

Advanced Algorithms

Winter term 2019/20

Lecture 1. Introduction & Held-Karp-algorithm for TSP

(slides by Joachim Spoerhase, Thomas van Dijk, & Alexander Wolff)

Steven Chaplick & Alexander Wolff

Chair for Computer Science I

Advanced Algorithms

Learning goals: At the end of this lecture you will

- have an overview of advanced algorithmic topics (i.e., exact, approximate, geometric, and randomized computations), and advanced data structures,
- be able to analyze (and design algorithms for) new problems via the concepts of the lecture.

Requirements: – Big-Oh notation (Landau); e.g., $O(n \log n)$

- Some Algorithms & Data Structures
 (Balanced) binary search tree, priority queue
- Some Algorithmic Graph Theory
 Breadth-first search, Dijkstra's algorithm
- Basic Theoretical Computer Science (P vs. NP)

Evaluation:

- oral exam at the end of the semester
- 0,3 bonus for 50% on the exercises

What is this course about?

Many important (practical) problems are NP-hard

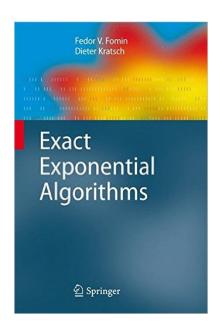
- Sacrifice optimality for speed
 - Heuristics (sim. Annealing, Tabu-Search)
 - Approximation Algorithms (Christofides-Algorithm)
- Optimal Solutions
 - Exact (exponential) time algorithms
 Today's Lecture
 - Fine-grained analysis (parameterized) algorithms

Also, more on polytime solvable problems

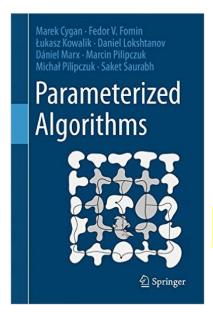
- Geometric algorithms (sweep-line approach)
- More graph algorithms (shortest paths w/ neg. weights)
- Advanded data structures (splay trees)
- Randomized algorithms

Textbooks

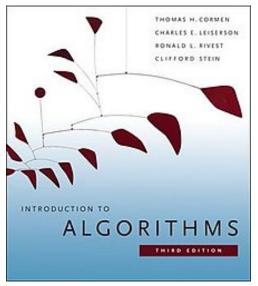
This Lecture: Chapter 1



F. Fomin & D. Kratsch: Exact Exponential Algorithms, Springer 2010 abbrev: **EEA**



Marek Cygan et al.: Parameterized Algorithms, Springer 2015 abbrev: **PA**



C.L.R.S.: Intro. to Algorithms MIT Press 2009.

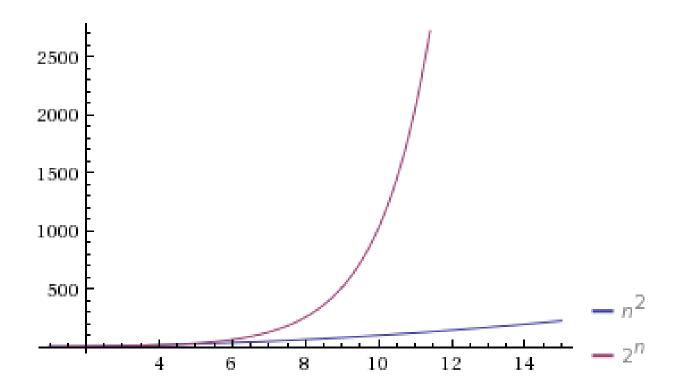
abbrev: **CLRS**

M. de Berg et al: Computational Geometry: Algorithms & Applications Springer 2008, 3rd edition.

abbrev: CG: A&A

Background

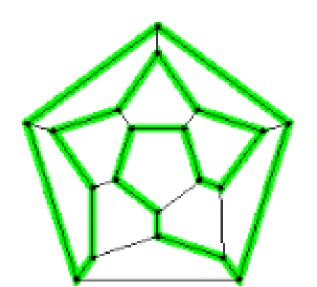
- efficient vs. inefficient algorithms
- → polynomial vs. super-polynomial algorithms



Motivation: exact exponential algorithms

• can be "fast" for **medium-sized** instances

- \rightsquigarrow e.g.: $n^4 > 1.2^n$ for $n \le 100$
- \leadsto e.g.: TSP solvable exactly for $n \leq 2000$ and specialized instances with $n \leq 85900$
- \leadsto "hidden" constants in polynomial time algorithms: $2^{100} \cdot n > 2^n$ for n < 100
 - theoretical interest



Typical Results

- Idea (simplified): find exact algorithms which are faster than *brute force* (trivial) approaches.
- Typically results for a (hypothetical) NP-hard problem

