n^{\prime}\right)$

Definition. A polygon P is y-monotone $0 B N$
if, for any horizontal line $\ell, \ell \cap P$ is connected.

The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
Brute force: follow existence proof, using recursion running time: $O\left(n^{2}\right)$

Faster triangulation in two steps: n-vtx polygon \longrightarrow "nice" pieces, n^{\prime} vtc $\longrightarrow n^{\prime \prime}$ triangles $O(n \log n)$ $O\left(n^{\prime}\right)$

Definition. A polygon P is y-monotone \square if, for any horizontal line $\ell, \ell \cap P$ is connected.

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

Part. a Polygon into Monotone Pieces
Idea: Classify vertices of given simple polygon P - turn vertices:

- regular vertices

Part. a Polygon into Monotone Pieces
Idea: Classify vertices of given simple polygon P - turn vertices:
vertical component of walking direction changes

- regular vertices

Part. a Polygon into Monotone Pieces
Idea: Classify vertices of given simple polygon P

- turn vertices:
vertical component of walking direction changes
- start vertex

- regular vertices

Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

- turn vertices:
vertical component of walking direction changes
- start vertex
- split vertex

if $\alpha<180^{\circ}$
if $\beta>180^{\circ}$
- regular vertices

Part. a Polygon into Monotone Pieces

Classify vertices of given simple polygon P

- turn vertices:
vertical component of walking direction changes
- start vertex
- split vertex
- end vertex

if $\alpha<180^{\circ}$
if $\beta>180^{\circ}$
if $\gamma<180^{\circ}$
- regular vertices

Part. a Polygon into Monotone Pieces

Classify vertices of given simple polygon P

- turn vertices:
vertical component of walking direction changes
- start vertex
- split vertex
- end vertex
- merge vertex

if $\alpha<180^{\circ}$
if $\beta>180^{\circ}$
if $\gamma<180^{\circ}$
if $\delta>180^{\circ}$
- regular vertices

Part. a Polygon into Monotone Pieces
Idea: Classify vertices of given simple polygon P

- turn vertices:
vertical component of walking direction changes
- start vertex
- split vertex
- end vertex

if $\alpha<180^{\circ}$
if $\beta>180^{\circ}$
if $\gamma<180^{\circ}$
- merge vertex

if $\delta>180^{\circ}$
- regular vertices

Lemma: Let P be a simple polygon. Then P is y-monotone $\Leftrightarrow P$ has neither split vertices nor merge vertices.

Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Towards an Algorithm
Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Towards an Algorithm
Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Towards an Algorithm

Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Think of a sweep-line algorithm:

Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Think of a sweep-line algorithm:

Towards an Algorithm

Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Think of a sweep-line algorithm:

Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Think of a sweep-line algorithm:

Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Think of a sweep-line algorithm:

Towards an Algorithm

Idea: Add diagonals to "destroy" split and merge vtcs.
Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Think of a sweep-line algorithm:
Connect v to helper(left $(v))$.

Problem: Diagonals must not cross:- each other

- edges of P

1) Treating split vertices

Connect v to vertex w^{\star} having minimum y-coordinate among all vertices w above v and with $\operatorname{left}(w)=\operatorname{left}(v)$.

Think of a sweep-line algorithm:
Connect v to helper(left $(v))$.

An Algorithm
2) Treating merge vertices

An Algorithm

2) Treating merge vertices

makeMonotone(polygon P)
$\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$
$\mathcal{T} \leftarrow$ empty bin. search tree

An Algorithm

2) Treating merge vertices

makeMonotone(polygon P)
$\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$
$\mathcal{T} \leftarrow$ empty bin. search tree

