

Computational Geometry

Triangulating Polygons or Guarding Art Galleries

Lecture #2

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras!

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard...

Theorem. 1. Every simple polygon can be triangulated.

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

- **Theorem.** 1. Every simple polygon can be triangulated.
 - 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition.

A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim:

Use few cameras! But minimizing this is NP-hard...

Theorem.

1. Every simple polygon can be triangulated.

How can we prove these?

2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

$$3,\ldots,n-1\rightarrow n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

$$3,\ldots,n-1\rightarrow n$$
:

- Theorem.
- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

$$3,\ldots,n-1\rightarrow n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

$$3, ..., n-1 \to n$$
:

- Theorem.
- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle

$$3, ..., n-1 \to n$$
:

- Theorem.
- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

1 triangle ✓

 $3, ..., n-1 \to n$:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

 $3, ..., n-1 \to n$:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$

- Theorem.
- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

$$3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$$

$$n-1$$
 vtcs $\Rightarrow n-3$ triangles $\Rightarrow n-2$ triangles

- Theorem.
- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle

$$3, ..., n-1 \to n$$
:

$$3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$$

$$n-1$$
 vtcs $\Rightarrow n-3$ triangles $\Rightarrow n-2$ triangles

Existence of Triangulation

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle

 $3, ..., n-1 \to n$:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$

$$\Rightarrow n-2$$
 triangles

x furthest from uw

 $m \text{ vtcs} \Rightarrow m-2 \text{ triangles}$

Existence of Triangulation

- Theorem.
- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

 $3, ..., n-1 \to n$:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ $\Rightarrow n-2$ triangles x furthest from uw

 $m \text{ vtcs} \Rightarrow m-2 \text{ triangles}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$ $n-m+2 \text{ vtcs} \Rightarrow n-m \text{ triangles}$

Existence of Triangulation

- Theorem.
- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ \Rightarrow *n*-2 triangles x furthest from uw

 $m \text{ vtcs} \Rightarrow m-2 \text{ triangles}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$ $n-m+2 \text{ vtcs} \Rightarrow n-m \text{ triangles}$ \Rightarrow *n*-2 triangles

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary. n/4

[dBCvKO'08]

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force:

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time:

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon-

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone*

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone*

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition.

A polygon *P* is *y-monotone*

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone*

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone*

Idea: Classify vertices of given simple polygon *P*

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

• start vertex

if $\alpha < 180^{\circ}$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

• start vertex

• *split* vertex

B

if $\alpha < 180^{\circ}$

if $\beta > 180^{\circ}$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

• start vertex

• split vertex

• end vertex

if $\alpha < 180^{\circ}$

if $\beta > 180^{\circ}$

if $\gamma < 180^{\circ}$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

• start vertex

• end vertex

regular vertices

if $\alpha < 180^{\circ}$

if
$$\beta > 180^{\circ}$$

if
$$\gamma < 180^{\circ}$$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

• merge vertex

- regular vertices

if $\alpha < 180^{\circ}$

if $\beta > 180^{\circ}$

if $\gamma < 180^{\circ}$

if $\delta > 180^{\circ}$

Lemma: Let P be a simple polygon. Then P is y-monotone $\Leftrightarrow P$ has neither split vertices nor merge vertices.

Idea: Add diagonals to "destroy" split and merge vtcs.

P

Idea: Add diagonals to "destroy" split and merge vtcs.

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross:

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: - each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of *P*

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of *P*

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

– edges of *P*

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

Connect v to helper(left(v)).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross: – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

Connect v to helper(left(v)).

2) Treating merge vertices

makeMonotone(polygon *P*)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P)$

 $\mathcal{T} \leftarrow$ empty bin. search tree

2) Treating merge vertices

makeMonotone(polygon *P*)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

 $Q \leftarrow \text{priority queue on } V(P)$

 $\mathcal{T} \leftarrow$ empty bin. search tree

doubly-connected edge list:
data structure for planar subdivisions

2) Treating merge vertices

makeMonotone(polygon *P*)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

$$Q \leftarrow \text{priority queue on } V(P)$$

 $\mathcal{T} \leftarrow$ empty bin. search tree

doubly-connected edge list: data structure for planar subdivisions $(x,y) \prec (x',y') :\Leftrightarrow$ $y > y' \lor (y = y' \land x < x')$

2) Treating merge vertices

makeMonotone(polygon P)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

$$Q \leftarrow \text{priority queue on } V(P)$$

$$\mathcal{T} \leftarrow$$
 empty bin. search tree **while** $\mathcal{Q} \neq \emptyset$ **do**

$$v \leftarrow Q$$
.extractMax()
type \leftarrow type of vertex $v \in$
handleVertex_{type}(v)

return DCEL \mathcal{D}

doubly-connected edge list: data structure for planar subdivisions $(x,y) \prec (x',y') :\Leftrightarrow$ $y > y' \lor (y = y' \land x < x')$

start, split, end, merge, regular

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices

makeMonotone(polygon P) $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$ $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$ $\mathcal{T} \leftarrow$ empty bin. search tree while $Q \neq \emptyset$ do $v \leftarrow Q$.extractMax() type \leftarrow type of vertex vhandleVertex_{type}(v)

return DCEL \mathcal{D}

```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices

makeMonotone(polygon P) $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$ $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$ $\mathcal{T} \leftarrow$ empty bin. search tree while $Q \neq \emptyset$ do $v \leftarrow Q$.extractMax() type \leftarrow type of vertex vhandleVertex_{type}(v)

return DCEL \mathcal{D}

