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Approaches to NP-Hard Problems

e Exponential-time algorithms, e.g., backtracking

e Approximation algorithms:
trade off: quality against running time

e Heuristics: experiments on benchmarks

e Randomization: find a needle in the haystack



Example: Vertex Cover

Def.

Prob.

Prob.

(Recall)

Let G = (V/, E) be an undirected graph.
C C V is a vertex cover of G
if, for all uv € E, it holds that {u, v} N C # 0.

Minimum Vertex Cover — optimization problem
Given:  graph G

Find: smallest (minimum) vertex cover of G
k-Vertex Cover (k-VC) — decision problem
Given: graph G, natural number k

Find: vertex cover of size < k of G —

if there is any — otherwise return “no”.



Previous Work

e One of the first problems whose NP-hardness has been
shown (SAT =<, CLIQUE <, VC <, ...)

e One of the six “basic” NP-hard problems.

" COMPUTERS AND INTRACTABILITY
¢ A p prOXI ma b | €. .. A Guide to the Theory of NP-Completeness

A m aXi m a | m a tC h i n g “yie | d S” Michael B. Garey / David S. Johnson
a 2-approximation.

e ...but not arbitrarily well:

There is no 1.36-approximation for VC.




Approximation Algorithms

maximization a: N—=Q
Let /1 be a_mintmization problem and g Q.

A factor-a-approximation algorithm for 1 is an efficient
algorithm which provides a feasible solution s € Sp(/) for any
instance | € Dp such that:

()

A little exercise. For VERTEX COVER —

— What are the instances (Dp)?
— What are the feasible solutions (Sp(1)) for an instance /7
— What is the objective function objr(/,s) for | and s?

— What is the value OPT (/) of the objective function
of an optimal solution for /7




Approximation Alg. for VERTEX COVER

|deas?

o Edge-Greedy

e Vertex-Greedy (see Exercises)

e maximal edge covers

How can we measure the quality of a feasible solution?

. bi (] o
Problem: How can we estimate > é)”P(T’S) when it is hard to

calculate OPT?

Idea: Find a “good” lower bound U < OPT for OPT and
compare it to our approximate solution.

objn(/.s) < obj;(/,s)
OPT — U




Lower Bound by Matchings

An edge set M C E of a graph G = (V/, E) is a matching
when no vertex of G is incident to two edges in M .

M is maximal when there is no matching M’ with M’ O M.

vertex cover of G|

M|
OPT >4

OPT <2-|M|




Approximation Alg. for VERTEX COVER

Combinatorial Algorithm for Vertex Cover (G)

M <« ()
foreach e € E(G) do

if e is not adjacent to an edge in M then
| M+ MU {e}

return {u,v | uv € M }

Theorem. The above algorithm is a factor-2 approximation
algorithm for VERTEX COVER.

Proof. 1. Feasibility. Try !

2. Quality of the solutions.



A Tool for Designing Approximation Algo’s

e Formulate the problem as an integer linear program (ILP).

e Relax the ILP, that is, replace integrality by non-negativity.

e Round an optimal solution of the relaxation to an
approximate integral solution.

Let's do this for VERTEX COVER:
e Let G be the given graph.
Minimize > ., xv
subject to  x, +x, >1 for each uv € E(G)
X ——071F for each v € V(G)

e Relax the ILP:  x, >0
e Round the LP solution: Return {v € V(G): x, > 1}.
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LP-Rounding for VERTEX COV:

L

R

Theorem. The LP-rounding algorithm is a factor-2
approximation algorithm for VERTEX COVER.

Proof 1. Feasibility. Tl“y )

2. Quality of the solutions.

Question. What is the lower bound that we used here?
The LP solution! > x, < OPT < > x|, < > 2x,.

(rounded solution)

How do the 2 algorithms compare? \What are their pros & cons?

— The combinatorial algorithm is fast and easy to implement.

— The LP-rounding algorithm solves a more general problem:

Minimize > ., ¢, x, — WEIGHTED VERTEX COVER!
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Integrality Gap

By how much can LP and ILP solutions differ?
w The LP solution is OPT* = 1.5

Example:
/\ x=0.5
The ILP solution is OPT = 2.0

u v
e.g..,x=1(1,1,0)

. OPT(/) 4
Def. Integrality gap = su ———— > — for vertex cover.
ST S0, OPTH(I) 3

Exercise: What is the largest integrality gap for VERTEX
COVER you can find?

Exercise: — Draw the three constraints in the VC ILP for (3
into a 3D coordinate systems.

— Add all optimal LP/ILP solutions.



Polyhedral Insights

Llet V- ={v:0<x,<1/2}and VT ={v:1/2 < x, < 1}.
e :=min{ min,cy-{x,,1/2 = x, }, min,ey+{1—x,, x, —1/2}}
Let x be an (optimal) LP solution.

x, —e ifveV™ x,—e IfveVvVr"
Llet x, = ¢ x, +e fveVT Letx=(x,+e¢ ifveV"

X\, else. X, else.

Then x” and x” are feasible LP solutions and x = (x" + x"")/2.
What does this mean geometrically?

X' ; Note: x can't be a corner of the polyhedron if
x o V=40 (& VT £0)
So if x is an extreme point, V™ =0 = VT,

— In other words, the VC polytope is half integrall

12 -



Konig's Theorem

Theorem. Let G = (U U V, E) be a bipartite graph,
a minimum vertex cover, and /M a maximum
matching. Then = |M|.

e N,

Z: all unmatched vertices in U
+ all vertices that are reachable via alternating paths

(VNn2Z)u(U\ Z)

Lemma. Each edge in M has exactly one vertex in

151 Nl VY 1ol

Theorem. VERTEX COVER for bipartite graphs can be
solved in O(V/VE) time.

