

Computational Geometry

Seidel's Triangulation Algorithm

Lecture #13

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_i p_i} \subset P$)

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_i p_j} \subset P$)

Approach:

1. Trapezoidize interior of *P*.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_i p_j} \subset P$)

Approach:

1. Trapezoidize interior of *P*.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_i p_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Approach:

Running time:

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Approach:

Running time:

1. Trapezoidize interior of *P*.

 $O(n \log n)$

- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Approach:

Running time:

1. Trapezoidize interior of *P*.

 $O(n \log n)$

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate *y*-monotone subpolygons.

Polygon $P = \langle p_1, \dots, p_n \rangle$ Given:

(list of vertices in cw order)

Find: Triangulation of *P*

> i.e., a partition of *P* into triangles by *diagonals* (segments of type $\overline{p_i p_i} \subset P$)

Approach:

Running time:

1. Trapezoidize interior of *P*.

 $O(n \log n)$

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate *y*-monotone subpolygons.

O(n)

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Approach:

Running time:

1. Trapezoidize interior of *P*.

 $O(n \log n)$

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate *y*-monotone subpolygons.

O(n)

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Approach:

Running time:

1. Trapezoidize interior of *P*.

 $O(n \log n)$

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate *y*-monotone subpolygons.

O(n)

 $O(n \log n)$

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Approach:

Running time:

1. Trapezoidize interior of *P*.

 $O(n \log n)$

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate *y*-monotone subpolygons.

O(n)

 $O(n \log n)$

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$

(list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_ip_j} \subset P$)

Approach:

Running time:

1. Trapezoidize interior of *P*.

 $O(n \log n)$

- 2. Draw diagonals inside trapezoids. O(n)
- 3. Triangulate *y*-monotone subpolygons.

O(n)

 $O(n \log n)$

Lemma 1. Given a trapezoidation, *P* can be triangulated in linear time.

Let *S* be a set of *n* non-crossing segments

Let *S* be a set of *n* non-crossing segments

WANTED:

Let *S* be a set of *n* non-crossing segments

WANTED: – trapezoidation $\mathcal{T}(S)$ of S

Let *S* be a set of *n* non-crossing segments

WANTED: – trapezoidation $\mathcal{T}(S)$ of S

– point-location data structure Q(S)

Let *S* be a set of *n* non-crossing segments

```
WANTED: – trapezoidation \mathcal{T}(S) of S – point-location data structure \mathcal{Q}(S)
```

Our construction is randomized-incremental:

Let *S* be a set of *n* non-crossing segments

WANTED: – trapezoidation $\mathcal{T}(S)$ of S

– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments)

Let *S* be a set of *n* non-crossing segments

- **WANTED:** trapezoidation $\mathcal{T}(S)$ of S
 - point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments)

 $\langle s_1, s_2, \ldots, s_n \rangle \leftarrow \text{random ordering of } S$

Let *S* be a set of *n* non-crossing segments

- **WANTED:** trapezoidation $\mathcal{T}(S)$ of S
 - point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments)

$$\langle s_1, s_2, \dots, s_n \rangle \leftarrow \text{random ordering of } S$$

 $S_0 \leftarrow \emptyset$

Let *S* be a set of *n* non-crossing segments

```
WANTED: – trapezoidation \mathcal{T}(S) of S
```

– point-location data structure Q(S)

Our construction is randomized-incremental:

```
Trapezoidation (set S of n non-crossing line segments) \langle s_1, s_2, \ldots, s_n \rangle \leftarrow \text{random ordering of } S
S_0 \leftarrow \emptyset
for i = 1 to n do
```

Let *S* be a set of *n* non-crossing segments

- **WANTED:** trapezoidation $\mathcal{T}(S)$ of S
 - point-location data structure Q(S)

Our construction is randomized-incremental:

```
Trapezoidation (set S of n non-crossing line segments) \langle s_1, s_2, \ldots, s_n \rangle \leftarrow \text{random ordering of } S
S_0 \leftarrow \emptyset
for i = 1 to n do
S_i \leftarrow S_{i-1} \cup \{s_i\}
```

Let *S* be a set of *n* non-crossing segments

```
WANTED: – trapezoidation \mathcal{T}(S) of S – point-location data structure \mathcal{Q}(S)
```

Our construction is randomized-incremental:

```
Trapezoidation (set S of n non-crossing line segments) \langle s_1, s_2, \ldots, s_n \rangle \leftarrow \text{random ordering of } S
S_0 \leftarrow \emptyset
for i = 1 to n do
S_i \leftarrow S_{i-1} \cup \{s_i\}
S_i \leftarrow S_i \cup \{s_i\}
```

