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Motivation: exact exponential algorithms

• can be “fast” for medium-sized instances

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

 “hidden” constants in polynomial time algorithms:
2100 · n > 2n for n ≤ 100

• theoretical interest
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• Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

• Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) ( O(1.5n · n) ( O(2n)

 negligible polynomial factors (exp. dominates)

f(n) ∈ O∗(g(n)) ⇔ ∃ polynomial p(n) w/ f(n) ∈ O(g(n)p(n))
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Suppose an algorithm uses an steps.

• For a fixed amount of time t , improving hardware by a

constant factor c only adds a (relative to c) constant to
the max. size of solvable instances (in time t).

• Whereas reducing the base of the runtime to b < a results
in a multiplicative increase!

Why?

Hardware speedup: an
′
0 = c · an0  n′0 = loga c+ n0

Base reduction: bn
′
0 = an0  n′0 = n0 · logb a
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Input Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output Hamiltonian cycle (vπ(1), . . . , vπ(n), vπ(n+1) = vπ(1))
of G, of minimum weight

∑n
i=1 c(vi, vi+1),

permutation π.

Brute-Force?

• Each tour is a permutation π of
the vertices.

• Pick a permutation with the
smallest weight.

Runtime: Θ(n! · n) = n · 2Θ(n logn)
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Bellman-Held-Karp-Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

For each S ⊆ V − s and v ∈ S, let:

OPT[S, v] = length of a shortest s-v-path
that visits precisely the vertices of S ∪ {s}.

S
v

s

Technique: Dynamic Programming!
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The base case: S = {v}, is easy: OPT[{v}, v] = c(s, v).

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] = min{ OPT[S − v, u] + c(u, v) | u ∈ S − v }

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s, the optimal
solution is easily obtained as follows:

OPT= min{ OPT[V − s, v] + c(v, s) | v ∈ V − s }

V − s

v
s
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Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }
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where each one takes O(n) time. Thus, in total, we have
O(2n · n2) = O∗(2n).
Space (memory) usage: Θ(2n · n)

A shortest tour can be produced by backtracking the DP table
(as usual).

Compare: O∗(2n) with 2O(n logn) for Brute-Force

} O(2n)

} O(n)

Only use table-values for j − 1
to compute j, less space?
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Maximum Independent Set

Algorithm NaiveMIS(G)
if V = ∅ then

return 0

v ← arbitrary vertex in V (G)
return max{1+ NaiveMIS(G−N(v)− {v}), NaiveMIS(G− {v})}

Input Graph G = (V,E) with n vertices.

Output Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force?
• Try all subsets of V  O(2n · n) runtime.
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Observations

Let U be a maximum independent set in G. Then, for
each vertex v ∈ V :

(i) v ∈ U  N(v) ∩ U = ∅
(ii) v /∈ U  |N(v) ∩ U | ≥ 1

Thus, N [v] := N(v) ∪ {v} contains some y ∈ U and
no other vertex of N [y] is in U

Lemma

v

y
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Smarter Branching-Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

Correctness follows from the previous Lemma.

We will now prove a runtime of O∗(3n/3) = O∗(1.4423n)
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Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

Search-tree has height ≤ n,
 the algorithm’s runtime is
T (n) ∈ O∗(nB(n)) = O∗(B(n))

Let’s consider an example run.
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Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B( n− (deg(v) + 1) ) ,

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.
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Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

B(n) ∈ O∗( 3
√

3n) ⊂ O∗(1.44225n)

B(n) ≤ (deg(v) + 1) ·B( n− (deg(v) + 1) )


