UNIVERSITÄT WÜRZBURG

Advanced Algorithms

Winter term 2019/20

Lecture 2. Approaches for Vertex Cover

Approaches to NP-Hard Problems

- Exponential-time algorithms, e.g., backtracking
- Approximation algorithms: trade off: quality against running time
- Heuristics: experiments on benchmarks
- Randomization: find a needle in the haystack

Example: Vertex Cover

Def. (Recall)
Let $G=(V, E)$ be an undirected graph.
$C \subseteq V$ is a vertex cover of G
if, for all $u v \in E$, it holds that $\{u, v\} \cap C \neq \emptyset$.
Prob. Minimum Vertex Cover

- optimization problem

Given: graph G
Find: smallest (minimum) vertex cover of G
Prob. k-Vertex Cover (k - VC) - decision problem
Given: graph G, natural number k
Find: \quad vertex cover of size $\leq k$ of G if there is any - otherwise return "no".

Previous Work

- One of the first problems whose NP-hardness has been shown (SAT \preceq_{p} CLIQUE $\preceq_{p} \mathrm{VC} \preceq_{p} \ldots$) [Karp, 1972]
- One of the six "basic" NP-hard problems.
[Garey \& Johnson, 1979]
- Approximable...

A maximal matching "yields"
a 2-approximation.

- ... but not arbitrarily well:

There is no 1.36 -approximation for VC.

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

$$
\text { if } \mathcal{P} \neq \mathcal{N} \mathcal{P} \text {. }
$$

Approximation Algorithms

 maximization$\alpha: \mathbb{N} \rightarrow \mathbb{Q}$
Let Π be a_minimization problem and $\propto \in \mathbb{Q}^{+}$.
A factor- α-approximation algorithm for Π is an efficient algorithm which provides a feasible solution $s \in S_{\Pi}(I)$ for any instance $I \in D_{\Pi}$ such that:

$$
\frac{\operatorname{obj}_{\Pi}(I, s)}{\mathrm{OPT}_{\Pi}(I)} \geq \not \approx \not \subset . \quad \alpha(| | \mid)
$$

A little exercise. For Vertex Cover -

- What are the instances $\left(D_{\Pi}\right)$?
- What are the feasible solutions $\left(S_{\Pi}(I)\right)$ for an instance I?
- What is the objective function $\operatorname{obj}_{\Pi}(I, s)$ for I and s ?
- What is the value $\mathrm{OPT}_{\Pi}(I)$ of the objective function of an optimal solution for I ?

Approximation Alg. for Vertex Cover

 Ideas?- Edge-Greedy
- Vertex-Greedy (see Exercises)
- maximal edge covers

How can we measure the quality of a feasible solution?
Problem: How can we estimate $\frac{\mathrm{obj}_{\eta}(l, s)}{\mathrm{OPT}}$ when it is hard to calculate OPT?

Idea: Find a "good" lower bound $U \leq$ OPT for OPT and compare it to our approximate solution.

$$
\frac{\mathrm{obj}_{\Pi}(I, s)}{\text { OPT }} \leq \frac{\mathrm{obj}_{\Pi}(I, s)}{U}
$$

Lower Bound by Matchings

An edge set $M \subseteq E$ of a graph $G=(V, E)$ is a matching when no vertex of G is incident to two edges in M.
M is maximal when there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Approximation Alg. for Vertex Cover

Combinatorial Algorithm for Vertex Cover (G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do if e is not adjacent to an edge in M then $M \leftarrow M \cup\{e\}$
return $\{u, v \mid u v \in M\}$
Theorem. The above algorithm is a factor-2 approximation algorithm for Vertex Cover.

Proof.

1. Feasibility.
2. Quality of the solutions.

$$
T_{r_{y!}}
$$

A Tool for Designing Approximation Algo's

- Formulate the problem as an integer linear program (ILP).
- Relax the ILP, that is, replace integrality by non-negativity.
- Round an optimal solution of the relaxation to an approximate integral solution.

Let's do this for Vertex Cover:

- Let G be the given graph.

Minimize $\quad \sum_{v \in V} x_{v}$ subject to $\quad x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$ $x_{\sim} \in\{0,1\}$ for each $v \in V(G)$

- Relax the ILP: $x_{v} \geq 0$
- Round the LP solution: Return $\left\{v \in V(G): x_{v} \geq \frac{1}{2}\right\}$.

LP-Rounding for Vertex Cover

Theorem. The LP-rounding algorithm is a factor-2 approximation algorithm for Vertex Cover.

Proof.

1. Feasibility.
2. Quality of the solutions. Try!

Question. What is the lower bound that we used here?

How do the 2 algorithms compare? What are their pros \& cons?

