Computational Geometry

Seidel's Triangulation Algorithm

Lecture \#13

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find:
Triangulation of P

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find:
Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find:
Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find:
Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find:
Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find:

> Triangulation of P
> i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find:
Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: Triangulation of P i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: Triangulation of P i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:
Running time:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Running time:
$O(n \log n)$
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Running time:
$O(n \log n)$
2. Draw diagonals inside trapezoids. $O(n)$
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Running time:
$O(n \log n)$
2. Draw diagonals inside trapezoids. $O(n)$
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Running time:
$O(n \log n)$
2. Draw diagonals inside trapezoids. $O(n)$
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Running time:
$O(n \log n)$
2. Draw diagonals inside trapezoids. $O(n)$
3. Triangulate y-monotone subpolygons.
$O(n \log n)$

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P
i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids. $O(n)$
3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$ (list of vertices in cw order)

Find: \quad Triangulation of P i.e., a partition of P into triangles by diagonals (segments of type $\overline{p_{i} p_{j}} \subset P$)

Approach:

1. Trapezoidize interior of P.

Running time:
$O(n \log n)$
2. Draw diagonals inside trapezoids. $O(n)$
3. Triangulate y-monotone subpolygons.
$O(n \log n)$
Lemma 1. Given a trapezoidation, P can be triangulated in linear time.

General Idea

Let S be a set of n non-crossing segments

General Idea

Let S be a set of n non-crossing segments WANTED:

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments) $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)
$\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S
$S_{0} \leftarrow \varnothing$

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)
$\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S
$S_{0} \leftarrow \varnothing$
for $i=1$ to n do

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)
$\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S
$S_{0} \leftarrow \varnothing$
for $i=1$ to n do

$$
S_{i} \leftarrow S_{i-1} \cup\left\{s_{i}\right\}
$$

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)
$\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S
$S_{0} \leftarrow \varnothing$
for $i=1$ to n do
$S_{i} \leftarrow S_{i-1} \cup\left\{s_{i}\right\}$
use $\mathcal{T}\left(S_{i-1}\right)$ and $\mathcal{Q}\left(S_{i-1}\right)$ to construct $\mathcal{T}\left(S_{i}\right)$ and $\mathcal{Q}\left(S_{i}\right)$

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)
$\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S
$S_{0} \leftarrow \varnothing$
for $i=1$ to n do
$S_{i} \leftarrow S_{i-1} \cup\left\{s_{i}\right\}$
use $\mathcal{T}\left(S_{i-1}\right)$ and $\mathcal{Q}\left(S_{i-1}\right)$ to construct $\mathcal{T}\left(S_{i}\right)$ and $\mathcal{Q}\left(S_{i}\right)$
Total cost of one step:

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)
$\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S
$S_{0} \leftarrow \varnothing$
for $i=1$ to n do
$S_{i} \leftarrow S_{i-1} \cup\left\{s_{i}\right\}$
use $\mathcal{T}\left(S_{i-1}\right)$ and $\mathcal{Q}\left(S_{i-1}\right)$ to construct $\mathcal{T}\left(S_{i}\right)$ and $\mathcal{Q}\left(S_{i}\right)$
Total cost of one step: - location time

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation $\mathcal{T}(S)$ of S

- point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:
Trapezoidation (set S of n non-crossing line segments)
$\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle \leftarrow$ random ordering of S
$S_{0} \leftarrow \varnothing$
for $i=1$ to n do
$S_{i} \leftarrow S_{i-1} \cup\left\{s_{i}\right\}$ use $\mathcal{T}\left(S_{i-1}\right)$ and $\mathcal{Q}\left(S_{i-1}\right)$ to construct $\mathcal{T}\left(S_{i}\right)$ and $\mathcal{Q}\left(S_{i}\right)$

Total cost of one step: - location time

- "threading" (updating) time

Threading time

We assume general position
(no two points have the same y-coordinate).

Threading time

We assume general position

$$
\begin{aligned}
& \text { Use lexicographic order! } \\
& \text { dinate). }
\end{aligned}
$$

Threading time

We assume general position Use lexicographic order!
dinate).

Threading time

We assume general position Use lexicographic order!
dinate).

Threading time

We assume general position Use lexicographic order!
dinate).

Threading time

We assume general position Use lexicographic order!
dinate).

Threading time

We assume general position Use lexicographic order!
dinate).

Threading time

We assume general position Use lexicographic order!
dinate).

Threading time

We assume general position Use lexicographic order!
dinate).

Threading time

We assume general position Use lexicographic order!
dinate).
Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate). ${ }^{\text {staphic order! }}$
Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Proof.

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate). ${ }^{\text {staphic order! }}$
Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Proof. For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=$ \# rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate). ${ }^{\text {s }}$ - hic order!
Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Proof.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=$ \# rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate).
Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Proof.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=$ \# rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate).

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

Proof.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=$

Threading time

We assume general position Use lexicographic order!
donate). (no two points have the same y-coordinate).

$$
\square
$$

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Proof.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$

Threading time

We assume general position Use lexicographic order!
donate). (no two points have the same y-coordinate).
—

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

Proof.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$ \# rays in $\mathcal{T}\left(S_{i}\right) \leq$

Threading time

We assume general position Use lexicographic order!
donate). (no two points have the same y-coordinate).
—

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

Proof.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$ \# rays in $\mathcal{T}\left(S_{i}\right) \leq$

Threading time

We assume general position Use lexicographic order!
donate). (no two points have the same y-coordinate).
—

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

Proof.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$ \# rays in $\mathcal{T}\left(S_{i}\right) \leq 4 i$

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate).
I

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$
\# rays in $\mathcal{T}\left(S_{i}\right) \leq 4 i$
$\Rightarrow \sum_{s \in S_{i}} \operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right) \leq$

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate).
I

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$ \# rays in $\mathcal{T}\left(S_{i}\right) \leq 4 i$
$\Rightarrow \sum_{s \in S_{i}} \operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right) \leq 4 i$

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate).
I

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$ \# rays in $\mathcal{T}\left(S_{i}\right) \leq 4 i$
$\Rightarrow \sum_{s \in S_{i}} \operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right) \leq 4 i$

Ordering of S_{i} random \Rightarrow

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate).
L

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=\#$ rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$ \# rays in $\mathcal{T}\left(S_{i}\right) \leq 4 i$
$\Rightarrow \sum_{s \in S_{i}} \operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right) \leq 4 i$

Ordering of S_{i} random $\Rightarrow E\left[\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)\right] \leq$

Threading time

We assume general position Use lexicographic order!
dinate). (no two points have the same y-coordinate).
L

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

For $s \in S_{i}$, let $\operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right)=$ \# rays of $\mathcal{T}\left(S_{i}\right)$ that hit the relative interior of s.
\# rays of $\mathcal{T}\left(S_{i-1}\right)$ intersected by $s_{i}=\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)$ \# rays in $\mathcal{T}\left(S_{i}\right) \leq 4 i$
$\Rightarrow \sum_{s \in S_{i}} \operatorname{deg}\left(s, \mathcal{T}\left(S_{i}\right)\right) \leq 4 i$

Ordering of S_{i} random $\Rightarrow E\left[\operatorname{deg}\left(s_{i}, \mathcal{T}\left(S_{i}\right)\right)\right] \leq 4 \quad \square$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\quad)$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q
$t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$
$t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q
$t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$
$t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$
$1:$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q
$t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$
$t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q
$t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$
$t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$ $t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$ $t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$ $t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$ $t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$ $t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$ $t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Proof. Let $T_{i}(q)$ be the length of the search path of q in $\mathcal{Q}\left(S_{i}\right)$ Let $t_{i}(q)$ be the trapezoid in $\mathcal{T}\left(S_{i}\right)$ that contains q $t_{i}(q)=t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)$
$t_{i}(q) \neq t_{i-1}(q) \Rightarrow T\left(S_{i}\right)=T\left(S_{i-1}\right)+\ldots$

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Theorem. Let S be a set of n non-crossing line segments.

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Theorem. Let S be a set of n non-crossing line segments.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.
Theorem. Let S be a set of n non-crossing line segments.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of $\mathcal{Q}(S)$ is $O(n)$.

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.

Theorem. Let S be a set of n non-crossing line segments.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of $\mathcal{Q}(S)$ is $O(n)$.
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.

Theorem. Let S be a set of n non-crossing line segments.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of $\mathcal{Q}(S)$ is $O(n)$.
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Location Time

Recall: $\quad H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} \in \Theta(\log n)$
More precisely, $\ln n<H_{n}<1+\ln n$ for $n>1$.
Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.

Theorem. Let S be a set of n non-crossing line segments.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.
- The expected size of $\mathcal{Q}(S)$ is $O(n)$.
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Aim: Speed-up construction for simple polygons.

New Approach

Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: \quad Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.
Problem: This way, we lose the random structure!

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.
Problem: This way, we lose the random structure!
\Rightarrow threading becomes more expensive

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea:
Exploit polygon structure!
Locate once, then follow polygon.
Problem: This way, we lose the random structure!
\Rightarrow threading becomes more expensive
$\Rightarrow \Theta\left(n^{2}\right)$-time algorithm :-(

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea:
Exploit polygon structure!
Locate once, then follow polygon.
Problem: This way, we lose the random structure!
\Rightarrow threading becomes more expensive
$\Rightarrow \Theta\left(n^{2}\right)$-time algorithm :-(
Solution:

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea:
Exploit polygon structure!
Locate once, then follow polygon.
Problem: This way, we lose the random structure!
\Rightarrow threading becomes more expensive
$\Rightarrow \Theta\left(n^{2}\right)$-time algorithm :-(
Solution:

- insert segments in random order

New Approach
Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea:
Exploit polygon structure!
Locate once, then follow polygon.
Problem: This way, we lose the random structure!
\Rightarrow threading becomes more expensive
$\Rightarrow \Theta\left(n^{2}\right)$-time algorithm :-(
Solution: • insert segments in random order

- every now and then, locate all polygon vertices in the current trapezoidation

New Approach

Observe: \quad in $\mathcal{Q}\left(S_{i}\right)$,

- point location takes $O(\log i)$ expected time
- threading s_{i+1} takes $O(1)$ expected time

Idea:
Exploit polygon structure!
Locate once, then follow polygon.
Problem: This way, we lose the random structure!
\Rightarrow threading becomes more expensive
$\Rightarrow \Theta\left(n^{2}\right)$-time algorithm :-(
Solution: • insert segments in random order

- every now and then, locate all polygon vertices in the current trapezoidation by walking along the polygon!

The Two Main New Technical Ingredients

Questions:

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O($

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Lemma 3. For any query point q, the expected length of the search path of q in $\mathcal{Q}\left(S_{n}\right)$ is at most $5 H_{n} \in O(\log n)$.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$.
Let I be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \backslash R$.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$.
Let I be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \backslash R$. Then $E[I] \leq \quad$, where the expectation is over all size- r subsets of S.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location infnamntion hnon 1nton?
Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$.
Let I be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \backslash R$. Then $E[I] \leq \quad$, where the expectation is over all size- r subsets of S.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location infnmmotion hnon $1 n+n n ?$
Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$.
Let I be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \backslash R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size- r subsets of S.

The Two Main New Technical Ingredients

Questions:

- How much does the intermediate location information help later?
- How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$.
Let I be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \backslash R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size- r subsets of S.

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\log ^{(1)} 2^{2^{2^{2}}}=
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0, \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2}
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ;
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0, \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0, \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.

Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.

Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.

Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.

Examples. $\log ^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \quad 65,536 \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4
\end{aligned}
$$

Logs All Over the Place

n of n be defined by

Result:
2003529930406846464979072351560255750447825475569751419265016 973710894059556311453089506130880933348101038234342907263 : 181822949382118812668869506364761547029165041871916351587 966347219442930927982084309104855990570159318959639524863 372367203002916969592156108764948889254090805911457037675 208500206671563702366126359747144807111774815880914135742 720967190151836282560618091458852699826141425030123391

Open code Θ

More digits if $i=0$,

1) if $i>0$.
$\times\left\{i \mid \log ^{(i)} n \geq 1\right\}$.
Θ

More digits
$2.00352993040684646497907235156025575044782547556975 \ldots \times 10^{19728}$

Number length:
19729 decimal digits

$$
\begin{aligned}
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4
\end{aligned}
$$

Logs All Over the Place

Input:
$2^{2^{2^{2^{2}}}}$

Input interpretation:

Open code Θ

Result:
2003529930406846464979072351560255750447825475569751419265016 973710894059556311453089506130880933348101038234342907263 : 181822949382118812668869506364761547029165041871916351587 ; 966347219442930927982084309104855990570159318959639524863 ; 372367203002916969592156108764948889254090805911457037675 208500206671563702366126359747144807111774815880914135742 720967190151836282560618091458852699826141425030123391

More digits

1×10^{80} atoms

$$
x\left\{i \mid 10 \theta^{(i)} n>1\right\}
$$

Θ

More digits

Result:

estimated number of atoms in the universe

Number length:

19729 decimal digits

$$
\begin{aligned}
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4
\end{aligned}
$$

