
1

Steven Chaplick & Alexander Wolff Chair for Computer Science I

Advanced Algorithms

Winter term 2019/20

Lecture 2. Approaches for Vertex Cover

2 - 2

Approaches to NP-Hard Problems

• Exponential-time algorithms, e.g., backtracking

• Approximation algorithms:
trade off: quality against running time

• Heuristics: experiments on benchmarks

• Randomization: find a needle in the haystack

3 - 6

Example: Vertex Cover

Def. (Recall)

Let G = (V , E) be an undirected graph.
C ⊆ V is a vertex cover of G
if, for all uv ∈ E , it holds that {u, v} ∩ C 6= ∅.

Prob. Minimum Vertex Cover

Given:
Find:

graph G

smallest (minimum) vertex cover of G

Prob. k-Vertex Cover (k-VC)

Given:
Find:

graph G , natural number k
vertex cover of size ≤ k of G –
if there is any – otherwise return “no”.

– optimization problem

– decision problem

4 - 10

Previous Work

• One of the first problems whose NP-hardness has been
shown (SAT �p CLIQUE �p VC �p . . .) [Karp, 1972]

• One of the six “basic” NP-hard problems.
[Garey & Johnson, 1979]

• Approximable. . .

A maximal matching “yields”
a 2-approximation.

• . . . but not arbitrarily well:

There is no 1.36-approximation for VC.
if P 6= NP.

[Dinur & Safra, 2004]

5 - 4

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.
A factor-α-approximation algorithm for Π is an efficient
algorithm which provides a feasible solution s ∈ SΠ (I) for any
instance I ∈ DΠ such that:

objΠ (I , s)

OPTΠ (I)
≤ α . α(|I |)

α : N→ Qmaximization

≥

– What are the instances (DΠ)?

– What are the feasible solutions (SΠ (I)) for an instance I ?

– What is the objective function objΠ (I , s) for I and s?

A little exercise. For Vertex Cover –

What is the value OPTΠ (I) of the objective function
of an optimal solution for I ?

–

6 - 5

Approximation Alg. for Vertex Cover

Ideas?

• Edge-Greedy

• Vertex-Greedy (see Exercises)

• maximal edge covers

How can we measure the quality of a feasible solution?

Problem: How can we estimate objΠ (I ,s)
OPT when it is hard to

calculate OPT?

Idea: Find a “good” lower bound U ≤ OPT for OPT and
compare it to our approximate solution.

objΠ (I ,s)
OPT ≤ objΠ (I ,s)

U

7 - 9

Lower Bound by Matchings

OPT ≥ 3

An edge set M ⊆ E of a graph G = (V , E) is a matching
when no vertex of G is incident to two edges in M .

M is maximal when there is no matching M ′ with M ′) M.

vertex cover of G !

|M|

OPT ≤ 2 · |M|

8 - 4

Approximation Alg. for Vertex Cover

Combinatorial Algorithm for Vertex Cover (G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to an edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

The above algorithm is a factor-2 approximation
algorithm for Vertex Cover.

Theorem.

Proof. 1. Feasibility.

2. Quality of the solutions.
Try!

9 - 15

A Tool for Designing Approximation Algo’s

• Formulate the problem as an integer linear program (ILP).

• Relax the ILP, that is, replace integrality by non-negativity.

• Round an optimal solution of the relaxation to an
approximate integral solution.

Let’s do this for Vertex Cover:

Minimize
∑

v∈V xv

subject to xu + xv ≥ 1 for each uv ∈ E (G)

xv ∈ {0, 1} for each v ∈ V (G)

• Let G be the given graph.

• Relax the ILP: xv ≥ 0

• Round the LP solution: Return
{

v ∈ V (G) : xv ≥ 1
2

}
.

10 - 16

LP-Rounding for Vertex Cover

The LP-rounding algorithm is a factor-2
approximation algorithm for Vertex Cover.

Theorem.

Proof. 1. Feasibility.

2. Quality of the solutions.
Try!

Question. What is the lower bound that we used here?

How do the 2 algorithms compare? What are their pros & cons?

The LP solution!
∑

v xv ≤ OPT ≤
∑

x ′v ≤
∑

2xv .

– The combinatorial algorithm is fast and easy to implement.

– The LP-rounding algorithm solves a more general problem:

Minimize
∑

v∈V cv xv – Weighted Vertex Cover!