Let *S* be a set of *n* non-crossing segments

```
WANTED: – trapezoidation \mathcal{T}(S) of S – point-location data structure \mathcal{Q}(S)
```

Our construction is randomized-incremental:

```
Trapezoidation (set S of n non-crossing line segments)
\langle s_1, s_2, \dots, s_n \rangle \leftarrow \text{random ordering of } S
S_0 \leftarrow \emptyset
\mathbf{for } i = 1 \mathbf{ to } n \mathbf{ do}
S_i \leftarrow S_{i-1} \cup \{s_i\}
\mathbf{use } \mathcal{T}(S_{i-1}) \mathbf{ and } \mathcal{Q}(S_{i-1}) \mathbf{ to construct } \mathcal{T}(S_i) \mathbf{ and } \mathcal{Q}(S_i)
```

Total cost of one step:

Let *S* be a set of *n* non-crossing segments

```
WANTED: – trapezoidation \mathcal{T}(S) of S – point-location data structure \mathcal{Q}(S)
```

Our construction is randomized-incremental:

```
Trapezoidation (set S of n non-crossing line segments)
\langle s_1, s_2, \dots, s_n \rangle \leftarrow \text{random ordering of } S
S_0 \leftarrow \emptyset
\mathbf{for } i = 1 \mathbf{ to } n \mathbf{ do}
S_i \leftarrow S_{i-1} \cup \{s_i\}
\mathbf{use } \mathcal{T}(S_{i-1}) \mathbf{ and } \mathcal{Q}(S_{i-1}) \mathbf{ to construct } \mathcal{T}(S_i) \mathbf{ and } \mathcal{Q}(S_i)
```

Total cost of one step: – location time

Let *S* be a set of *n* non-crossing segments

```
WANTED: – trapezoidation \mathcal{T}(S) of S – point-location data structure \mathcal{Q}(S)
```

Our construction is randomized-incremental:

```
Trapezoidation (set S of n non-crossing line segments) \langle s_1, s_2, \ldots, s_n \rangle \leftarrow \text{random ordering of } S
S_0 \leftarrow \emptyset
for i = 1 to n do
S_i \leftarrow S_{i-1} \cup \{s_i\}
S_i \leftarrow S_i \cap S_i
```

Total cost of one step: – location time – "threading" (updating) time

We assume general position (no two points have the same *y*-coordinate).

We assume general position (no two points have the same *y*-coordinate). Use lexicographic order!

We assume general position (no two points have the same *y*-coordinate).

We assume general position (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof. For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

We assume general position
(no two points have the same *y*-coordinate).

We assume general position

Order!

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

We assume general position
(no two points have the same *y*-coordinate).

We assume general position

Order!

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i =$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \leq$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

rays in $\mathcal{T}(S_i) \leq$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

rays in $\mathcal{T}(S_i) \leq 4i$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

rays in $\mathcal{T}(S_i) \leq 4i$

$$\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \leq$$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

rays in $\mathcal{T}(S_i) \leq 4i$

$$\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \leq 4i$$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

rays in $\mathcal{T}(S_i) \leq 4i$

$$\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \leq 4i$$

Ordering of S_i random \Rightarrow

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

rays in $\mathcal{T}(S_i) \leq 4i$

$$\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \leq 4i$$

Ordering of S_i random $\Rightarrow E[\deg(s_i, \mathcal{T}(S_i))] \leq$

We assume general position (no two points have the same *y*-coordinate).

We assume general position

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let $deg(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

rays in $\mathcal{T}(S_i) \leq 4i$

$$\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \leq 4i$$

Ordering of S_i random $\Rightarrow E[\deg(s_i, \mathcal{T}(S_i))] \leq 4 \square$

Recall:
$$H_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n} \in \Theta($$

Recall:
$$H_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n} \in \Theta(\log n)$$

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $Q(S_i)$

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

- **Lemma 3.** For any query point q, the expected length of the search path of q in $Q(S_n)$ is at most $5H_n \in O(\log n)$.
- **Proof.** Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

- Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.
- **Lemma 3.** For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.
- **Proof.** Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q $t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$

- Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.
- **Lemma 3.** For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.
- **Proof.** Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q $t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$ $t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

- **Lemma 3.** For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.
- **Proof.** Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q $t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$ $t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

- **Lemma 3.** For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.
- **Proof.** Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q $t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$

$$t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$$

1:

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

$$t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$$

$$t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$$

1:

1:

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

$$t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$$

$$t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$$

1:

1:

1:

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

$$t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$$

$$t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$$

1:

1:

1:

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

$$t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$$

 $t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$

1:

1:

1:

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

$$t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$$

$$t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$$

l: 💉

1:

1:

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

$$t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$$

$$t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$$

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

$$t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$$

$$t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$$

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

- **Lemma 3.** For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.
- **Proof.** Let $T_i(q)$ be the length of the search path of q in $\mathcal{Q}(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q

 $t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$

 $t_i(q) \neq t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1}) + \dots$

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem. Let S be a set of n non-crossing line segments.