Logs All Over the Place

$$
\begin{aligned}
& \text { Input: } \\
& \qquad \begin{array}{l}
2^{2^{2^{2}}} \\
\\
\text { Result: } \\
2003529930406846464979072351560255750447825475569751419265016 \\
\quad 973710894059556311453089506130880933348101038234342907263: \\
\\
181822949382118812668869506364761547029165041871916351587 \\
\\
\\
\\
\\
\quad 366347219442930927982084309104855990570159318959639524863 \\
\\
208500206671563702366126359747144807111774815880914135742 \\
720967190151836282560618091458852699826141425030123391 \ldots
\end{array}
\end{aligned}
$$

Input interpretation:

estimated number of atoms in the universe

More digits Result:

Decimal approximation:
$2.00352993040684646497907235156025575044782547556975 \ldots \times 10^{19728}$

Number length:

1×10^{80} atoms

Input interpretation:

$$
2^{2^{2^{2}}}
$$

estimated number of atoms in the universe

Result:
2×10^{19648} per atom

19729 decimal digits

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.
For $0 \leq h \leq \log ^{\star} n$, let $N(h):=\left\lceil n / \log ^{(h)} n\right\rceil$.
Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.
For $0 \leq h \leq \log ^{\star} n$, let $N(h):=\left\lceil n / \log ^{(h)} n\right\rceil$.
Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4 \\
& N(0)=1
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.
For $0 \leq h \leq \log ^{\star} n$, let $N(h):=\left\lceil n / \log ^{(h)} n\right\rceil$.
Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4 \\
& N(0)=1, N(1)=\lceil n / \log n\rceil
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0 \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.
For $0 \leq h \leq \log ^{\star} n$, let $N(h):=\left\lceil n / \log ^{(h)} n\right\rceil$.
Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4 \\
& N(0)=1, N(1)=\lceil n / \log n\rceil, \ldots
\end{aligned}
$$

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

$$
\log ^{(i)} n:= \begin{cases}n & \text { if } i=0, \\ \log _{2}\left(\log ^{(i-1)} n\right) & \text { if } i>0 .\end{cases}
$$

For $n>0$, let $\log ^{\star} n:=\max \left\{i \mid \log ^{(i)} n \geq 1\right\}$.
For $0 \leq h \leq \log ^{\star} n$, let $N(h):=\left\lceil n / \log ^{(h)} n\right\rceil$.
Examples. $\log { }^{(0)} 2^{2^{2^{2}}}=2^{2^{2^{2}}}$

$$
\begin{aligned}
& \log ^{(1)} 2^{2^{2^{2}}}=\log _{2} 2^{2^{2^{2}}}=2^{2^{2}} \\
& \log ^{(2)} 2^{2^{2^{2}}}=\log _{2} \log ^{(1)} 2^{2^{2^{2}}}=2^{2} \\
& \log ^{(3)} 2^{2^{2^{2}}}=2 ; \quad \log ^{(4)} 2^{2^{2^{2}}}=1 \Rightarrow \log ^{\star} 2^{2^{2^{2}}}=4 \\
& N(0)=1, N(1)=\lceil n / \log n\rceil, N\left(\log ^{\star} n\right)>n / 2 .
\end{aligned}
$$

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v.

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
3.1
3.2

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do
3.2

L

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do
Linsert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\mathcal{Q}_{N(h-1)}$)

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \mid$ for $i=N(h-1)+1$ to $N(h)$ do
$\left\lfloor\right.$ insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\mathcal{Q}_{N(h-1)}$)
3.2 walk along P through $\mathcal{T}_{N(h)}$:

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do
$\left\lfloor\right.$ insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\mathcal{Q}_{N(h-1)}$)
3.2 walk along P through $\mathcal{T}_{N(h)}$:
foreach vertex v do

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do
$\left\lfloor\right.$ insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\left.\mathcal{Q}_{\mathrm{N}(h-1)}\right)$
$3.2 \quad$ walk along P through $\mathcal{T}_{N(h)}$:
foreach vertex v do
$\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\mathcal{Q}_{\mathrm{N}(h-1)}$)
3.2 walk along P through $\mathcal{T}_{N(h)}$:
foreach vertex v do
$\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do
$\left\lfloor\right.$ insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\left.\mathcal{Q}_{\mathrm{N}(h-1)}\right)$
$3.2 \quad$ walk along P through $\mathcal{T}_{N(h)}$:
foreach vertex v do
$\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v
$\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ
3. for $i=N\left(\log ^{\star} n\right)+1$ to n do