```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

2) Treating merge vertices


```
handleVertex<sub>merge</sub>(vertex v)
e \leftarrow \text{edge following } v \text{ ccw}
     \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

Analysis

Lemma.

makeMonotone() adds a set of non-intersecting diagonals to *P* such that *P* is partitioned into *y*-monotone subpolygons.

Analysis

Lemma.

makeMonotone() adds a set of non-intersecting diagonals to *P* such that *P* is partitioned into *y*-monotone subpolygons.

Lemma.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Approach: greedy, going from top to bottom

Invariant?

Approach: greedy, going from top to bottom

Invariant?

Approach: greedy, going from top to bottom

Invariant?

Approach: greedy, going from top to bottom

Invariant?

Approach: greedy, going from top to bottom

Invariant?

The part of *P* that we have seen but not yet triangulated is a *funnel*.

Our funnels are special:

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$ Stack S; S.push(u_1); S.push(u_2) **for** $j \leftarrow 3$ **to** n-1 **do**

Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$ Stack S; S.push(u_1); S.push(u_2)

for j ← 3 to n − 1 do if u_i and S.top() lie on different chains then

S.top()

else

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_j, v)
                                                                     S.top
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
                                                                     S.top(
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
 for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```



```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```



```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```



```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```



```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
```



```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
          S.push(v); S.push(u_i)
```



```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
              if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
          S.push(v); S.push(u_i)
```



```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
     if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
         while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
          S.push(v); S.push(u_i)
  draw diagonals from u_n to all vtc on S except first
```


Running time?

TriangulateMonotonePolygon(Polygon *P* as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$ Stack S; S.push(u_1); S.push(u_2) for $j \leftarrow 3$ to n-1 do if u_i and S.top() lie on different chains then while not S.empty() do $v \leftarrow S.pop()$ if not S.empty() then draw diag. (u_i, v) $S.push(u_{i-1}); S.push(u_i)$ else $v \leftarrow S.pop()$ while not S.empty() and u_i sees S.top() do $v \leftarrow S.pop()$ draw diagonal (u_i, v) S.push(v); $S.push(u_i)$ draw diagonals from u_n to all vtc on S except first

Running time? $\Theta(n)$

```
TriangulateMonotonePolygon(Polygon P as circular vertex list)
  merge left and right chain \rightarrow seq. u_1, \ldots, u_n with y_1 \ge \ldots \ge y_n
  Stack S; S.push(u_1); S.push(u_2)
  for j \leftarrow 3 to n-1 do
      if u_i and S.top() lie on different chains then
          while not S.empty() do
              v \leftarrow S.pop()
             if not S.empty() then draw diag. (u_i, v)
          S.push(u_{i-1}); S.push(u_i)
      else
          v \leftarrow S.pop()
          while not S.empty() and u_i sees S.top() do
              v \leftarrow S.pop()
              draw diagonal (u_i, v)
          S.push(v); S.push(u_i)
```

draw diagonals from u_n to all vtc on S except first

n-vtx polygon—"nice" pieces, n' vtc—n'' triangles $O(n \log n)$

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

Lemma.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

Lemma.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

homework Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]:

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]:

 $O(n \log \log n)$

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]:

 $O(n \log \log n)$

Clarkson, Tarjan, van Wyk [1989]:

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

 $O(n \log \log n)$ Tarjan & van Wyk [1988]: $O(n \log^* n)$ Clarkson, Tarjan, van Wyk [1989]:

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

 $O(n \log \log n)$ Tarjan & van Wyk [1988]: $O(n \log^* n)$ Clarkson, Tarjan, van Wyk [1989]: Chazelle [1991]:

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

 $O(n \log \log n)$ Tarjan & van Wyk [1988]: $O(n \log^* n)$ Clarkson, Tarjan, van Wyk [1989]: O(n)Chazelle [1991]:

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

 $O(n \log \log n)$ Tarjan & van Wyk [1988]: Kirkpatrick, Klawe, Tarjan [1992] $O(n \log^* n)$ Clarkson, Tarjan, van Wyk [1989]: O(n)Chazelle [1991]:

Lemma.

A simple polygon with *n* vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Lemma.

A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

Lemma.

Subdividing a simple polygon with *n* vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Is this it?

 $O(n \log \log n)$ Tarjan & van Wyk [1988]: Kirkpatrick, Klawe, Tarjan [1992] $O(n \log^* n)$ Clarkson, Tarjan, van Wyk [1989]: Seidel [1991]: randomized O(n)Chazelle [1991]: