Julius-Maximilians- Lehrstuhl fiir e
UNIVERSITAT INFORMATIK | ||||I | h
WU RZ B U RG Effiziente Algorithmen und

wissenshasierte Systeme Institut fiir Informatik

Advanced Algorithms

Winter term 2019/20

Lecture 1. Introduction & Held-Karp-algorithm for TSP

Steven Chaplick & Alexander Wolff Chair for Computer Science |

Advanced Algorithms

Learning goals: At the end of this lecture you will

Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)

Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)
— Some Algorithms & Data Structures

Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)
— Some Algorithms & Data Structures

— Some Algorithmic Graph Theory

Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)
— Some Algorithms & Data Structures

— Some Algorithmic Graph Theory

— Basic Theoretical Computer Science (P vs. NP)

Advanced Algorithms

Learning goals: At the end of this lecture you will

— have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

— be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Requirements: — Big-Oh notation (Landau); e.g., O(nlogn)
— Some Algorithms & Data Structures

— Some Algorithmic Graph Theory

— Basic Theoretical Computer Science (P vs. NP)

Evaluation: e oral exam at the end of the semester
e 0.3 bonus for 50% on the exercises

What is this course about?

Many important (practical) problems are NP-hard

What is this course about?

Many important (practical) problems are NP-hard

Heuristic Approximation

NP-hard

Exponential FPT

What is this course about?

Many important (practical) problems are NP-hard
e Sacrifice optimality for speed

— Heuristics (sim. Annealing, Tabu-Search)
— Approximation Algorithms (Christofides-Algorithm)

e Optimal Solutions
— Exact (exponential) time algorithms
— Fine-grained analysis (parameterized) algorithms

Heuristic Approximation

NP-hard

Exponential FPT

What is this course about?

Many important (practical) problems are NP-hard
e Sacrifice optimality for speed

— Heuristics (sim. Annealing, Tabu-Search)
— Approximation Algorithms (Christofides-Algorithm)

e Optimal Solutions
— Exact (exponential) time algorithms
— Fine-grained analysis (parameterized) algorithms

Also, more on polytime solvable problems

Geometric algorithms (sweep-line approach)

More graph algorithms (shortest paths w/ neg. weights)
Advanded data structures (splay trees)

Randomized algorithms

What is this course about?

Many important (practical) problems are NP-hard
e Sacrifice optimality for speed

— Heuristics (sim. Annealing, Tabu-Search)
— Approximation Algorithms (Christofides-Algorithm)

e Optimal Solutions

— Exact (exponential) time algorithms | Today's Lecture

— Fine-grained analysis (parameterized) algorithms

Also, more on polytime solvable problems

Geometric algorithms (sweep-line approach)

More graph algorithms (shortest paths w/ neg. weights)
Advanded data structures (splay trees)

Randomized algorithms

Textbooks

F. Fomin & D. Kratsch: ISt Marek Cygan et al.:
. Parameterized i
Exact Exponential Algorithms Parameterized

E;;gtnential Algorithms, PReer S Algorithms,
Springer 2010 PP P Springer 2015

Algorithms
abbrev: EEA abbrev: PA

M. de Berg et al:

v ooee | LIRS .
- o ntro. to Computational Geometry:
e ~aq | Algorithms Algorithms & Applications
e \‘ MIT Press Computationa Springer 2008,
D““ 2009 3rd edition.
sbbrev: CLRS abbrev: CG: A&A
ALGORITHMS |

TethOOkS'/This Lecture: Chapter 1

F. Fomin & D. Kratsch: Marek Cygan et al.:

Parameterized

o= [Exact Exponential Algorithms Parameterized
Ei;ﬁtnentm Algorithms, eYYTY Algorithms,

Algorithms Springer 2010 "?Tﬂ" Springer 2015
abbrev: EEA : abbrev: PA

M. de Berg et al:

v e |CLRSE .
Computational Geometry:

- e | Intro. to _ o
SRS - Algorithms Algorithms & Applications
i MIT PreSS Ei-l?rﬁ:i?:iunal ipd”nger 2008,
2009 Bt T rd edition.

abbrev: CLRS abbrev: CG: A&A

ALG@RITHMSI

e e

Background

o cfficient vs. inefficient algorithms

Background

o cfficient vs. inefficient algorithms

~» polynomial vs. super-polynomial algorithms

B |
2500 F [

L 1
2000 [
1500 F
1000 F /

: /

i i

500 |
: #,f“’;
- e 1 _.I___I___I

Motivation: exact exponential algorithms

e can be “fast” for medium-sized instances

~ e.g.:n* > 1.2" for n < 100

Motivation: exact exponential algorithms

e can be “fast” for medium-sized instances

~s e.g.nt > 1.2" for n < 100

~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

Motivation: exact exponential algorithms

e can be “fast” for medium-sized instances

~ e.g.:n* > 1.2" for n < 100

~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

~+ "hidden” constants in polynomial time algorithms:
2100 n > 2™ for n < 100

Motivation: exact exponential algorithms

e can be “fast” for medium-sized instances

~ e.g.:n* > 1.2" for n < 100

~ e.g.. TSP solvable exactly for n < 2000 and specialized
instances with n < 85900

