Julius-Maximilians- Lehrstuhl fiir e
UNIVERSITAT INFORMATIK | ||||I | h
WU RZ B U RG Effiziente Algorithmen und

wissenshasierte Systeme Institut fiir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 1. Introduction & Held-Karp-algorithm for TSP

Steven Chaplick & Alexander Wolff Chair for Computer Science |



Advanced Algorithms

Learning goals: At the end of this lecture you will



Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,



Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.



Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)



Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)
— Some Algorithms & Data Structures



Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)
— Some Algorithms & Data Structures

— Some Algorithmic Graph Theory



Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)
— Some Algorithms & Data Structures

— Some Algorithmic Graph Theory

— Basic Theoretical Computer Science (P vs. NP)



Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
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— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.
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— Basic Theoretical Computer Science (P vs. NP)
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~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

~+ "hidden” constants in polynomial time algorithms:
2100 n > 2™ for n < 100

e theoretical interest
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e Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

e Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O*-Notation
Brute-Force  O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4" -n?) C O(1.5" -n) C O(2")
~+ negligible polynomial factors (exp. dominates)
f(n) € O*(g(n)) < 3 polynomial p(n) w/ f(n) € O(g(n)p(n))
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Technique: Dynamic Programming!

Reuse optimal substructures!
Select any starting vertex s € V.
Foreach SCV —sand v €5, let:

OPT[S, v] = length of a shortest s-v-path
that visits precisely the vertices of S U {s}.

Richard E. Bellman
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The base case: S = {v}, is easy: OPT[{v},v] = ¢(s,v).
When | S| > 2, we compute OPT[S, v] recursively:

OPTI[S,v] = min{ OPT[S —v,u| + ¢(u,v) |[ueS—wv}

After computing OPT[S, v] for each S C V — s, the optimal
solution is easily obtained as follows:

OPT=min{ OPT[V —s,v] + ¢(v,8) |veV —s}



Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)
foreach v € V — s do
" OPT[{u},v] = c(s,v)
for j=2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
L | OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |[ue S—v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}



Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)
foreach v € V — s do
" OPT[{u},v] = c(s,v)
for j=2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
L | OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[u e S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}



Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| =j do
foreach v € S do } O(n)
| OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[u e S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have

O(2" - n?) = O*(2").



Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| = j do
foreach v € S do } O(n)
| OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |lue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2" - n?) = O*(2").
Space (memory) usage: ©(2" - n)



Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| = j do
foreach v € S do } O(n)
| OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |lue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2" - n?) = O*(2").
Space (memory) usage: ©(2" - n)
A shortest tour can be produced by backtracking the DP table
(as usual).



Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| = j do
foreach v € S do } O(n)
| OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |lue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2" - n?) = O*(2").
Space (memory) usage: ©(2" - n)
A shortest tour can be produced by backtracking the DP table
(as usual).

Compare: O*(2™) with 20(71g7) for Brute-Force



Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
| OPT[{v}.v] = (s, )

for j=2ton—1do n
foreach S C V' — s with |S| =j do } O(2")
L foreach v € S do 1 O(n)
| OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[u e S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have

Space (memory) usage: ©(2" - n)
A shortest tour can be produced by backtracking the DP table

(as usual).
Compare: O*(2") with 20(leen) for Brute-Force
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Maximum Independent Set
Input Graph G = (V, F) with n vertices.

Output Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force? _
e Try all subsets of V' ~» O(2" - n) runtime.

Algorithm NaiveMIS(G)
if V =0 then
L return 0

v < arbitrary vertex in V(G)
return max{1+ NaiveMIS(G — N(v) — {v}), NaiveMIS(G — {v})}
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Observations

Lemma Let U be a maximum independent set in G. Then, for
each vertex v € V:

(i) veU ~ N@)NnU =10

(i) v ¢ U ~ [N(w)NU| > 1
Thus, N[v] := N(v) U{v} contains some y € U and
no other vertex of N[y] isin U
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Smarter Branching-Algorithm

Algorithm MIS(G)
if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — N[y|) | y € N|v]}

Correctness follows from the previous Lemma.

We will now prove a runtime of O*(3"%/3) = O*(1.4423")
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Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum / \

number of leaves of a search tree
for a graph with n vertices. G — N|vq] G — Nlvy]

Search-tree has height < n, / \ / \1

~+ the algorithm’s runtime is

T(n) € O*(nB(n)) = O*(B(n))

Let's consider an example run.
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Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < Y  B(n—(deg(y)+1))
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where v is a minimum degree vertex of (G, and we note that
B(n') < B(n) for any n’ < n.
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B(n)<s-B(n—s)<s- 3(n—s)/3 — = . 3n/3



Runtime Analysis (cont)

B(n) < (deg(v) +1) - B( n — (deg(v) +1) )

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30nm8)3 = 2. 3n/3 L 3n/3



Runtime Analysis (cont)

B(n) < (deg(v) +1) - B( n — (deg(v) +1) )

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30nm8)3 = 2. 3n/3 L 3n/3
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Runtime Analysis (cont)

B(n) < (deg(v) +1) - B( n — (deg(v) +1) )

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30n78)3 = 2. 3n/3 < 3n/3
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Runtime Analysis (cont)

B(n) < (deg(v) +1) - B( n — (deg(v) +1) )

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30n78)3 = 2. 3n/3 < 3n/3
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