How do the 2 algorithms compare?

(rounded solution)

11 - 13

Integrality Gap

By how much can LP and ILP solutions differ?

u v

wExample: The LP solution is OPT? = 1.5
x ≡ 0.5

The ILP solution is OPT = 2.0
e.g ., x = (1, 1, 0)

Integrality gap = sup
I∈DΠ

OPT(I)

OPT?(I)
Def. ≥ 4

3
for vertex cover.

Exercise: What is the largest integrality gap for Vertex
Cover you can find?

Exercise: Draw the three constraints in the VC ILP for C3

into a 3D coordinate systems.
–

– Add all optimal LP/ILP solutions.

12 - 15

Polyhedral Insights

Let V− = {v : 0 < xv < 1/2} and V + = {v : 1/2 < xv < 1}.

ε := min
{

minv∈V−{xv , 1/2− xv}, minv∈V +{1− xv , xv − 1/2}
}

Let x be an (optimal) LP solution.

Let x ′v =

xv − ε if v ∈ V−

xv + ε if v ∈ V +

xv else.

Let x ′′v =

xv − ε if v ∈ V +

xv + ε if v ∈ V−

xv else.

and x = (x ′ + x ′′)/2.
What does this mean geometrically?

x x ′′
x ′ Note: x can’t be a corner of the polyhedron if

V− 6= ∅
So if x is an extreme point, V− = ∅ = V +.
In other words, the VC polytope is half integral!

(⇔ V + 6= ∅)

Then x ′ and x ′′ are feasible LP solutions

13 - 29

König’s Theorem

U

V
Z : all unmatched vertices in U

+ all vertices that are reachable via alternating paths

C : (V ∩ Z) ∪ (U \ Z)

Lemma. Each edge in M has exactly one vertex in C .
u

v

u

v

u

v

u

v

Let G = (U ∪ V , E) be a bipartite graph,
C a minimum vertex cover, and M a maximum
matching. Then |C | = |M|.

Theorem.

Vertex Cover for bipartite graphs can be
solved in O(

√
V E) time.

Theorem.

14

Books

Vijay V. Vazirani
Approximation Algorithms
Springer-Verlag 2003

D. P. Williamson & D. B. Shmoys
The Design of Approximation Algorithms
Cambridge 2011

15

Approaches to NP-Hard Problems

• Exponential-time algorithms, e.g., backtracking

• Approximation algorithms:
trade off: quality against running time

• Heuristics: experiments on benchmarks

• Randomization: find a needle in the haystack

• Design of parameterized algorithms
NEW

16 - 10

An Exact Algorithm for k-VC

BruteForceVC(Graph G , Integer k)

foreach C ∈
(

V
k

)
do

// test whether C is a VC
vc = true
foreach uv ∈ E do

if {u, v} ∩ C = ∅ then
vc = false

if vc then
return (“yes”, C)

return (“no”, ∅)

Runtime.

∣∣∣(V
k

)∣∣∣ =
(|V |

k

)
=
(

n
k

)
= O(nk) O(E) = O(m)

O(nk m) This is not polynomial in the size of
the input (= n + m) as k is not a
constant, but part of the input.

–

17 - 7

New Goal

Find an algorithm for k-VC with runtime

O(f (k) + |I |c),
where f : N→ N is a computable function (independent of I),

I is the given instance, c constant (independent of I)

That is, the runtime should depend
– arbitrarily on k,
– polynomially in the size |I | of instance I .

degree of difficulty of the problem

A problem that can be solved within this time bound is called
fixed-parameter tractable with respect to the parameter k.

FPT = class of the fixed-parameter tractable problems.

Remark.
The class FPT does not
change if + is replaced with ·

18 - 6

Some Simple Observations. . .

Let G = (V , E) be a graph and let C be a VC for G .
Suppose v 6∈ C – which nodes are then certainly in C ?

Obs. 1. If G is a graph, C a VC for G , and v a node,
then: v ∈ C or N(v) ⊆ C .

Consider the decision problem k-VC.
What holds for nodes of degree > k?

Obs. 2. Every node of degree > k is contained in every k-VC.

What holds if |E | > k2 and all nodes have degree ≤ k?

Obs. 3. If |E | > k2 and ∆(G) := maxv∈V deg v ≤ k,
then G has no k-VC.

