
Lecture 1. Introduction & Held-Karp-algorithm for TSP

(slides by Joachim Spoerhase, Thomas van Dijk, & Alexander Wolff)

Advanced Algorithms

Winter term 2019/20

Steven Chaplick & Alexander Wolff Chair for Computer Science I

Advanced Algorithms

Learning goals: At the end of this lecture you will

Advanced Algorithms

Learning goals:

– have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

At the end of this lecture you will

Advanced Algorithms

Learning goals:

– have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

At the end of this lecture you will

– be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

Advanced Algorithms

Learning goals:

– have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

Requirements:

At the end of this lecture you will

– be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

– Big-Oh notation (Landau); e.g., O(n log n)

Advanced Algorithms

Learning goals:

– have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

Requirements:

At the end of this lecture you will

– be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

– Some Algorithms & Data Structures

– Big-Oh notation (Landau); e.g., O(n log n)

(Balanced) binary search tree, priority queue

Advanced Algorithms

Learning goals:

– have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

Requirements:

At the end of this lecture you will

– be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

– Some Algorithms & Data Structures

– Some Algorithmic Graph Theory

– Big-Oh notation (Landau); e.g., O(n log n)

(Balanced) binary search tree, priority queue

Breadth-first search, Dijkstra’s algorithm

Advanced Algorithms

Learning goals:

– have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

Requirements:

At the end of this lecture you will

– be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

– Some Algorithms & Data Structures

– Some Algorithmic Graph Theory

– Basic Theoretical Computer Science (P vs. NP)

– Big-Oh notation (Landau); e.g., O(n log n)

(Balanced) binary search tree, priority queue

Breadth-first search, Dijkstra’s algorithm

Advanced Algorithms

Learning goals:

– have an overview of advanced algorithmic topics (i.e., ex-
act, approximate, geometric, and randomized computati-
ons), and advanced data structures,

Requirements:

Evaluation: • oral exam at the end of the semester
• 0,3 bonus for 50% on the exercises

At the end of this lecture you will

– be able to analyze (and design algorithms for) new pro-
blems via the concepts of the lecture.

– Some Algorithms & Data Structures

– Some Algorithmic Graph Theory

– Basic Theoretical Computer Science (P vs. NP)

– Big-Oh notation (Landau); e.g., O(n log n)

(Balanced) binary search tree, priority queue

Breadth-first search, Dijkstra’s algorithm

What is this course about?

Many important (practical) problems are NP-hard

What is this course about?

Heuristic

NP-hard

Exponential FPT

Approximation

Many important (practical) problems are NP-hard

What is this course about?

Heuristic

NP-hard

Exponential FPT

Approximation

Many important (practical) problems are NP-hard

• Optimal Solutions
– Exact (exponential) time algorithms
– Fine-grained analysis (parameterized) algorithms

• Sacrifice optimality for speed
– Heuristics (sim. Annealing, Tabu-Search)
– Approximation Algorithms (Christofides-Algorithm)

What is this course about?

Many important (practical) problems are NP-hard

• Optimal Solutions
– Exact (exponential) time algorithms
– Fine-grained analysis (parameterized) algorithms

• Sacrifice optimality for speed
– Heuristics (sim. Annealing, Tabu-Search)
– Approximation Algorithms (Christofides-Algorithm)

• Geometric algorithms (sweep-line approach)
• More graph algorithms (shortest paths w/ neg. weights)
• Advanded data structures (splay trees)
• Randomized algorithms

Also, more on polytime solvable problems

What is this course about?

Many important (practical) problems are NP-hard

• Optimal Solutions
– Exact (exponential) time algorithms
– Fine-grained analysis (parameterized) algorithms

• Sacrifice optimality for speed
– Heuristics (sim. Annealing, Tabu-Search)
– Approximation Algorithms (Christofides-Algorithm)

• Geometric algorithms (sweep-line approach)
• More graph algorithms (shortest paths w/ neg. weights)
• Advanded data structures (splay trees)
• Randomized algorithms

