Advanced Algorithms

Winter term 2019/20

Lecture 1. Introduction \& Held-Karp-algorithm for TSP
(slides by Joachim Spoerhase, Thomas van Dijk, \& Alexander Wolff)

Advanced Algorithms

Learning goals: At the end of this lecture you will

- have an overview of advanced algorithmic topics (i.e., exact, approximate, geometric, and randomized computations), and advanced data structures,
- be able to analyze (and design algorithms for) new problems via the concepts of the lecture.
Requirements: - Big-Oh notation (Landau); e.g., $O(n \log n)$
- Some Algorithms \& Data Structures
(Balanced) binary search tree, priority queue
- Some Algorithmic Graph Theory

Breadth-first search, Dijkstra's algorithm

- Basic Theoretical Computer Science (P vs. NP)

Evaluation:

- oral exam at the end of the semester
- 0,3 bonus for 50% on the exercises

What is this course about?

Many important (practical) problems are NP-hard

- Sacrifice optimality for speed
- Heuristics (sim. Annealing, Tabu-Search)
- Approximation Algorithms (Christofides-Algorithm)
- Optimal Solutions
- Exact (exponential) time algorithms Today's Lecture
- Fine-grained analysis (parameterized) algorithms

Also, more on polytime solvable problems

- Geometric algorithms (sweep-line approach)
- More graph algorithms (shortest paths w/ neg. weights)
- Advanded data structures (splay trees)
- Randomized algorithms

Textbooks
 Fedor V. Fomin
 Dieter Kratsch
 Exact
 Exponential
 Algorithms
 F. Fomin \& D. Kratsch: Exact Exponential Algorithms, Springer 2010 abbrev: EEA

Marek Cygan et al.: Parameterized

Algorithms, Springer 2015 abbrev: PA
M. de Berg et al:

C.L.R.S.:

Intro. to Algorithms MIT Press 2009. abbrev: CLRS
 Algorithms \& Applications Springer 2008, 3rd edition. abbrev: CG: A\&A

Background

- efficient vs. inefficient algorithms
\rightsquigarrow polynomial vs. super-polynomial algorithms

Motivation: exact exponential algorithms

- can be "fast" for medium-sized instances
\rightsquigarrow e.g.: $n^{4}>1.2^{n}$ for $n \leq 100$
\rightsquigarrow e.g.: TSP solvable exactly for $n \leq 2000$ and specialized instances with $n \leq 85900$
\rightsquigarrow "hidden" constants in polynomial time algorithms:
$2^{100} \cdot n>2^{n}$ for $n \leq 100$
- theoretical interest

Typical Results

- Idea (simplified): find exact algorithms which are faster than brute force (trivial) approaches.
- Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O^{*}-Notation

Brute-Force	$O\left(2^{n}\right)$	$O^{*}\left(2^{n}\right)$
Algorithm A	$O\left(1.5^{n} \cdot n\right)$	$O^{*}\left(1.5^{n}\right)$
Algorithm B	$O\left(1.4^{n} \cdot n^{2}\right)$	$O^{*}\left(1.4^{n}\right)$

$O\left(1.4^{n} \cdot n^{2}\right) \subsetneq O\left(1.5^{n} \cdot n\right) \subsetneq O\left(2^{n}\right)$
\rightsquigarrow negligible polynomial factors (exp. dominates)
$f(n) \in O^{*}(g(n)) \Leftrightarrow \exists$ polynomial $p(n) \mathrm{w} / f(n) \in O(g(n) p(n))$

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses a^{n} steps.

- For a fixed amount of time t, improving hardware by a constant factor c only adds a (relative to c) constant to the max. size of solvable instances (in time t).
- Whereas reducing the base of the runtime to $b<a$ results in a multiplicative increase!
Why?
Hardware speedup: $a^{n_{0}^{\prime}}=c \cdot a^{n_{0}} \rightsquigarrow n_{0}^{\prime}=\log _{a} c+n_{0}$
Base reduction: $b^{n_{0}^{\prime}}=a^{n_{0}} \rightsquigarrow n_{0}^{\prime}=n_{0} \cdot \log _{b} a$

Traveling Salesperson Problem (TSP)

Input Complete directed graph $G=(V, E)$ with n vertices and edge weights $c: E \rightarrow \mathbb{Q}_{\geq 0}$
Output Hamiltonian cycle $\left(v_{\pi(1)}, \ldots, v_{\pi}(n), v_{\pi(n+1)}=v_{\pi(1)}\right)$ of G, of minimum weight $\sum_{i=1}^{n} c\left(v_{i}, v_{i+1}\right)$, permutation π.

Brute-Force?

- Each tour is a permutation π of the vertices.
- Pick a permutation with the smallest weight.