• We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of Q(S) is O(n).

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of Q(S) is O(n).
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of Q(S) is O(n).
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem. Let S be a set of n non-crossing line segments.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of Q(S) is O(n).
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Aim:

Speed-up construction for simple polygons.

```
Observe: in Q(S_i),
```

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes O(1) expected time

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

– threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

– threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Locate once, then follow polygon.

Problem: This way, we lose the random structure!

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Locate once, then follow polygon.

Problem: This way, we lose the random structure!

⇒ threading becomes more expensive

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Locate once, then follow polygon.

Problem: This way, we lose the random structure!

⇒ threading becomes more expensive

 $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

– threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Locate once, then follow polygon.

Problem: This way, we lose the random structure!

⇒ threading becomes more expensive

 $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Solution:

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

- threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Locate once, then follow polygon.

Problem: This way, we lose the random structure!

⇒ threading becomes more expensive

 $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Solution: • insert segments in random order

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

– threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Locate once, then follow polygon.

Problem: This way, we lose the random structure!

⇒ threading becomes more expensive

 $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Solution:

• insert segments in random order

• every now and then, locate *all* polygon vertices in the current trapezoidation

Observe: in $Q(S_i)$,

– point location takes $O(\log i)$ expected time

– threading s_{i+1} takes O(1) expected time

Idea: Exploit polygon structure!

Locate once, then follow polygon.

Problem: This way, we lose the random structure!

⇒ threading becomes more expensive

 $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Solution:

• insert segments in random order

• every now and then, locate *all* polygon vertices in the current trapezoidation

by walking along the polygon!

The Two Main New Technical Ingredients

Questions:

The Two Main New Technical Ingredients

Questions:

• How much does the intermediate location information help later?

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time

Lemma 3. For any query point q, the expected length of the search path of q in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O($

Lemma 3. For any query point q, the expected length of the search path of q in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O(\log k/j)$.

Lemma 3. For any query point q, the expected length of the search path of q in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|.

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O(\log k/j)$.
- **Lemma 5.** *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$.

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O(\log k/j)$.
- **Lemma 5.** *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq I$, where the expectation is over all size-I subsets of I.

- Questions: How much does the intermediate location information hold later?
- **Lemma 2.** For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O(\log k/j)$.
- **Lemma 5.** *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq I$, where the expectation is over all size-I subsets of I.

- Questions: How much does the intermediate location information hold later?
- **Lemma 2.** For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O(\log k/j)$.
- **Lemma 5.** *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size-r subsets of S.

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?
- **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size-r subsets of S.

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} =$$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2;$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} = 1$

Definition. Let the *i-th iterated logarithm* of *n* be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} = 1$

Definition. Let the *i-th iterated logarithm* of *n* be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^* 2^{2^{2^2}} = 1$

Definition. Let the *i-th iterated logarithm* of *n* be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^* 2^{2^{2^2}} = 4$

Definition. Let the *i-th iterated logarithm* of *n* be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^* 2^{2^{2^2}} = 4$

$$\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$$

$$\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^* 2^{2^{2^2}} = 4$$

$$\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$$

$$\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^* 2^{2^{2^2}} = 4$$

$$\log^{(2)} 2^{2^{2^{2}}} = \log_{2} \log^{(1)} 2^{2^{2^{2}}} = 2^{2}$$

$$\log^{(3)} 2^{2^{2^{2}}} = 2; \quad \log^{(4)} 2^{2^{2^{2}}} = 1 \Rightarrow \log^{*} 2^{2^{2^{2}}} = 4$$

Definition. Let the *i-th iterated logarithm* of *n* be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For
$$0 \le h \le \log^* n$$
, let $N(h) := \lceil n / \log^{(h)} n \rceil$.

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^* 2^{2^{2^2}} = 4$

Definition. Let the *i-th iterated logarithm* of *n* be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For n > 0, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}$.

For
$$0 \le h \le \log^* n$$
, let $N(h) := \lceil n / \log^{(h)} n \rceil$.

Examples. $\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$

$$\log^{(1)} 2^{2^{2^{2}}} = \log_{2} 2^{2^{2^{2}}} = 2^{2^{2}}$$

$$\log^{(2)} 2^{2^{2^{2}}} = \log_{2} \log^{(1)} 2^{2^{2^{2}}} = 2^{2}$$

$$\log^{(3)} 2^{2^{2^{2}}} = 2; \quad \log^{(4)} 2^{2^{2^{2}}} = 1 \implies \log^{*} 2^{2^{2^{2}}} = 4$$

$$N(0) = 1$$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$
For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}.$

For
$$0 \le h \le \log^* n$$
, let $N(h) := \lceil n / \log^{(h)} n \rceil$.

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \implies \log^* 2^{2^{2^2}} = 4$
 $N(0) = 1, N(1) = \lceil n/\log n \rceil$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$
For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}.$

For
$$0 \le h \le \log^* n$$
, let $N(h) := \lceil n / \log^{(h)} n \rceil$.

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

$$\log^{(0)} 2^{2^{2}} = 2^{2}$$

$$\log^{(1)} 2^{2^{2^{2}}} = \log_{2} 2^{2^{2^{2}}} = 2^{2^{2}}$$

$$\log^{(2)} 2^{2^{2^{2}}} = \log_{2} \log^{(1)} 2^{2^{2^{2}}} = 2^{2}$$

$$\log^{(3)} 2^{2^{2^{2}}} = 2; \quad \log^{(4)} 2^{2^{2^{2}}} = 1 \implies \log^{*} 2^{2^{2^{2}}} = 4$$

$$N(0) = 1, N(1) = \lceil n / \log n \rceil, \dots$$

Definition. Let the *i-th iterated logarithm* of *n* be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For n > 0, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}$.

For
$$0 \le h \le \log^* n$$
, let $N(h) := \lceil n / \log^{(h)} n \rceil$.

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2$; $\log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^* 2^{2^{2^2}} = 4$

N(0) = 1, $N(1) = [n/\log n]$, $N(\log^* n) > n/2$.

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$.

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v.

```
PolygonTrapezoidation ((edges along) simple polygon P)
```

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v.

```
for h = 1 to \log^* n do // phase h
```

3.1

3.2

PolygonTrapezoidation ((edges along) simple polygon P)

- 1. $\langle s_1, s_2, \ldots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h

```
3.1 for i = \frac{N(h-1)}{1} + 1 to \frac{N(h)}{1} do
```

3.2

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$.

 foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v.

 for h = 1 to $\log^* n$ do // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2 walk along P through $\mathcal{T}_{N(h)}$:

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2 walk along P through $\mathcal{T}_{N(h)}$: **foreach** vertex v **do**

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2 walk along P through $\mathcal{T}_{N(h)}$:

 foreach vertex v do $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v

PolygonTrapezoidation ((edges along) simple polygon P)

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2 walk along P through $\mathcal{T}_{N(h)}$: foreach vertex v do

 $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2 walk along P through $\mathcal{T}_{N(h)}$: **foreach** vertex v **do** $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ
- 4. for $i = \frac{N(\log^* n) + 1}{\log^* n} + 1$ to n do

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2 walk along P through $\mathcal{T}_{N(h)}$: **foreach** vertex v **do** $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ
- 4. **for** $i = \frac{N(\log^* n)}{1 + 1} + 1$ **to** n **do** $\lim_{i \to \infty} s_i = v_i w_i \text{ in } \mathcal{T}_{i-1} \text{ using } \pi(v_i) \text{ (node in } \mathcal{Q}_{N(\log^* n)})$

```
PolygonTrapezoidation ((edges along) simple polygon P)
```

- 1. $\langle s_1, s_2, \dots, s_n \rangle := \text{random ordering of the edges of } P$
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_1 that contains v. **for** h = 1 **to** $\log^* n$ **do** // phase h
- 3.1 **for** $i = \frac{N(h-1)}{1} + 1$ **to** $\frac{N(h)}{1}$ **do** insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$)
- 3.2 walk along P through $\mathcal{T}_{N(h)}$:

 foreach vertex v do $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v

 $\pi(v) \leftarrow \text{the node in } \mathcal{Q}_{N(h)}$ corresponding to Δ

4. **for** $i = \frac{N(\log^* n)}{\log^* n} + 1$ **to** n **do** $\lim_{i \to \infty} s_i = v_i w_i \text{ in } \mathcal{T}_{i-1} \text{ using } \pi(v_i) \text{ (node in } \mathcal{Q}_{N(\log^* n)})$ $\text{return } (\mathcal{T}_n, \mathcal{Q}_n)$

Step 1: Random permutation

Step 1: Random permutation

O(n)

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 1: Random permutation O(n

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

Step 1: Random permutation

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

O(n)

O(n)

 $(\log^{\star} n)$.