- The combinatorial algorithm is fast and easy to implement.
- The LP-rounding algorithm solves a more general problem: Minimize $\sum_{v \in V} c_{v} x_{v}$ - Weighted Vertex Cover!

Integrality Gap

By how much can LP and ILP solutions differ?

Example:

$$
\begin{aligned}
\text { The } \mathrm{LP} \text { solution is } \mathrm{OPT}^{\star} & =1.5 \\
x & \equiv 0.5
\end{aligned}
$$

The ILP solution is OPT $=2.0$

$$
\text { e.g., } x=(1,1,0)
$$

Def. Integrality gap $=\sup _{I \in D_{\pi}} \frac{\mathrm{OPT}(I)}{\mathrm{OPT}^{\star}(I)} \geq \frac{4}{3}$ for vertex cover.
Exercise: What is the largest integrality gap for Vertex Cover you can find?

Exercise: - Draw the three constraints in the VC ILP for C_{3} into a 3D coordinate systems.

- Add all optimal LP/ILP solutions.

Polyhedral Insights

Let $V^{-}=\left\{v: 0<x_{v}<1 / 2\right\}$ and $V^{+}=\left\{v: 1 / 2<x_{v}<1\right\}$.
$\varepsilon:=\min \left\{\min _{v \in V^{-}}\left\{x_{v}, 1 / 2-x_{v}\right\}, \min _{v \in V^{+}}\left\{1-x_{v}, x_{v}-1 / 2\right\}\right\}$
Let x be an (optimal) LP solution.
Let $x_{v}^{\prime}=\left\{\begin{array}{ll}x_{v}-\varepsilon & \text { if } v \in V^{-} \\ x_{v}+\varepsilon & \text { if } v \in V^{+} \\ x_{v} & \text { else. }\end{array} \quad\right.$ Let $x_{v}^{\prime \prime}= \begin{cases}x_{v}-\varepsilon & \text { if } v \in V^{+} \\ x_{v}+\varepsilon & \text { if } v \in V^{-} \\ x_{v} & \text { else. }\end{cases}$
Then x^{\prime} and $x^{\prime \prime}$ are feasible LP solutions and $x=\left(x^{\prime}+x^{\prime \prime}\right) / 2$. What does this mean geometrically?

Note: x can't be a corner of the polyhedron if

$$
V^{-} \neq \emptyset \quad\left(\Leftrightarrow V^{+} \neq \emptyset\right)
$$

So if x is an extreme point, $V^{-}=\emptyset=V^{+}$. In other words, the VC polytope is half integral!

König's Theorem

Theorem. Let $G=(U \cup V, E)$ be a bipartite graph,
C a minimum vertex cover, and M a maximum matching. Then $|C|=|M|$.

Z : all unmatched vertices in U + all vertices that are reachable via alternating paths
$C:(V \cap Z) \cup(U \backslash Z)$
Lemma. Each edge in M has exactly one vertex in C.

Theorem. Vertex Cover for bipartite graphs can be solved in $O(\sqrt{V} E)$ time.

Books

Vijay V. Vazirani
Approximation Algorithms Springer-Verlag 2003

The DESIGN of APPROXIMATION ALGORITHMS

Cambridge
D. P. Williamson \& D. B. Shmoys

The Design of Approximation Algorithms Cambridge 2011

Approaches to NP-Hard Problems

- Exponential-time algorithms, e.g., backtracking
- Approximation algorithms: trade off: quality against running time
- Heuristics: experiments on benchmarks
- Randomization: find a needle in the haystack
- Design of parameterized algorithms

An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k) foreach $C \in\binom{V}{k}$ do $\left|\binom{V}{k}\right|=\binom{V \mid}{ k}=\binom{n}{k}=O\left(n^{k}\right)$
// test whether C is a VC

$$
\mathrm{vc}=\text { true }
$$

foreach $u v \in E$ do

$$
\text { if }\{u, v\} \cap C=\emptyset \text { then }\} O(E)=O(m)
$$

$$
L \mathrm{vc}=\text { false }
$$

if vc then return ("yes", C) return ("no", Ø)

Runtime. $O\left(n^{k} m\right)$ - This is not polynomial in the size of the input $(=n+m)$ as k is not a constant, but part of the input.

New Goal

Find an algorithm for k - VC with runtime

$$
O\left(f(k)+\| \|^{c}\right),
$$

where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (independent of I), I is the given instance, c constant (independent of I)

That is, the runtime should depend

- arbitrarily on k, \longleftarrow degree of difficulty of the problem
- polynomially in the size $|I|$ of instance I.

A problem that can be solved within this time bound is called fixed-parameter tractable with respect to the parameter k.
$\mathcal{F} \mathcal{P} \mathcal{T}=$ class of the fixed-parameter tractable problems.

Some Simple Observations...

