

Advanced Algorithms

Winter term 2019/20

Lecture 2. Approaches for Vertex Cover

Approaches to NP-Hard Problems

- Exponential-time algorithms, e.g., backtracking
- Approximation algorithms: trade off: quality against running time
- Heuristics: experiments on benchmarks
- Randomization: find a needle in the haystack

Example: Vertex Cover

Def. (Recall)
Let G = (V, E) be an undirected graph. $C \subset V$ is a *vertex cover* of G

if, for all $uv \in E$, it holds that $\{u, v\} \cap C \neq \emptyset$.

Prob. Minimum Vertex Cover - optimization problem

Given: graph G

Find: smallest (minimum) vertex cover of G

Prob. *k-Vertex Cover* (*k-VC*) — decision problem

Given: graph G, natural number k

Find: vertex cover of size $\leq k$ of G –

if there is any - otherwise return "no".

Previous Work

- One of the first problems whose NP-hardness has been shown (SAT \leq_p CLIQUE \leq_p VC \leq_p ...) [Karp, 1972]
- One of the six "basic" NP-hard problems.

[Garey & Johnson, 1979]

- Approximable...
 A maximal matching "yields" a 2-approximation.
- ... but not arbitrarily well:

There is no 1.36-approximation for VC.

 $\text{if } \mathcal{P} \neq \mathcal{N}\mathcal{P}.$ [Dinur & Safra, 2004]

Approximation Algorithms

maximization

 $\alpha \colon \mathbb{N} \to \mathbb{Q}$

Let Π be a minimization problem and $\varphi \in \mathbb{Q}^+$.

A factor- α -approximation algorithm for Π is an efficient algorithm which provides a feasible solution $s \in S_{\Pi}(I)$ for any instance $I \in D_{\Pi}$ such that:

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \stackrel{\geq}{\sim} \alpha(|I|)$$

A little exercise. For VERTEX COVER -

- What are the instances (D_{Π}) ?
- What are the *feasible solutions* $(S_{\Pi}(I))$ for an instance I?
- What is the *objective function* obj $_{\Pi}(I,s)$ for I and s?
- What is the value $\mathsf{OPT}_\Pi(I)$ of the objective function of an optimal solution for I?

Approximation Alg. for VERTEX COVER

Ideas?

- Edge-Greedy
- Vertex-Greedy (see Exercises)
- maximal edge covers

How can we measure the quality of a feasible solution?

Problem: How can we estimate $\frac{\text{obj}_{\Pi}(I,s)}{\text{OPT}}$ when it is hard to calculate OPT?

Idea: Find a "good" lower bound $U \leq \mathsf{OPT}$ for OPT and compare it to our approximate solution.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{U}$$

Lower Bound by Matchings

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.

M is **maximal** when there is no matching M' with $M' \supseteq M$.

Approximation Alg. for VERTEX COVER

```
Combinatorial Algorithm for Vertex Cover (G)
M \leftarrow \emptyset
foreach e \in E(G) do

if e is not adjacent to an edge in M then

M \leftarrow M \cup \{e\}
return \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2 approximation algorithm for $VERTEX\ COVER$.

Proof.

- 1. Feasibility.
- 2. Quality of the solutions.

A Tool for Designing Approximation Algo's

- Formulate the problem as an integer linear program (ILP).
- Relax the ILP, that is, replace integrality by non-negativity.
- Round an optimal solution of the relaxation to an approximate integral solution.

Let's do this for VERTEX COVER:

• Let *G* be the given graph.