An Algorithm

2) Treating merge vertices

makeMonotone(polygon P)
$\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)\left\{(x, y) \prec\left(x^{\prime}, y^{\prime}\right): \Leftrightarrow\right.$
$\mathcal{T} \leftarrow$ empty bin. search tree
doubly-connected edge list:
data structure for planar subdivisions

$$
y>y^{\prime} \vee\left(y=y^{\prime} \wedge x<x^{\prime}\right)
$$

An Algorithm

2) Treating merge vertices

makeMonotone(polygon P)
$\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex $v \in$ start, split, end, merge, regular handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
doubly-connected edge list:
data structure for planar subdivisions
$(x, y) \prec\left(x^{\prime}, y^{\prime}\right): \Leftrightarrow$
$y>y^{\prime} \vee\left(y=y^{\prime} \wedge x<x^{\prime}\right)$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert($\operatorname{diag}(v$, helper $(e)))$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
$\mathcal{D} . \operatorname{insert}\left(\operatorname{diag}\left(v, \operatorname{helper}\left(e^{\prime}\right)\right)\right)$
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree
D.insert(diag(v, helper $(e))$) while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$. extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
D.insert(diag $\left.\left(v, \operatorname{helper}\left(e^{\prime}\right)\right)\right)$
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert($\operatorname{diag}(v$, helper $(e)))$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
D.insert(diag(v, helper $\left.\left(e^{\prime}\right)\right)$)
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert($\operatorname{diag}(v$, helper $(e)))$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
D.insert(diag(v, helper $\left.\left(e^{\prime}\right)\right)$)
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert(diag(v, helper $(e))$)
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
$\mathcal{D} . \operatorname{insert}\left(\operatorname{diag}\left(v, \operatorname{helper}\left(e^{\prime}\right)\right)\right)$
helper $\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert(diag(v, helper $(e))$)
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
D.insert(diag(v, helper $\left.\left(e^{\prime}\right)\right)$)
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

makeMonotone(polygon P) handleVertex merge (vertex v) $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert(diag(v, helper $(e))$)
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
$\mathcal{D} . \operatorname{insert}\left(\operatorname{diag}\left(v, \operatorname{helper}\left(e^{\prime}\right)\right)\right)$
helper $\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert($\operatorname{diag}(v$, helper $(e)))$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
D.insert(diag(v, helper $\left.\left(e^{\prime}\right)\right)$)
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert($\operatorname{diag}(v$, helper $(e)))$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
$\mathcal{D} . \operatorname{insert}\left(\operatorname{diag}\left(v, \operatorname{helper}\left(e^{\prime}\right)\right)\right)$
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert($\operatorname{diag}(v$, helper $(e)))$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
D.insert(diag(v, helper $\left.\left(e^{\prime}\right)\right)$)
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

An Algorithm

2) Treating merge vertices

 $\mathcal{D} \leftarrow \operatorname{DCEL}(V(P), E(P)) \quad e \leftarrow$ edge following $v \mathrm{ccw}$
$\mathcal{Q} \leftarrow$ priority queue on $V(P)$ if helper (e) merge vtx then
$\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \varnothing$ do
$v \leftarrow \mathcal{Q}$.extractMax() type \leftarrow type of vertex v handleVertex ${ }_{\text {type }}(v)$
return DCEL \mathcal{D}
D.insert($\operatorname{diag}(v$, helper $(e)))$
\mathcal{T}. delete (e)
$e^{\prime} \leftarrow \mathcal{T}$.edgeLeftOf (v)
if helper $\left(e^{\prime}\right)$ merge vtx then
D.insert(diag(v, helper $\left.\left(e^{\prime}\right)\right)$)
$\operatorname{helper}\left(e^{\prime}\right) \leftarrow v$

Analysis

Lemma. makeMonotone() adds a set of non-intersecting diagonals to P such that P is partitioned into y-monotone subpolygons.

Analysis
Lemma. makeMonotone() adds a set of non-intersecting diagonals to P such that P is partitioned into y-monotone subpolygons.

Lemma. A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P
Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

Triangulating a y-Monotone Polygon P
Approach: greedy, going from top to bottom

Invariant?

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

Triangulating a y-Monotone Polygon P
Approach: greedy, going from top to bottom

Invariant?

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we have seen but not yet triangulated is a funnel.

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we have seen but not yet triangulated is a funnel.

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we have seen but not yet triangulated is a funnel.

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we have seen but not yet triangulated is a funnel.

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we have seen but not yet triangulated is a funnel.

Our funnels are special:

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we have seen but not yet triangulated is a funnel.

Our funnels are special:

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of P that we have seen but not yet triangulated is a funnel.