Let $G=(V, E)$ be a graph and let C be a VC for G.
Suppose $v \notin C$ - which nodes are then certainly in C ?
Obs. 1. If G is a graph, C a $\vee C$ for G, and v a node, then: $v \in C$ or $N(v) \subseteq C$.

Consider the decision problem k-VC.
What holds for nodes of degree $>k$?
Obs. 2. Every node of degree $>k$ is contained in every $k-\mathrm{VC}$.

What holds if $|E|>k^{2}$ and all nodes have degree $\leq k$?
Obs. 3. If $|E|>k^{2}$ and $\Delta(G):=\max _{v \in V} \operatorname{deg} v \leq k$, then G has no $k-V C$.

Algorithm of Buss

BussVC(Graph G, Integer k)
I) reduction to the kernel of the problem
$C=\{v \in V \mid \operatorname{deg} v>k\}$
if $|C|>k$ then return ("no", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash C]$ (without isolated nodes)
$k^{\prime}=k-|C|$
if $\left|E^{\prime}\right|>k^{2}$ then return ("no", \emptyset)
$O(n+m)$
time
II) solution of the problem by brute force (yesorno, $\left.\left.C^{\prime}\right)=\operatorname{BruteForceVC(} G^{\prime}, k^{\prime}\right)$ return (yesorno, $C \cup C^{\prime}$)
$O\left(m^{\prime} \cdot\left(n^{\prime}\right)^{k^{\prime}}\right)$ time where $m^{\prime}:=\left|E^{\prime}\right| \leq k^{2}$ $\Rightarrow n^{\prime}:=\left|V^{\prime}\right| \leq 2 k^{2}$
$\begin{array}{ll}\text { Runtime. } & O\left(n+m+k^{2} \cdot\left(2 k^{2}\right)^{k}\right)=O(\underbrace{n+m}_{|I|^{1}}+\underbrace{k^{2} 2^{k} k^{2 k}}_{f(k)}) \\ \text { Thus: } & k-\mathrm{VC} \in \mathcal{F} \mathcal{P} \boldsymbol{T}!\end{array}$

Search-Tree Algorithm

Idea. Improve phase II by building a search tree.

\#nodes: $T(k) \leq 2 T(k-1)+1, T(0)=1 \quad \Rightarrow T(k) \leq 2^{k+1}-1 \in O\left(2^{k}\right)$
\Rightarrow Runtime: $O^{\star}\left(2^{k}\right)$
If there is a leaf ℓ with $E_{\ell}=\emptyset$, then C_{ℓ} is a $k-\mathrm{VC}$ of G. If there is no such leaf, then G has no $k-\mathrm{VC}$.

The Degree-4 Algorithm

Idea. Improve estimation of $|N(v)|$.

$\Rightarrow T(k)=T(k-\underbrace{4)+T(k-1})+1, \quad T(\leq 4)=$ const. branching vector $(4,1)$
Test $T(k)=z^{k}-1 \quad \Rightarrow \quad z^{k}=z^{k-4}+z^{k-1}$
\Rightarrow characteristic polynomial: $z^{4}=1+z^{3}$
\Rightarrow largest positive solution: $z \approx 1.38$ (branching number)
$\Rightarrow T(k) \in O\left(1.38^{k}\right)$. But how do we ensure $\operatorname{deg} v \geq 4$?

Kernels II

Before:

Rule K: eliminate nodes of degree $>k$
Regel 0: eliminate nodes of degree 0
improved kernels:
Rule 1: eliminate nodes of degree 1

$$
\begin{aligned}
C & =C^{\prime} \cup\{w\} \\
k^{\prime} & =k-1
\end{aligned}
$$

Rule 2: eliminate nodes of degree 2

If $u w \in C^{\prime}$, take u and w in C, otherwise v.
$k^{\prime}=k-1$

Rule 3: eliminate nodes of degree 3

Rule 3.1: $G[N(v)]$ contains no edge.

Claim. There is a $k-\mathrm{VC}$ in $G \Leftrightarrow$ there is a $k-\mathrm{VC}$ in G^{\prime}.

Rule 3.2: There are edges in $G[N(v)]$.

The Degree-4 Algorithm

Idea: Apply the improved kernel rules to every node of the search tree exhaustively!
\Rightarrow Runtime: $O\left(n k+k^{2} \cdot 1.38^{k}\right) \subseteq O^{\star}\left(1.38^{k}\right)$

Conclusion

- k-VC can be solved in $O\left(n k+1.38^{k} k^{2}\right)$ time.
- Parameterized complexity $=$ new toolbox for NP-hard problems: kernels, tables, search trees, ...
- It is always useful to identify restricted parameters FPT uses them!
- Hope:
"natural" problem $P \in \mathcal{F} \mathcal{P} \mathcal{T} \Rightarrow f(k)$ reasonable.

Books on FPT

1999

2006

2006