Approach	Runtime in O -Notation	O^* -Notation
Brute-Force Algorithm A Algorithm B		$O^*(2^n) \ O^*(1.5^n) \ O^*(1.4^n)$

$$O(1.4^n \cdot n^2) \subsetneq O(1.5^n \cdot n) \subsetneq O(2^n)$$

→ negligible polynomial factors (exp. dominates)

$$f(n) \in O^*(g(n)) \Leftrightarrow \exists \text{ polynomial } p(n) \text{ w}/f(n) \in O(g(n)p(n))$$

Better Algorithms vs. Faster Hardware

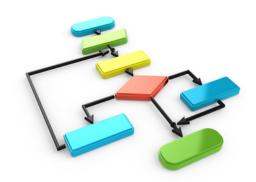
Suppose an algorithm uses a^n steps.

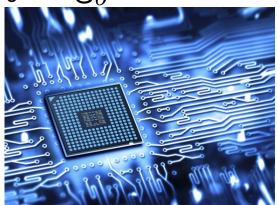
- For a fixed amount of time t, improving hardware by a constant factor c only adds a (relative to c) constant to the max. size of solvable instances (in time t).
- Whereas reducing the base of the runtime to b < a results in a **multiplicative** increase!

Why?

Hardware speedup: $a^{n_0'} = c \cdot a^{n_0} \rightsquigarrow n_0' = \log_a c + n_0$

Base reduction: $b^{n_0'} = a^{n_0} \rightsquigarrow n_0' = n_0 \cdot \log_b a$





Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V, E) with n vertices and edge weights $c: E \to \mathbb{Q}_{\geq 0}$

Output Hamiltonian cycle $(v_{\pi(1)}, \ldots, v_{\pi}(n), v_{\pi(n+1)} = v_{\pi(1)})$ of G, of minimum weight $\sum_{i=1}^{n} c(v_i, v_{i+1})$, permutation π .

Brute-Force?

- Each tour is a permutation π of the vertices.
- Pick a permutation with the smallest weight.

Runtime: $\Theta(n! \cdot n) = n \cdot 2^{\Theta(n \log n)}$

Bellman-Held-Karp-Algorithm

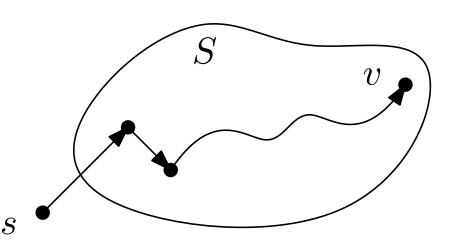
Technique: Dynamic Programming!

Reuse optimal substructures!

Select any starting vertex $s \in V$.

For each $S \subseteq V - s$ and $v \in S$, let:

 $\mathsf{OPT}[S,v] = \mathsf{length} \ \mathsf{of} \ \mathsf{a} \ \mathsf{shortest} \ s\text{-}v\text{-}\mathsf{path}$ that visits precisely the vertices of $S \cup \{s\}$.



Richard M. Karp

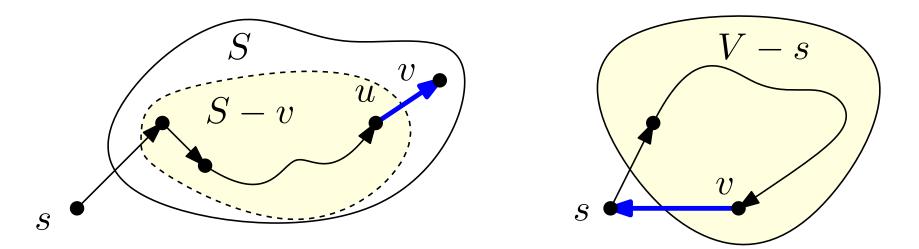
Richard E. Bellman

Bellmann-Held-Karp-Algorithm

The base case: $S = \{v\}$, is easy: $OPT[\{v\}, v] = c(s, v)$.

When $|S| \geq 2$, we compute OPT[S, v] recursively:

$$\mathsf{OPT}[S,v] = \min\{ \begin{array}{c} \mathsf{OPT}[S-v,u] + c(u,v) \mid u \in S-v \} \end{array}$$



After computing $\mathsf{OPT}[S,v]$ for each $S\subseteq V-s$, the optimal solution is easily obtained as follows:

$$\mathsf{OPT} = \mathsf{min} \{ \begin{array}{c|c} \mathsf{OPT}[V-s,v] \\ \end{array} + \begin{array}{c|c} c(v,s) \end{array} | v \in V-s \}$$

Pseudocode for the dynamic program

Runtime: the innermost loop executes $O(2^n \cdot n)$ iterations where each one takes O(n) time. Thus, in total, we have $O(2^n \cdot n^2) = O^*(2^n)$. Only use table-values for j-1 to compute j, less space?