~+ "hidden” constants in polynomial time algorithms:
2100 n > 2™ for n < 100

e theoretical interest

Typical Results

e Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

Typical Results

e Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

e Typically results for a (hypothetical) NP-hard problem

Typical Results

e Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

e Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)

Algorithm B O(1.4™ - n?) 0*(1.4")

Typical Results

e Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

e Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4" -n?) C O(1.5™ - n) C O(2")

Typical Results

e Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

e Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4" -n?) C O(1.5™ - n) C O(2")

~+ negligible polynomial factors (exp. dominates)

Typical Results

e Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

e Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5™ - n) O*(1.5™)
Algorithm B O(1.4™ - n?) O*(1.4™)

O(1.4" -n?) C O(1.5" -n) C O(2")
~+ negligible polynomial factors (exp. dominates)
f(n) € O*(g(n)) < 3 polynomial p(n) w/ f(n) € O(g(n)p(n))

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses a” steps.

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses a” steps.

e For a fixed amount of time ¢, improving hardware by a

constant factor c only adds a (relative to ¢) constant to
the max. size of solvable instances (in time t).

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses a” steps.

e For a fixed amount of time ¢, improving hardware by a

constant factor c only adds a (relative to ¢) constant to

the max. size of solvable instances (in time t).
e \Whereas reducing the base of the runtime to b < a results

in a multiplicative increase!

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses a” steps.

e For a fixed amount of time ¢, improving hardware by a

constant factor c only adds a (relative to ¢) constant to

the max. size of solvable instances (in time t).
e \Whereas reducing the base of the runtime to b < a results

in a multiplicative increase!
Why?

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses a” steps.

e For a fixed amount of time ¢, improving hardware by a

constant factor c only adds a (relative to ¢) constant to

the max. size of solvable instances (in time t).
e \Whereas reducing the base of the runtime to b < a results

in a multiplicative increase!

Why?
Hardware speedup: a™ = c-q"™ ~ ngy = log, ¢ + ng

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses a” steps.

e For a fixed amount of time ¢, improving hardware by a

constant factor c only adds a (relative to ¢) constant to

the max. size of solvable instances (in time t).
e \Whereas reducing the base of the runtime to b < a results

in a multiplicative increase!

Why?
Hardware speedup: a™ = c-q"™ ~ ngy = log, ¢ + ng

. /
Base reduction: b™0 = a™ ~» nl = nq - log, a
0 0)

el
_ %%&\t&{i})ﬁ

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V, E) with n vertices
and edge weights c: £ — Q>¢

Output Hamiltonian cycle (Uw(l), .., Ux(n), Un(nd1l) = 2}77(1))
of G, of minimum weight ZZ_ C(UZ,UZ+1)
permutation 7. --

2
Baltic

AUSTRIA
0 B0 100 km
e
¢ 50 ADOmi

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V, E) with n vertices
and edge weights c: £ — Q>¢

Output Hamiltonian cycle (Uw(l), .., Ux(n), Un(nd1l) = 2}77(1))
of G, of minimum weight ZZ_ C(UZ,UZ+1)
permutation 7. --

2
Baltic

Brute-Force?

AUSTRIA
0 B0 100 km
e
¢ 50 ADOmi

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V, E) with n vertices
and edge weights c: £ — Q>¢

Output Hamiltonian cycle (Uw(l), .., Ux(n), Ur(n+1) = Uw(l))
of G, of minimum weight ZZ_ c(vz,vzﬂ)

permutation . AR o
Brute-Force?

e Each tour is a permutation 7 of |/
the vertices.

B ussaldurf .
|:|In Kassol

e Pick a permutation with the
smallest weight.

SWITZ. |] B

AUSTRIA
0 &0 100 krn
i . |

POL.

100 mi

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V, E) with n vertices
and edge weights c: £ — Q>¢

Output Hamiltonian cycle (Uw(l), .., Ux(n), Ur(n+1) = Uw(l))
of G, of minimum weight ZZ_ C(UZ,UZ+1)

permutation . AR o
Brute-Force?

e Each tour is a permutation 7 of |/ 5
the vertices.