Our funnels are special:

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right) ; S . \operatorname{push}\left(u_{j}\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot \operatorname{pop}()$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right) ; \operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S$.pop()
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S$.pop()
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S$.pop()
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S$.pop()
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right) ; S . \operatorname{push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S$.pop()
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S . \operatorname{pop}()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . \operatorname{pop}()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right) ; \operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . \operatorname{pop}()$
draw diagonal $\left(u_{j}, v\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$
S.push(v); S.push $\left(u_{j}\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . \operatorname{push}\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$
S.push(v); S.push $\left(u_{j}\right)$

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right)$; $\operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$
S.push(v); S.push $\left(u_{j}\right)$
draw diagonals from u_{n} to all vtc on S except first

Algorithm

Running time?

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right) ; \operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do
$v \leftarrow S . p o p()$
draw diagonal $\left(u_{j}, v\right)$
S.push(v); S.push $\left(u_{j}\right)$
draw diagonals from u_{n} to all vtc on S except first

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_{1}, \ldots, u_{n} with $y_{1} \geq \ldots \geq y_{n}$ Stack S; S.push $\left(u_{1}\right) ; S . p u s h\left(u_{2}\right)$ for $j \leftarrow 3$ to $n-1$ do
if u_{j} and S.top() lie on different chains then
while not S.empty() do
$v \leftarrow S . p o p()$
if not S.empty() then draw diag. $\left(u_{j}, v\right)$
S.push $\left(u_{j-1}\right) ; \operatorname{S.push}\left(u_{j}\right)$
else
$v \leftarrow S \cdot p o p()$
while not S.empty() and u_{j} sees S.top() do $v \leftarrow S . \operatorname{pop}()$ draw diagonal $\left(u_{j}, v\right)$
S.push(v); S.push $\left(u_{j}\right)$
draw diagonals from u_{n} to all vtc on S except first

$$
\text { Summary } \quad n \text {-vtx polygon } \underset{O(n \log n)}{\longrightarrow} \text { "nice" pieces, } n^{\prime} \text { vtc } \underset{O\left(n^{\prime}\right)}{\longrightarrow} n^{\prime \prime} \text { triangles }
$$

Summary
 ``` n-vtx polygon\longrightarrow"nice" pieces, n' vtc

\longrightarrow\mp@subsup{n}{}{\prime\prime}\mathrm{ trianglesLemma. A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma. A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
Lemma.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Lemma.

Lemma.

Lemma.
 work

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields $d+1$ simple polygons of total complexity $O(n)$.

Lemma.

Lemma.

Lemma.
homework

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing)
diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Lemma.

Lemma.

Lemma.
homework

Is this it?

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.
A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Lemma. work

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it? Tarjan \& van $W_{y k}$ [1988]:

Lemma. work

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Lemma.

Lemma.

Lemma.
home work

Is this it?

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.
A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Tarjan \& van Wyk [1988]: $O(n \log \log n)$
Clarkson, Tarjan, van Wyk [1989]:

Lemma.

Lemma.
home work

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing)
diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.
Is this it?
Tarjan \& van Wyk [1988]:
$O(n \log \log n)$
Clarkson, Tarjan, van Wyk [1989]: $O\left(n \log ^{*} n\right)$

Lemma.

Lemma.
home work

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Tarjan \& van Wyk [1988]: $\quad O(n \log \log n)$

Clarkson, Tarjan, van Wyk [1989]: $O\left(n \log ^{*} n\right)$
Chazelle [1991]:

Lemma.

Lemma.

Lemma.
home work

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Lemma.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Lemma.
homework

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing)
diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Lemma.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.
A y-monotone polygon with n vertices can be triangulated in $O(n)$ time.

Lemma.
homework

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing)
diagonals yields $d+1$ simple polygons of total complexity $O(n)$.
Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.
Is this it?
Tarjan \& van Wyk [1988]:
$O(n \log \log n)$
Clarkson, Tarjan, van Wyk [1989]:
$O\left(n \log ^{*} n\right)$
$O(n)$

Kirkpatrick, Klawe, Tarjan [1992]
Seidel [1991]: randomized