Step 1: Random permutation

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 3.2: Walking the polygon

O(n)

O(n)

 $(\log^{\star} n)$.

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size-r subsets of S.

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size-r subsets of S.

Step 1: Random permutation

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 3.2: Walking the polygon

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

O(n)

O(n)

Lemma $5 \Rightarrow$

 $(\log^{\star} n)$.

O(n)

Step 1: Random permutation

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 3.2: Walking the polygon

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost:
- locating cost:

O(n)

O(n)

Lemma $5 \Rightarrow$

 $(\log^{\star} n)$.

O(n)

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost:
- locating cost:

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Step 1: Random permutation O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)

Step 3: Phases 1 to $\log^* n$ $(\log^* n)$.

Step 3.2: Walking the polygon Lemma $5 \Rightarrow O(n)$

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.
- locating cost:

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Step 1: Random permutation

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 3.2: Walking the polygon

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected O(1) per segm.

- locating cost: Know the location of v_i in $Q_{N(h-1)}$.

O(n)

Lemma $5 \Rightarrow$

 $(\log^{\star} n)$.

O(n)

O(n)

 $(\log^{\star} n)$.

O(n)

Time Complexity

Step 1: Random permutation

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 3.2: Walking the polygon

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

– locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost

Lemma $5 \Rightarrow$

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

O(n)

O(n)

 $(\log^{\star} n)$.

O(n)

Time Complexity

Step 1: Random permutation

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 3.2: Walking the polygon

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

- locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost

Lemma $5 \Rightarrow$

 $O(\log(i/N(h-1))) \subseteq$

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $Q(S_i)$ is known, then q can be located in $Q(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

– locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq$

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.
- locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq O(\log^{(h)}n)$

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

– locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

- locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$. $\left. \right. \cdot N(h) =$

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

 $(\log^* n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected O(1) per segm.

- locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$. $\left. \left. \right. \right. \cdot N(h) = O(n)$

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

- locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$. $\left. \left. \right. \right. \cdot N(h) = O(n)$

Lem. $4 \Rightarrow$ expected location cost $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $Q_{N(\log^* n)}$

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

- locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$. $\left. \left. \right. \right. \cdot N(h) = O(n)$

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

- threading cost:
- locating cost:

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.
- locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

- threading cost:
- locating cost:

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.
- locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost:

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow$

$$N(h) := \lceil n / \log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

- threading cost: Lem. 2 \Rightarrow O(1)
- locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) =$

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^* n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) =$

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $Q_{N(\log^* n)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) =$

> n/2

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N(\log^* n)}) = O(1)$

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^* n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

– threading cost: Lem. 2 \Rightarrow expected O(1) per segm.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $Q_{N(\log^* n)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) = O(1)$

> n/2

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm.

Lemma 4. Let $1 \le i \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $Q(S_i)$ is known, then q can be located in $Q(S_k)$ in expected time $5(H_k - H_i) \in O(\log k/i)$.

- locating cost: Lem. $2 \Rightarrow O(1)$ locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) = O(1)$ O(n) = O(1)

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

O(n)

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm.

Lemma 4. Let $1 \le i \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $Q(S_i)$ is known, then q can be located in $Q(S_k)$ in expected time $5(H_k - H_i) \in O(\log k/i)$.

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $Q_{N(\log^* n)}O(n)$ - locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) = O(1)$ O(n) = -1

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^{\star} n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected O(1) per segm.

- locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$. $\cdot N(h) = O(n)$

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $Q_{N(\log^* n)}O(n)$ – threading cost: Lem. $2 \Rightarrow O(1)$ – locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) = O(1)$ O(n) = O(1)

$$N(h) := \lceil n/\log^{(h)} n \rceil$$

Step 1: Random permutation

O(n)

Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$

O(n)

Step 3: Phases 1 to $\log^* n$

 $(\log^* n)$.

Step 3.2: Walking the polygon

Lemma $5 \Rightarrow$

Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected O(1) per segm.

– locating cost: Know the location of v_i in $Q_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost

 $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) = O(1)$

The Results

Theorem. Let *S* be the edge set of a polygon, |S| = n.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log^* n)$ expected time.
- The expected size of Q(S) is O(n).
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

The Results

Theorem. Let *S* be the edge set of a polygon, |S| = n.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log^* n)$ expected time.
- The expected size of Q(S) is O(n).
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Theorem. Let *S* be the edge set of a plane straight-line graph with *k* connected components, |S| = n.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log^* n + k \log n)$ expected time.
- The expected size of Q(S) is O(n).
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.