B ussaldurf .
|:|In Kassel

e Pick a permutation with the
smallest weight.

Runtime: ©(n! - n) = n - 20(nloegn)

SWITZ. I B E0)

AUSTRIA
0 &0 100 krn
i . |

POL.

100 mi

Bellman-Held-Karp-Algorithm

Richard E. Bellman

Bellman-Held-Karp-Algorithm

Technique: Dynamic Programming!

Richard E. Bellman

Bellman-Held-Karp-Algorithm

Technique: Dynamic Programming!

Reuse optimal substructures!

Richard E. Bellman

Bellman-Held-Karp-Algorithm

Technique: Dynamic Programming!

Reuse optimal substructures!

Select any starting vertex s € V.

Richard E. Bellman

Bellman-Held-Karp-Algorithm

Technique: Dynamic Programming!

Reuse optimal substructures!
Select any starting vertex s € V.
Foreach SCV —sand v €5, let:

OPT[S, v] = length of a shortest s-v-path
that visits precisely the vertices of S U {s}.

Richard E. Bellman

Bellmann-Held-Karp-Algorithm

The base case: S = {v}, is easy: OPT[{v},v] = ¢(s,v).

Bellmann-Held-Karp-Algorithm
The base case: S = {v}, is easy: OPT[{v},v] = ¢(s,v).

When | S| > 2, we compute OPT[S, v] recursively:

Bellmann-Held-Karp-Algorithm
The base case: S = {v}, is easy: OPT[{v},v] = ¢(s,v).
When | S| > 2, we compute OPT[S, v] recursively:

OPTI[S,v] = min{ OPT[S —v,u| + ¢(u,v) |[ueS—wv}

Bellmann-Held-Karp-Algorithm
The base case: S = {v}, is easy: OPT[{v},v] = ¢(s,v).
When | S| > 2, we compute OPT[S, v] recursively:

OPTI[S,v] = min{ OPT[S —v,u| + ¢(u,v) |[ueS—wv}

After computing OPT[S, v] for each S C V — s, the optimal
solution is easily obtained as follows:

Bellmann-Held-Karp-Algorithm
The base case: S = {v}, is easy: OPT[{v},v] = ¢(s,v).
When | S| > 2, we compute OPT[S, v] recursively:

OPTI[S,v] = min{ OPT[S —v,u| + ¢(u,v) |[ueS—wv}

After computing OPT[S, v] for each S C V — s, the optimal
solution is easily obtained as follows:

OPT=min{ OPT[V —s,v] + ¢(v,8) |veV —s}

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)
foreach v € V — s do
" OPT[{u},v] = c(s,v)
for j=2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
L | OPTI[S,v] = min{ OPT[S —v,u] + c(u,v) |[ue S—v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)
foreach v € V — s do
" OPT[{u},v] = c(s,v)
for j=2ton—1do
foreach S C V — s with |S| = j do
foreach v € S do
L | OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[u e S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| =j do
foreach v € S do } O(n)
| OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[u e S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have

O(2" - n?) = O*(2").

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| = j do
foreach v € S do } O(n)
| OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |lue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2" - n?) = O*(2").
Space (memory) usage: ©(2" - n)

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| = j do
foreach v € S do } O(n)
| OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |lue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2" - n?) = O*(2").
Space (memory) usage: ©(2" - n)
A shortest tour can be produced by backtracking the DP table
(as usual).

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
. OPT[{v},v] = c(s,v)

for j=2ton—1do
foreach S CV — s with |S| = j do
foreach v € S do } O(n)
| OPTI[S,v] = min{ OPT[S — v, u] + c(u,v) |lue S—wv}

return min{ OPT[V — s,v] 4+ ¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2" - n?) = O*(2").
Space (memory) usage: ©(2" - n)
A shortest tour can be produced by backtracking the DP table
(as usual).

Compare: O*(2™) with 20(71g7) for Brute-Force

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, ¢)

foreach v € V — s do
| OPT[{v}.v] = (s,)

for j=2ton—1do n
foreach S C V' — s with |S| =j do } O(2")
L foreach v € S do 1 O(n)
| OPT[S,v] = min{ OPT[S —v,u] + c(u,v) |[u e S —v}

return min{ OPT[V — s,v] +¢(v,s) |[v eV — s}
Runtime: the innermost loop executes O(2" - n) iterations
where each one takes O(n) time. Thus, in total, we have

Space (memory) usage: ©(2" - n)
A shortest tour can be produced by backtracking the DP table

(as usual).
Compare: O*(2") with 20(leen) for Brute-Force

Maximum Independent Set
Input Graph G = (V, F) with n vertices.

Output Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are
adjacent in G.