Also, more on polytime solvable problems

Today’s Lecture

Textbooks

F. Fomin & D. Kratsch:
Exact Exponential
Algorithms,
Springer 2010
abbrev: EEA

Marek Cygan et al.:
Parameterized
Algorithms,
Springer 2015
abbrev: PA

C.L.R.S.:
Intro. to
Algorithms
MIT Press
2009.
abbrev: CLRS

M. de Berg et al:
Computational Geometry:
Algorithms & Applications.
Springer 2008,
3rd edition.
abbrev: CG: A&A

Textbooks

F. Fomin & D. Kratsch:
Exact Exponential
Algorithms,
Springer 2010
abbrev: EEA

Marek Cygan et al.:
Parameterized
Algorithms,
Springer 2015
abbrev: PA

This Lecture: Chapter 1

C.L.R.S.:
Intro. to
Algorithms
MIT Press
2009.
abbrev: CLRS

M. de Berg et al:
Computational Geometry:
Algorithms & Applications.
Springer 2008,
3rd edition.
abbrev: CG: A&A

Background

• efficient vs. inefficient algorithms

Background

• efficient vs. inefficient algorithms

 polynomial vs. super-polynomial algorithms

Motivation: exact exponential algorithms

• can be “fast” for medium-sized instances

 e.g.: n4 > 1.2n for n ≤ 100

Motivation: exact exponential algorithms

• can be “fast” for medium-sized instances

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

Motivation: exact exponential algorithms

• can be “fast” for medium-sized instances

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

 “hidden” constants in polynomial time algorithms:
2100 · n > 2n for n ≤ 100

Motivation: exact exponential algorithms

• can be “fast” for medium-sized instances

 e.g.: n4 > 1.2n for n ≤ 100

 e.g.: TSP solvable exactly for n ≤ 2000 and specialized
instances with n ≤ 85900

 “hidden” constants in polynomial time algorithms:
2100 · n > 2n for n ≤ 100

• theoretical interest

Typical Results

• Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

Typical Results

• Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

• Typically results for a (hypothetical) NP-hard problem

Typical Results

• Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

• Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

Typical Results

• Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

• Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) (O(1.5n · n) (O(2n)

Typical Results

• Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

• Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) (O(1.5n · n) (O(2n)

 negligible polynomial factors (exp. dominates)

Typical Results

• Idea (simplified): find exact algorithms which are faster
than brute force (trivial) approaches.

• Typically results for a (hypothetical) NP-hard problem

Approach Runtime in O-Notation O∗-Notation

Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) (O(1.5n · n) (O(2n)

 negligible polynomial factors (exp. dominates)

f(n) ∈ O∗(g(n)) ⇔ ∃ polynomial p(n) w/ f(n) ∈ O(g(n)p(n))

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses an steps.

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses an steps.

• For a fixed amount of time t , improving hardware by a

constant factor c only adds a (relative to c) constant to
the max. size of solvable instances (in time t).

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses an steps.

• For a fixed amount of time t , improving hardware by a

constant factor c only adds a (relative to c) constant to
the max. size of solvable instances (in time t).

• Whereas reducing the base of the runtime to b < a results
in a multiplicative increase!

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses an steps.

• For a fixed amount of time t , improving hardware by a

constant factor c only adds a (relative to c) constant to
the max. size of solvable instances (in time t).

• Whereas reducing the base of the runtime to b < a results
in a multiplicative increase!

Why?

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses an steps.

• For a fixed amount of time t , improving hardware by a

constant factor c only adds a (relative to c) constant to
the max. size of solvable instances (in time t).

• Whereas reducing the base of the runtime to b < a results
in a multiplicative increase!

Why?

Hardware speedup: an
′
0 = c · an0 n′0 = loga c+ n0

Better Algorithms vs. Faster Hardware

Suppose an algorithm uses an steps.

• For a fixed amount of time t , improving hardware by a

constant factor c only adds a (relative to c) constant to
the max. size of solvable instances (in time t).

• Whereas reducing the base of the runtime to b < a results
in a multiplicative increase!

Why?

Hardware speedup: an
′
0 = c · an0 n′0 = loga c+ n0

Base reduction: bn
′
0 = an0 n′0 = n0 · logb a

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output Hamiltonian cycle (vπ(1), . . . , vπ(n), vπ(n+1) = vπ(1))
of G, of minimum weight

∑n
i=1 c(vi, vi+1),

permutation π.

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output Hamiltonian cycle (vπ(1), . . . , vπ(n), vπ(n+1) = vπ(1))
of G, of minimum weight

∑n
i=1 c(vi, vi+1),

permutation π.

Brute-Force?

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output Hamiltonian cycle (vπ(1), . . . , vπ(n), vπ(n+1) = vπ(1))
of G, of minimum weight

∑n
i=1 c(vi, vi+1),

permutation π.

Brute-Force?

• Each tour is a permutation π of
the vertices.

• Pick a permutation with the
smallest weight.

Traveling Salesperson Problem (TSP)

Input Complete directed graph G = (V,E) with n vertices
and edge weights c:E → Q≥0

Output Hamiltonian cycle (vπ(1), . . . , vπ(n), vπ(n+1) = vπ(1))
of G, of minimum weight

∑n
i=1 c(vi, vi+1),

permutation π.

Brute-Force?

• Each tour is a permutation π of
the vertices.

• Pick a permutation with the
smallest weight.

Runtime: Θ(n! · n) = n · 2Θ(n logn)

Bellman-Held-Karp-Algorithm

Richard M. Karp

Richard E. Bellman

Bellman-Held-Karp-Algorithm

Richard M. Karp

Richard E. Bellman

Technique: Dynamic Programming!

Bellman-Held-Karp-Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Technique: Dynamic Programming!

Bellman-Held-Karp-Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

Technique: Dynamic Programming!

Bellman-Held-Karp-Algorithm

Richard M. Karp

Richard E. Bellman

Reuse optimal substructures!

Select any starting vertex s ∈ V .

For each S ⊆ V − s and v ∈ S, let:

OPT[S, v] = length of a shortest s-v-path
that visits precisely the vertices of S ∪ {s}.

S
v

s

Technique: Dynamic Programming!

Bellmann-Held-Karp-Algorithm

The base case: S = {v}, is easy: OPT[{v}, v] = c(s, v).

Bellmann-Held-Karp-Algorithm

The base case: S = {v}, is easy: OPT[{v}, v] = c(s, v).

When |S| ≥ 2, we compute OPT[S, v] recursively:

Bellmann-Held-Karp-Algorithm

The base case: S = {v}, is easy: OPT[{v}, v] = c(s, v).

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] = min{ OPT[S − v, u] + c(u, v) | u ∈ S − v }

S
v

s

u
S − v

Bellmann-Held-Karp-Algorithm

The base case: S = {v}, is easy: OPT[{v}, v] = c(s, v).

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] = min{ OPT[S − v, u] + c(u, v) | u ∈ S − v }

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s, the optimal
solution is easily obtained as follows:

Bellmann-Held-Karp-Algorithm

The base case: S = {v}, is easy: OPT[{v}, v] = c(s, v).

When |S| ≥ 2, we compute OPT[S, v] recursively:

OPT[S, v] = min{ OPT[S − v, u] + c(u, v) | u ∈ S − v }

S
v

s

u
S − v

After computing OPT[S, v] for each S ⊆ V − s, the optimal
solution is easily obtained as follows:

OPT= min{ OPT[V − s, v] + c(v, s) | v ∈ V − s }

V − s

v
s

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
Runtime: the innermost loop executes O(2n · n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2n · n2) = O∗(2n).

} O(2n)

} O(n)

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
Runtime: the innermost loop executes O(2n · n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2n · n2) = O∗(2n).
Space (memory) usage: Θ(2n · n)

} O(2n)

} O(n)

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
Runtime: the innermost loop executes O(2n · n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2n · n2) = O∗(2n).
Space (memory) usage: Θ(2n · n)

A shortest tour can be produced by backtracking the DP table
(as usual).

} O(2n)

} O(n)

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
Runtime: the innermost loop executes O(2n · n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2n · n2) = O∗(2n).
Space (memory) usage: Θ(2n · n)

A shortest tour can be produced by backtracking the DP table
(as usual).

Compare: O∗(2n) with 2O(n logn) for Brute-Force

} O(2n)

} O(n)

Pseudocode for the dynamic program

Algorithm Bellmann-Held-Karp(G, c)
foreach v ∈ V − s do

OPT[{v}, v] = c(s, v)

for j = 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v] = min{OPT[S − v, u] + c(u, v) | u ∈ S − v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }
Runtime: the innermost loop executes O(2n · n) iterations
where each one takes O(n) time. Thus, in total, we have
O(2n · n2) = O∗(2n).
Space (memory) usage: Θ(2n · n)

A shortest tour can be produced by backtracking the DP table
(as usual).

Compare: O∗(2n) with 2O(n logn) for Brute-Force

} O(2n)

} O(n)

Only use table-values for j − 1
to compute j, less space?

Maximum Independent Set

Input Graph G = (V,E) with n vertices.

Output Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Maximum Independent Set

Input Graph G = (V,E) with n vertices.

Output Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Maximum Independent Set

Input Graph G = (V,E) with n vertices.

Output Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force?

Maximum Independent Set

Input Graph G = (V,E) with n vertices.

Output Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force?
• Try all subsets of V O(2n · n) runtime.