```
Minimize \sum_{v \in V} x_v subject to x_u + x_v \ge 1 for each uv \in E(G) x_v \in \{0,1\} for each v \in V(G)
```

- Relax the ILP: $x_v \ge 0$
- Round the LP solution: Return $\{v \in V(G): x_v \ge \frac{1}{2}\}$.

LP-Rounding for Vertex Cover

Theorem. The LP-rounding algorithm is a factor-2 approximation algorithm for VERTEX COVER.

- Proof.
- Feasibility.
 - 2. Quality of the solutions.

Question. What is the lower bound that we used here?

The LP solution!
$$\sum_{v} x_{v} \leq \text{OPT} \leq \sum_{\text{(rounded solution)}} x'_{v} \leq \sum_{\text{(rounded solution)}} 2x_{v}$$
.

How do the 2 algorithms compare? What are their pros & cons?

- The combinatorial algorithm is fast and easy to implement.
- The LP-rounding algorithm solves a more general problem: Minimize $\sum_{v \in V} c_v x_v$ – Weighted Vertex Cover!

Integrality Gap

By how much can LP and ILP solutions differ?

Example:

The LP solution is
$$OPT^* = 1.5$$

$$x \equiv 0.5$$

The ILP solution is
$$OPT = 2.0$$

$$e.g., x = (1, 1, 0)$$

Integrality gap =
$$\sup_{I \in D_{\Pi}} \frac{\mathsf{OPT}(I)}{\mathsf{OPT}^{\star}(I)} \ge \frac{4}{3}$$
 for vertex cover.

Exercise: What is the largest integrality gap for VERTEX COVER you can find?

- Exercise: Draw the three constraints in the VC ILP for C_3 into a 3D coordinate systems.
 - Add all optimal LP/ILP solutions.

Polyhedral Insights

Let $V^- = \{v \colon 0 < x_v < 1/2\}$ and $V^+ = \{v \colon 1/2 < x_v < 1\}$. $\varepsilon := \min \left\{ \min_{v \in V^{-}} \{x_{v}, 1/2 - x_{v}\}, \min_{v \in V^{+}} \{1 - x_{v}, x_{v} - 1/2\} \right\}$

Let x be an (optimal) LP solution.

Let
$$x'_{v} = \begin{cases} x_{v} - \varepsilon & \text{if } v \in V^{-} \\ x_{v} + \varepsilon & \text{if } v \in V^{+} \\ x_{v} & \text{else.} \end{cases}$$
 Let $x''_{v} = \begin{cases} x_{v} - \varepsilon & \text{if } v \in V^{+} \\ x_{v} + \varepsilon & \text{if } v \in V^{-} \\ x_{v} & \text{else.} \end{cases}$

Then x' and x'' are feasible LP solutions and x = (x' + x'')/2. What does this mean geometrically?

Note: x can't be a corner of the polyhedron if $V^- \neq \emptyset \ (\Leftrightarrow V^+ \neq \emptyset)$ So if x is an extreme point, $V^- = \emptyset = V^+$.

In other words, the VC polytope is half integral!

König's Theorem

Theorem. Let $G = (U \cup V, E)$ be a bipartite graph, C a minimum vertex cover, and M a maximum matching. Then |C| = |M|.

 $oldsymbol{Z}$: all unmatched vertices in $oldsymbol{U}$ + all vertices that are reachable via alternating paths

 $C: (V \cap Z) \cup (U \setminus Z)$

Lemma. Each edge in M has exactly one vertex in C.

Theorem. VERTEX COVER for bipartite graphs can be solved in $O(\sqrt{VE})$ time.

Books

Vijay V. Vazirani Approximation Algorithms Springer-Verlag 2003

D. P. Williamson & D. B. Shmoys The Design of Approximation Algorithms Cambridge 2011

Approaches to NP-Hard Problems

- Exponential-time algorithms, e.g., backtracking
- Approximation algorithms: trade off: quality against running time
- Heuristics: experiments on benchmarks
- Randomization: find a needle in the haystack
- Design of parameterized algorithms

An Exact Algorithm for k-VC