Runtime: $\Theta(n!\cdot n)=n \cdot 2^{\Theta(n \log n)}$

Bellman-Held-Karp-Algorithm

Technique: Dynamic Programming! Reuse optimal substructures!

Select any starting vertex $s \in V$.
For each $S \subseteq V-s$ and $v \in S$, let:
OPT $[S, v]=$ length of a shortest s - v-path that visits precisely the vertices of $S \cup\{s\}$.

Richard M. Karp

Richard E. Bellman

Bellmann-Held-Karp-Algorithm

The base case: $S=\{v\}$, is easy: $\operatorname{OPT}[\{v\}, v]=c(s, v)$.
When $|S| \geq 2$, we compute $\operatorname{OPT}[S, v]$ recursively:

$$
\mathrm{OPT}[S, v]=\min \{\operatorname{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}
$$

After computing OPT $[S, v]$ for each $S \subseteq V-s$, the optimal solution is easily obtained as follows:

$$
\mathrm{OPT}=\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}
$$

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp (G, c)
foreach $v \in V-s$ do $\mathrm{OPT}[\{v\}, v]=c(s, v)$

$$
\begin{aligned}
& \text { for } j=2 \text { to } n-1 \text { do } \\
& \begin{aligned}
&\text { foreach } S \subseteq V-s \text { with }|S|=j \text { do }\} O\left(2^{n}\right) \\
& \begin{array}{l}
\text { foreach } v \in S \text { do } \\
\quad \text { OPT }[S, v]=\min \{\operatorname{OPT}[S-v, u]+c(u, v) \mid u \in S-v\}
\end{array}
\end{aligned}
\end{aligned}
$$

return $\min \{\mathrm{OPT}[V-s, v]+c(v, s) \mid v \in V-s\}$
Runtime: the innermost loop executes $O\left(2^{n} \cdot n\right)$ iterations where each one takes $O(n)$ time. Thus, in total, we have $O\left(2^{n} \cdot n^{2}\right)=O^{*}\left(2^{n}\right)$.
Space (memory) usage: $\Theta\left(2^{n} \cdot n\right)$ to compute j, less space?
A shortest tour can be produced by backtracking the DP table (as usual).
Compare: $O^{*}\left(2^{n}\right)$ with $2^{O(n \log n)}$ for Brute-Force

Maximum Independent Set

Input Graph $G=(V, E)$ with n vertices.
Output Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute Force?

- Try all subsets of $V \rightsquigarrow O\left(2^{n} \cdot n\right)$ runtime.

Algorithm NaiveMIS(G)
if $V=\emptyset$ then return 0
$v \leftarrow$ arbitrary vertex in $V(G)$
return $\max \{1+\operatorname{NaiveMIS}(G-N(v)-\{v\}), \operatorname{NaiveMIS}(G-\{v\})\}$

Observations

Lemma Let U be a maximum independent set in G. Then, for each vertex $v \in V$:
(i) $v \in U \rightsquigarrow N(v) \cap U=\emptyset$
(ii) $v \notin U \rightsquigarrow|N(v) \cap U| \geq 1$

Thus, $N[v]:=N(v) \cup\{v\}$ contains some $y \in U$ and no other vertex of $N[y]$ is in U

Smarter Branching-Algorithm

Algorithm $\operatorname{MIS}(G)$
if $V=\emptyset$ then return 0
$v \leftarrow$ vertex of minimum degree in $V(G)$ return $1+\max \{\operatorname{MIS}(G-N[y]) \mid y \in N[v]\}$

Correctness follows from the previous Lemma.
We will now prove a runtime of $O^{*}\left(3^{n / 3}\right)=O^{*}\left(1.4423^{n}\right)$

Runtime

Execution corresponds to a search tree whose nodes are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.

Search-tree has height $\leq n$, \rightsquigarrow the algorithm's runtime is $T(n) \in O^{*}(n B(n))=O^{*}(B(n))$

Let's consider an example run.
$G-N\left[v_{1}\right]$

$G-N\left[v_{2}\right]$

Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
\begin{aligned}
B(n) & \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \\
& \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1)),
\end{aligned}
$$

where v is a minimum degree vertex of G, and we note that $B\left(n^{\prime}\right) \leq B(n)$ for any $n^{\prime} \leq n$.

Runtime Analysis (cont)

$B(n) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))$
We proceed by induction to show $B(n) \leq 3^{n / 3}$
Base case: $B(0)=1 \leq 3^{0 / 3}$
Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in the above inequality

$$
B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \leq 3^{n / 3}
$$

$B(n) \in O^{*}\left(\sqrt[3]{3}{ }^{n}\right) \subset O^{*}\left(1.44225^{n}\right)$