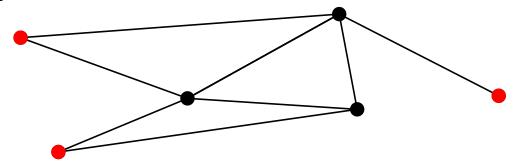
A shortest tour can be produced by backtracking the DP table (as usual).

Compare: $O^*(2^n)$ with $2^{O(n \log n)}$ for Brute-Force

Maximum Independent Set

Input Graph G = (V, E) with n vertices.

Output Maximum size *independent* set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.



Brute Force?

• Try all subsets of $V \leadsto O(2^n \cdot n)$ runtime.

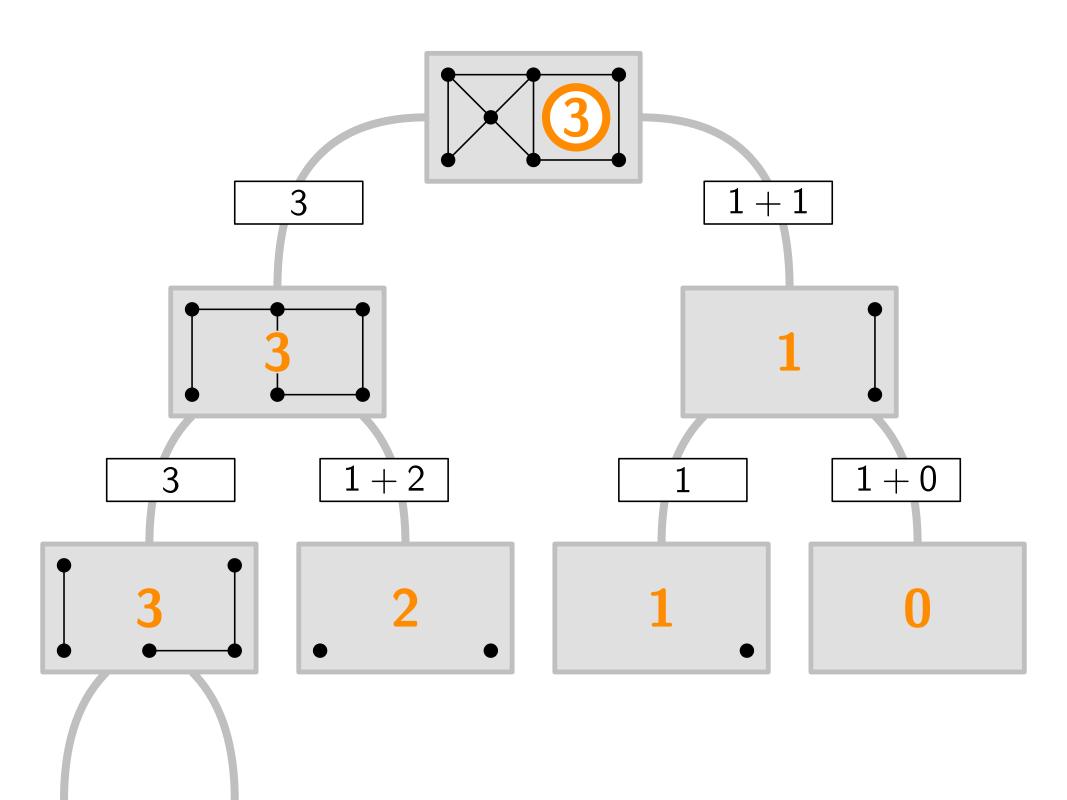
```
Algorithm NaiveMIS(G)

if V = \emptyset then

\bot return 0

v \leftarrow arbitrary vertex in V(G)

return max\{1 + \text{NaiveMIS}(G - N(v) - \{v\}), \text{NaiveMIS}(G - \{v\})\}
```



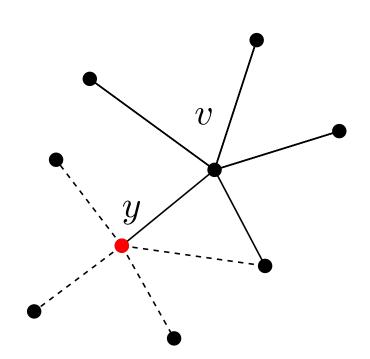
Observations

Lemma Let U be a maximum independent set in G. Then, for each vertex $v \in V$:

(i)
$$v \in U \leadsto N(v) \cap U = \emptyset$$

(ii)
$$v \notin U \rightsquigarrow |N(v) \cap U| \geq 1$$

Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U



Smarter Branching-Algorithm

Correctness follows from the previous Lemma.

We will now prove a runtime of $O^*(3^{n/3}) = O^*(1.4423^n)$

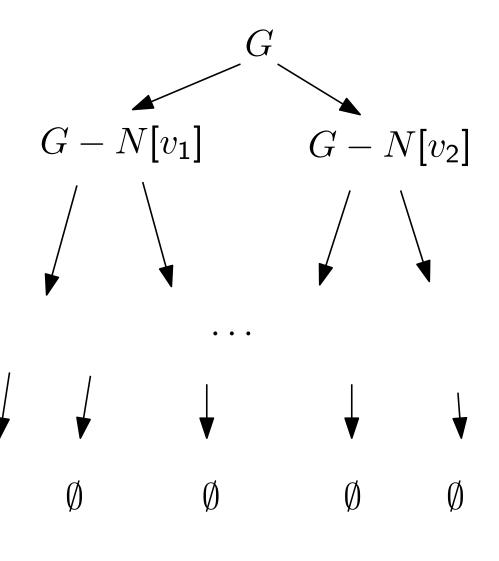
Runtime

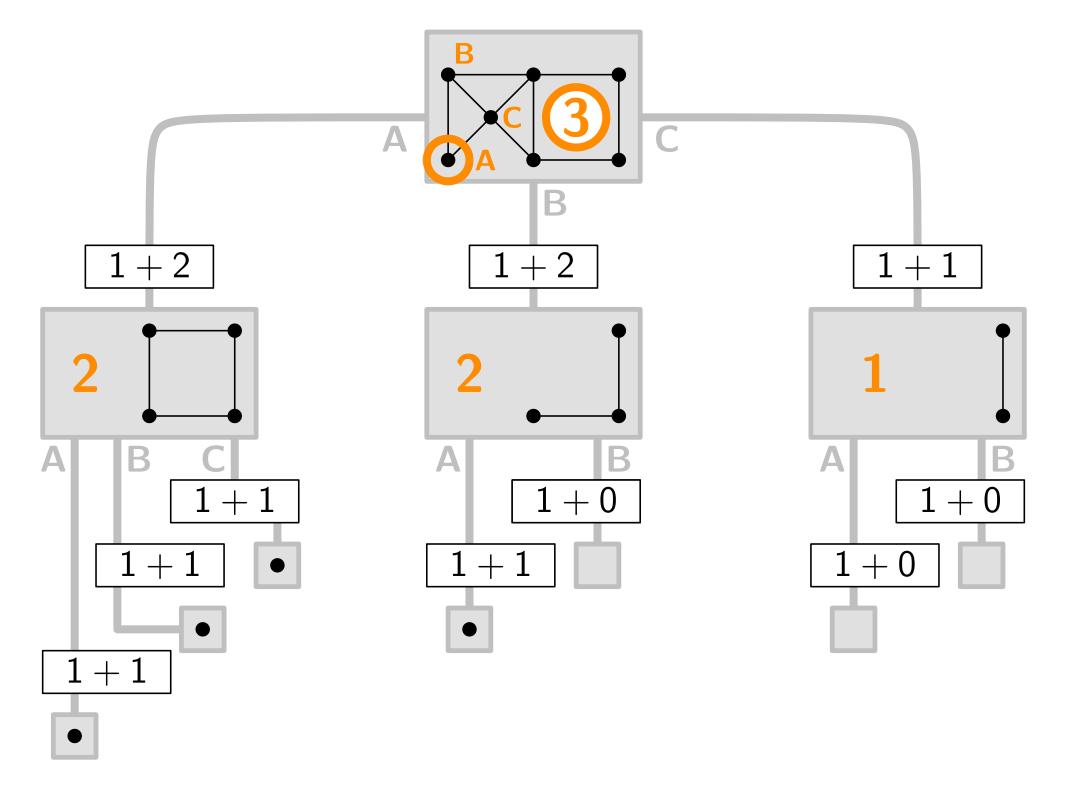
Execution corresponds to a *search tree* whose nodes are labeled with the input of the respective recursive call.

Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.

Search-tree has height $\leq n$, \rightsquigarrow the algorithm's runtime is $T(n) \in O^*(nB(n)) = O^*(B(n))$

Let's consider an example run.





Runtime Analysis

For a worst-case n-vertex graph G $(n \ge 1)$:

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1))$$

 $\le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1)),$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

Runtime Analysis (cont)

$$B(n) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

We proceed by induction to show $B(n) \leq 3^{n/3}$

Base case: $B(0) = 1 \le 3^{0/3}$

Hypothesis: for $n \ge 1$, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \le 3^{n/3}$$

$$B(n) \in O^*(\sqrt[3]{3}^n) \subset O^*(1.44225^n)$$