19 - 16

Algorithm of Buss

I) reduction to the kernel of the problem

C = {v ∈ V | deg v > k}
if |C | > k then return (“no”, ∅)

BussVC(Graph G , Integer k)

II) solution of the problem by brute force

(yesorno, C ′) = BruteForceVC(G ′, k ′)

return (yesorno, C ∪ C ′)

Runtime.

where m′ := |E ′| ≤ k2

⇒ n′ := |V ′| ≤ 2k2

O(n + m)

time

}

Thus: k-VC ∈ FPT !

O
(
n + m + k2 · (2k2)k

)
O(m′ · (n′)k′) time

= O
(
n + m + k22k k2k

)
f (k)
︸ ︷︷ ︸

|I |1
︸ ︷︷ ︸

G ′ = (V ′, E ′) := G [V \ C] (without isolated nodes)

k ′ = k − |C |
if |E ′| > k2 then return (“no”, ∅)

20 - 14

Search-Tree Algorithm

Idea. Improve phase II by building a search tree.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)

k

(G`, 0, C`)

...

If there is a leaf ` with E` = ∅, then C` is a k-VC of G .

leaf `

If there is no such leaf, then G has no k-VC.

#nodes: T (k) ≤ 2 T (k − 1) + 1, T (0) = 1 ⇒ T (k) ≤ 2k+1 − 1 ∈ O(2k)

(G , k, ∅)

⇒ Runtime: O?(2k)

leafs are all nodes with k = 0;
they can be at different levels of the tree.

tree
height

21 - 15

The Degree-4 Algorithm

Idea. Improve estimation of |N(v)|.

(G − v , k − 1, {v}) (G − N(v), k − deg v , N(v))

v N(v)

w N(w) w N(w)
k

(G`, 0, C`)

...
leaf `

(G , k, ∅) ︷ ︸︸ ︷assumption: ≥ 4

⇒ T (k) = T (k − 4) + T (k − 1) + 1, T (≤ 4) = const.

branching vector (4, 1)

⇒ characteristic polynomial: z4 = 1 + z3

⇒ largest positive solution: z ≈ 1.38 (branching number)

⇒ T (k) ∈ O(1.38k). But how do we ensure deg v ≥ 4?

Test T (k) = zk − 1

tree
height

⇒ zk = zk−4 + zk−1

· 1
zk−4

22 - 11

Kernels II

Before:

Rule K:
Regel 0: eliminate nodes of degree 0

improved kernels:

Rule 1: eliminate nodes of degree 1

v w

Rule 2: eliminate nodes of degree 2

v
w

u

eliminate nodes of degree > k

C = C ′ ∪ {w}

uw

If uw ∈ C ′,
take u and w in C ,
otherwise v .

k ′ = k − 1

k ′ = k − 1

23 - 9

Rule 3: eliminate nodes of degree 3

G [N(v)] contains no edge.Rule 3.1:

b

a

c

v b

a

c

Claim. There is a k-VC in G ⇔ there is a k-VC in G ′.

There are edges in G [N(v)].Rule 3.2:
. . .

G G ′

. . .

24 - 4

The Degree-4 Algorithm

Idea: Apply the improved kernel rules to every node of the
search tree exhaustively !

⇒ Runtime: O(nk + k2 · 1.38k) ⊆ O?(1.38k)

25

Conclusion

• k-VC can be solved in O(nk + 1.38k k2) time.

• Parameterized complexity =
new toolbox for NP-hard problems:
kernels, tables, search trees, . . .

• It is always useful to identify restricted parameters –
FPT uses them!

• Hope:
“natural” problem P ∈ FPT ⇒ f (k) reasonable.

26

Books on FPT

20061999 2006

	Titel
	Approaches to NP-Hard Problems
	Example: Vertex Cover
	Previous Work
	A Tool for Designing Approximation Algo's
	LP-Rounding for \textsc{Vertex Cover}
	Integrality Gap
	Polyhedral Insights
	Books
	Approaches to NP-Hard Problems
	An Exact Algorithm for k-VC
	New Goal
	Some Simple Observations\dots
	Algorithm of Buss
	Search-Tree Algorithm
	The Degree-4 Algorithm
	Kernels II
	Rule 3: eliminate nodes of degree~3
	The Degree-4 Algorithm
	Conclusion
	Books on FPT