```
BruteForceVC(Graph G, Integer k)
                                    \left|\binom{V}{k}\right| = \binom{|V|}{k} = \binom{n}{k} = O(n^k)
  foreach C \in \binom{V}{k} do
     // test whether C is a VC
     vc = true
     foreach uv \in E do
      if vc then
      | return ("yes", C)
  return ("no", ∅)
```

Runtime. $O(n^k m)$ – This is *not* polynomial in the size of the input (= n + m) as k is not a constant, but part of the input.

New Goal

The class \mathcal{FPT} does not change if + is replaced with \cdot

Find an algorithm for k-VC with runtime

$$O(f(k) + |I|^c),$$

where $f: \mathbb{N} \to \mathbb{N}$ is a computable function (independent of I), I is the given instance, c constant (independent of I)

That is, the runtime should depend

- arbitrarily on k, degree of difficulty of the problem
- polynomially in the size |I| of instance I.

A problem that can be solved within this time bound is called fixed-parameter tractable with respect to the parameter k.

 $\mathcal{FPT} = \text{class of the fixed-parameter tractable problems.}$

Some Simple Observations...

Let G = (V, E) be a graph and let C be a VC for G. Suppose $v \notin C$ — which nodes are then certainly in C?

Obs. 1. If G is a graph, C a VC for G, and v a node, then: $v \in C$ or $N(v) \subseteq C$.

Consider the decision problem k-VC. What holds for nodes of degree > k?

Obs. 2. Every node of degree > k is contained in every k-VC.

What holds if $|E| > k^2$ and all nodes have degree $\leq k$?

Obs. 3. If $|E| > k^2$ and $\Delta(G) := \max_{v \in V} \deg v \le k$, then G has no k-VC.

Algorithm of Buss

BussVC(Graph G, Integer k)

I) reduction to the kernel of the problem

$$C = \{v \in V \mid \deg v > k\}$$
if $|C| > k$ **then return** ("no", \emptyset)
$$G' = (V', E') := G[V \setminus C] \text{ (without isolated nodes)}$$

$$k' = k - |C|$$
if $|E'| > k^2$ **then return** ("no", \emptyset)

II) solution of the problem by brute force

(yesorno,
$$C'$$
) = BruteForceVC(G' , k') $O(m' \cdot (n')^{k'})$ time where $m' := |E'| \le k^2$ $\Rightarrow n' := |V'| \le 2k^2$

Runtime.
$$O(n+m+k^2\cdot(2k^2)^k)=O(n+m+k^22^kk^{2k})$$

Thus: $k\text{-VC}\in\mathcal{FPT}!$ $|I|^1$ $f(k)$

Search-Tree Algorithm

Idea. Improve phase II by building a search tree.

#nodes:
$$T(k) \le 2T(k-1) + 1$$
, $T(0) = 1 \Rightarrow T(k) \le 2^{k+1} - 1 \in O(2^k)$
 \Rightarrow Runtime: $O^*(2^k)$

If there is a leaf ℓ with $E_{\ell} = \emptyset$, then C_{ℓ} is a k-VC of G. If there is no such leaf, then G has no k-VC.

The Degree-4 Algorithm

Idea. Improve estimation of |N(v)|.

$$\Rightarrow T(k) = T(k - 4) + T(k - 1) + 1, T(\le 4) = const.$$
branching vector (4, 1)

Test
$$T(k) = z^k - 1$$
 \Rightarrow $z^k = z^{k-4} + z^{k-1}$ \Rightarrow characteristic polynomial: $z^4 = 1 + z^3$

- \Rightarrow largest positive solution: $z \approx 1.38$ (branching number)
- $\Rightarrow T(k) \in O(1.38^k)$. But how do we ensure deg $v \ge 4$?

Kernels II

Before:

Rule K: eliminate nodes of degree > k

Regel 0: eliminate nodes of degree 0

improved kernels:

Rule 1: eliminate nodes of degree 1

$$C = C' \cup \{w\}$$
$$k' = k - 1$$

Rule 2: eliminate nodes of degree 2

If $uw \in C'$, take u and w in C, otherwise v.

$$k' = k - 1$$

Rule 3: eliminate nodes of degree 3

Rule 3.1: G[N(v)] contains no edge.

Claim. There is a k-VC in $G \Leftrightarrow$ there is a k-VC in G'. . . .

Rule 3.2: There are edges in G[N(v)].

The Degree-4 Algorithm

Idea: Apply the improved kernel rules to *every* node of the search tree *exhaustively*!

 \Rightarrow Runtime: $O(nk + k^2 \cdot 1.38^k) \subseteq O^*(1.38^k)$

Conclusion

- k-VC can be solved in $O(nk + 1.38^k k^2)$ time.
- Parameterized complexity =
 new toolbox for NP-hard problems:
 kernels, tables, search trees, . . .
- It is always useful to identify restricted parameters –
 FPT uses them!
- Hope: "natural" problem $P \in \mathcal{FPT} \Rightarrow f(k)$ reasonable.

Books on FPT

1999 2006 2006