Maximum Independent Set

Algorithm NaiveMIS(G)
if V = ∅ then

return 0

v ← arbitrary vertex in V (G)
return max{1+ NaiveMIS(G−N(v)− {v}), NaiveMIS(G− {v})}

Input Graph G = (V,E) with n vertices.

Output Maximum size independent set, i.e., a largest set
U ⊆ V , such that no pair of vertices in U are
adjacent in G.

Brute Force?
• Try all subsets of V O(2n · n) runtime.

3?

1 + 13? ?

1 + 13? ?

1 + 13

1

? ?

?

1 + 13

1 1 + 0

? ?

? ?

1 + 13

1 1 + 0

0

? ?

?

1 + 13

1 1 + 0

01

? ?

1 + 13

1 1 + 0

01

? ?

1 + 13

1 1 + 0

01

1

? ?

1 + 13

1 1 + 0

01

1

?

1 + 13

1 1 + 0

01

1

?

1 + 13

3 1 1 + 0

01

1

?

?

1 + 13

3 1 1 + 0

01

1

?

?

1 + 13

3 1 1 + 0

013

1

?

?

1 + 13

3 1 1 + 0

013

1

?

1 + 13

3 1 + 2 1 1 + 0

013

1

?

?

1 + 13

3 1 + 2 1 1 + 0

0123

1

?

?

1 + 13

3 1 + 2 1 1 + 0

0123

1

?

1 + 13

3 1 + 2 1 1 + 0

0123

3 1

?

1 + 13

3 1 + 2 1 1 + 0

0123

3 1

1 + 13

3 1 + 2 1 1 + 0

0123

3 1

3

Observations

Let U be a maximum independent set in G. Then, for
each vertex v ∈ V :

(i) v ∈ U N(v) ∩ U = ∅
(ii) v /∈ U |N(v) ∩ U | ≥ 1

Thus, N [v] := N(v) ∪ {v} contains some y ∈ U and
no other vertex of N [y] is in U

Lemma

v

y

Smarter Branching-Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

Smarter Branching-Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

Correctness follows from the previous Lemma.

Smarter Branching-Algorithm

Algorithm MIS(G)
if V = ∅ then

return 0

v ← vertex of minimum degree in V (G)
return 1 + max{MIS(G−N [y]) | y ∈ N [v]}

Correctness follows from the previous Lemma.

We will now prove a runtime of O∗(3n/3) = O∗(1.4423n)

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

Search-tree has height ≤ n,
 the algorithm’s runtime is
T (n) ∈ O∗(nB(n)) = O∗(B(n))

Runtime

Execution corresponds to a search tree whose nodes are
labeled with the input of the respective recursive call.

G

G−N [v1] G−N [v2]

. . .

∅ ∅ ∅ ∅∅

Let B(n) be the maximum
number of leaves of a search tree
for a graph with n vertices.

Search-tree has height ≤ n,
 the algorithm’s runtime is
T (n) ∈ O∗(nB(n)) = O∗(B(n))

Let’s consider an example run.

A

B

C

1 + 2?

A

B

C
A

1 + 2?

A

B

C
A

A

B

C

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

?

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

1 + 1

B

1 + 2?

A

B

C
A

A

B

C

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2?

2

A

B

C
A

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2

2

A

B

C
A

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2 1 + 2?

2

A

B

C
A

B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2 1 + 2?

2

A

B

C
A

B

A
B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2 1 + 2?

2

A

B

C
A

B

A
B

1 + 1

A

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2 1 + 2?

2

A

B

C
A

B

A
B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2 1 + 2?

2 2

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 2 1 + 2

2 2

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

1 + 0

1 + 0
A

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 1?1 + 2 1 + 2

2 2 1

A

B

C
A

B

C

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 11 + 2 1 + 2

2 2 1

A

B

C
A

B

C

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

1 + 1

3

1 + 2 1 + 2

2 2 1

A

B

C
A

B

C

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤
∑

y∈N [v]

B(n− (deg(y) + 1))

≤ (deg(v) + 1) ·B(n− (deg(v) + 1)) ,

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3?

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

?

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

Runtime Analysis (cont)

We proceed by induction to show B(n) ≤ 3n/3

Base case: B(0) = 1 ≤ 30/3

Hypothesis: for n ≥ 1, set s = deg(v) + 1 in the above
inequality

B(n) ≤ s ·B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

s 7→ s
3s/3

B(n) ∈ O∗(3
√

3n) ⊂ O∗(1.44225n)

B(n) ≤ (deg(v) + 1) ·B(n− (deg(v) + 1))