13 -



Books

Approximation

Algorithms

Vijay V. Vazirani
Approximation Algorithms
Springer-Verlag 2003

David P. Williamson + David B. Shmoys

The DESIGN of

APPROXIMATION
ALGORITHMS

D. P. Williamson & D. B. Shmoys
The Design of Approximation Algorithms
Cambridge 2011
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Approaches to NP-Hard Problems

e Exponential-time algorithms, e.g., backtracking

Approximation algorithms:
trade off: quality against running time

Heuristics: experiments on benchmarks
Randomization: find a needle in the haystack

Design of parameterized algorithms

NEW

15



An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k)
foreach C € (V) do ()] = (V) = () = o(n*)
// test whether C is a VC
vC = true
foreach uv € E do
L if {u,v}N C =0 then O(E) = O(m)
| vc = false

if vc then
| return (“yes”, C)

return (“no”, 0)

Runtime. O(n“m) — This is not polynomial in the size of
the input (= n+ m) as k is not a
constant, but part of the input.
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New Goal

Find an algorithm for k-VC with runtime

O(f(k) +111%),

where f: N — N is a computable function (independent of /),
| is the given instance, ¢ constant (independent of /)

That is, the runtime should depend
— arbitrarily on k, degree of difficulty of the problem
— polynomially in the size |/| of instance /.

A problem that can be solved within this time bound is called
fixed-parameter tractable with respect to the parameter k.

FPT = class of the fixed-parameter tractable problems.



Some Simple Observations. . .

Let G = (V/, E) be a graph and let C be a VC for G.
Suppose v € C — which nodes are then certainly in C?

Obs. 1. If G is a graph, C a VC for G, and v a node,
then: v € C or N(v) C C.

Consider the decision problem k-VC.
What holds for nodes of degree > k7

Obs. 2. Every node of degree > k is contained in every k-VC.

What holds if |E| > k? and all nodes have degree < k?

Obs. 3. If |[E| > k? and A(G) := max,cy degv < k,
then G has no k-VC.

18 -
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Algorithm of Buss

BussVC(Graph G, Integer k)

I) reduction to the kernel of the problem
C={veV | degv > k}
if |C| > k then return (“no”, 0)
G'= (V' E') = G[V\ C] O(n -+ m)
K = k—|C| time
if |[E'| > k? then return (“no”, ()

I1) solution of the problem by brute force
(yesorno, C') = BruteForceVC(G’, k') | O(m’ - (n')") time
where m' := |E'| < k?
= n' = |V'| < 2k?
Runtime. O(n+ m+ k% (2k?)K) = O(n + m + k?2kk2k)
Thus: k-VC € FPT! Uk f(k)

return (yesorno, C U C')
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Search-Tree Algorithm

Idea. Improve phase |l by building a search tree.

(G, k,0)

(G—v,k—1{v})
W/\N(W)

(G— N(v), k—degv, N(v))
WAN(W)

leafs are all nodes with kK = O;
they can be at different levels of the tree.

#nodes: T(k) < 2(T(k— 1)+ 1 T(0) =1 = T(k) <21 —1 € 0(2")

= Runtime: 0*(2%)
If there is a leaf ¢ with E;, = (), then C; is a k-VC of G.
If there is no such leaf, then G has no k-VC.

tree
heigh

(Ge




The Degree-4 Algorithm

Idea. Improve estimation of |N(v)|.
(G, k,0)

P

7)assumption: > 4

(G — N(v), k — deg v, N(v))
WAN(W)

= T(k)=T(k—4)+T(k—1)+1, T(<L4)=const.
—
branching vector (4,1)
Test T(k)=zK—-1 = zK=_zk44 7K1 1

= characteristic polynomial: z* =1 + z3
= largest positive solution: z ~ 1.38 (branching number)
= T(k) € O(1.38%). But how do we ensure deg v > 47?



Kernels ||

Before:

Rule K: eliminate nodes of degree > k
Regel 0: eliminate nodes of degree 0

improved kernels:
Rule 1: eliminate nodes of degree 1

®
® ® — ®
"4 W<

o

Rule 2:  eliminate nodes of degree 2

u
uw,
—
V
w

C=CU{w}
k' =k —1
If uw € C/,

take v and w in C,
otherwise v.

K =k—1

22 -



Rule 3: eliminate nodes of degree 3

Rule 3.1:  G[N(v)] contains no edge.

G G’
a a
74 b< —_— b
C C

Claim. Thereis a k-VC in G < thereis a k-VC in G’.

Rule 3.2:  There are edges in G[N(v)].

23 -



The Degree-4 Algorithm

Idea: Apply the improved kernel rules to every node of the
search tree exhaustively!

= Runtime: O(nk + k?-1.38%) C 0*(1.38%)

24 .



Conclusion

e k-VC can be solved in O(nk + 1.38%k?) time.

e Parameterized complexity =
new toolbox for NP-hard problems:
kernels, tables, search trees, ...

e It is always useful to identify restricted parameters —
FPT uses them!

e Hope:
“natural” problem P € FPT =- f(k) reasonable.

25



Books on FPT

1999

Jorg Flum
Martin Grohe

LG | | |
(I T 30 1
T TR

Parameterized
Complexity Theory

~ x
Z] Springer

2006

Invitation to
Fixed-Parameter
Algorithms

Rolf Niedermeier

2006
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