Maximum Independent Set
Input Graph G = (V, F) with n vertices.

Output Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are
adjacent in G.

Maximum Independent Set
Input Graph G = (V, F) with n vertices.

Output Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force?

Maximum Independent Set
Input Graph G = (V, F) with n vertices.

Output Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force? _
e Try all subsets of V' ~» O(2" - n) runtime.

Maximum Independent Set
Input Graph G = (V, F) with n vertices.

Output Maximum size independent set, i.e., a largest set
U C V, such that no pair of vertices in U are

adjacent in G.

Brute Force? _
e Try all subsets of V' ~» O(2" - n) runtime.

Algorithm NaiveMIS(G)
if V =0 then
L return 0

v < arbitrary vertex in V(G)
return max{1+ NaiveMIS(G — N(v) — {v}), NaiveMIS(G — {v})}

=]

=]

L

1+7

o—-o

1+7

1+7

o—-o

1+0

i

| T

Observations

Lemma Let U be a maximum independent set in G. Then, for
each vertex v € V:

(i) veU ~ N@)NnU =10

(i) v ¢ U ~ [N(w)NU| > 1
Thus, N[v] := N(v) U{v} contains some y € U and
no other vertex of N[y] isin U

Smarter Branching-Algorithm

Algorithm MIS(G)
if V=10 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — Ny]) | y € N[v]}

Smarter Branching-Algorithm

Algorithm MIS(G)
if V =0 then
| return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — N[y|) | y € N|v]}

Correctness follows from the previous Lemma.

Smarter Branching-Algorithm

Algorithm MIS(G)
if V =0 then
L return 0

v < vertex of minimum degree in V(G)
return 1 + max{MIS(G — N[y|) | y € N|v]}

Correctness follows from the previous Lemma.

We will now prove a runtime of O*(3"%/3) = O*(1.4423")

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G
~

G_N[Ul] G—N[UQ]

—
®<\
= wE“
= -«
= a4

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum / \

number of leaves of a search tree
for a graph with n vertices. G — N|vq] G — Nlvy]

—
®<\
= wE“
= -«
= a4

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum / \

number of leaves of a search tree
for a graph with n vertices. G — N|vq] G — Nlvy]

Search-tree has height < n, / \ / \1

~+ the algorithm’s runtime is

T(n) € O*(nB(n)) = O*(B(n)) s
b
) 0 0 0

0

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

. G
Let B(n) be the maximum / \

number of leaves of a search tree
for a graph with n vertices. G — N|vq] G — Nlvy]

Search-tree has height < n, / \ / \1

~+ the algorithm’s runtime is

T(n) € O*(nB(n)) = O*(B(n))

Let's consider an example run.

I
0) (/B

0

1+7

1+7

1+7

1+1

1+7

1+7

1+7

1+2

1+2

1+7

1+2

1+2

1+2

1+0

1+2

1+7

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

1+2

1+2

1+0

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < Y B(n—(deg(y)+1))

yeN[v]
< (deg(v)+1) -B(n—(deg(v)+1)),

where v is a minimum degree vertex of (G, and we note that
B(n') < B(n) for any n’ < n.

Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < Y B(n-—(deg(y)+1))

yeN[v]
< (deg(v)+1) -B(n—(deg(v)+1)),

where v is a minimum degree vertex of (G, and we note that
B(n') < B(n) for any n’ < n.

Runtime Analysis (cont)

B(n) < (deg(v) + 1) . B(n — (deg(fu) +]_))
We proceed by induction to show B(n) < 3n/3

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v)+1))
We proceed by induction to show B(n) < 37/3
Base case: B(0) =1 < 39/3

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v) +1))

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) < s-B(n — s)

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v) +1))

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) < s- B(TL — 3) < s - 3(n_3)/3

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v) +1))

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n)<s-B(n—s)<s- 3(n—s)/3 — = . 3n/3

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v) +1))

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30nm8)3 = 2. 3n/3 L 3n/3

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v) +1))

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30nm8)3 = 2. 3n/3 L 3n/3

1.0 —
i / ™~
aar

nal /

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v) +1))

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30n78)3 = 2. 3n/3 < 3n/3

1.0 —
nat /

nal /

Runtime Analysis (cont)

B(n) < (deg(v) +1) - B(n — (deg(v) +1))

We proceed by induction to show B(n) < 3n/3

Base case: B(0) =1 < 39/3

Hypothesis: for n > 1, set s = deg(v) + 1 in the above
inequality

B(n) <s-B(n—s) <s-30n78)3 = 2. 3n/3 < 3n/3

B(n) € O*(v/3") C O*(1.44225") | /f B

osr

nal /