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do $\quad / /$ phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do
$\left\lfloor\right.$ insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\mathcal{Q}_{N(h-1)}$)
3.2 walk along P through $\mathcal{T}_{N(h)}$:
foreach vertex v do
$\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v
$\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ
3. for $i=N\left(\log ^{\star} n\right)+1$ to n do
$\left\lfloor\right.$ insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\left.\mathcal{Q}_{N\left(\log ^{\star} n\right)}\right)$

The Algorithm

PolygonTrapezoidation ((edges along) simple polygon P)

1. $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle:=$ random ordering of the edges of P
2. Compute \mathcal{T}_{1} and \mathcal{Q}_{1} for $\left\{s_{1}\right\}$.
foreach $v \in P$ do $\pi(v) \leftarrow$ pointer to the leaf of \mathcal{Q}_{1} that contains v. for $h=1$ to $\log ^{\star} n$ do / / phase h
$3.1 \quad$ for $i=N(h-1)+1$ to $N(h)$ do insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\mathcal{Q}_{N(h-1)}$)
3.2 walk along P through $\mathcal{T}_{N(h)}$: foreach vertex v do
$\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ
3. for $i=N\left(\log ^{\star} n\right)+1$ to n do
$\left\lfloor\right.$ insert $s_{i}=v_{i} w_{i}$ in \mathcal{T}_{i-1} using $\pi\left(v_{i}\right)$ (node in $\left.\mathcal{Q}_{N\left(\log ^{\star} n\right)}\right)$
return $\left(\mathcal{T}_{n}, \mathcal{Q}_{n}\right)$

Time Complexity

Step 1: Random permutation

Time Complexity

Step 1: Random permutation

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$

Time Complexity

Step 1: Random permutation

Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$

Time Complexity

Step 1: Random permutation

Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
$O(n)$
Step 3: Phases 1 to $\log ^{\star} n$

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
$O(n)$
$O(n)$
$\left(\log ^{\star} n\right)$.

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
$O(n)$
$O(n)$
$\left(\log ^{\star} n\right)$.

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
$O(n)$
$O(n)$
$\left(\log ^{\star} n\right)$.
Lemma $5 \Rightarrow$

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$. Let I be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \backslash R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size- r subsets of S.

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
$O(n)$
$O(n)$
$\left(\log ^{\star} n\right)$.
Lemma $5 \Rightarrow$

Lemma 5. S as before, $R \subseteq S$ random subset, $r:=|R|$. Let I be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \backslash R$. Then $E[I] \leq 4(n-r)$, where the expectation is over all size- r subsets of S.

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Lemma $5 \Rightarrow$
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$
$O(n)$
$O(n)$
$\left(\log ^{\star} n\right) \cdot$
$O(n)$

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Lemma $5 \Rightarrow$
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost:
- locating cost:

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost:
- locating cost:

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost:

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4.

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Lemma $5 \Rightarrow$
$O(n)$
$O(n)$
$\left(\log ^{\star} n\right)$.

Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Time Complexity

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost
$O(\log (i / N(h-1))) \subseteq$

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost
$O(\log (i / N(h-1))) \subseteq$

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost
$O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)$

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.
$\left.\begin{array}{l}\text { Lem. } 4 \Rightarrow \text { expected location cost } \\ O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)\end{array}\right\}$
$\left.\begin{array}{l}\text { Lem. } 4 \Rightarrow \text { expected location cost } \\ O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)\end{array}\right\}$
Lemma $5 \Rightarrow$
$O(n)$
$O(n)$
$\left(\log ^{\star} n\right)$.
$O(n)$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost
$O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)$
$O(n)$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lem. $4 \Rightarrow$ expected location cost
$O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

$$
\text { Lem. } 4 \Rightarrow \text { expected location cost }
$$

$$
O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)
$$

Step 4: Inserting $s_{i}\left(\right.$ for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

$$
\text { Lem. } 4 \Rightarrow \text { expected location cost }
$$

$N(h)=O(n)$

$$
O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)
$$

Step 4: Inserting $s_{i}\left(\right.$ for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost:
- locating cost:

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
$O(n)$
$\left(\log ^{\star} n\right)$.
Step 3.2: Walking the polygon
Lemma $5 \Rightarrow$
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Step 4: Inserting $s_{i}\left(\right.$ for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost:
- locating cost:

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
$O(n)$
$\left(\log ^{\star} n\right)$.
Step 3.2: Walking the polygon
Lemma $5 \Rightarrow$
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

Lemma 2. For $i=1, \ldots, n$, the expected number of rays of $\mathcal{T}\left(S_{i-1}\right)$ that are intersected by s_{i} is at most 4 .

Step 4: Inserting s_{i} (for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost:

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.)

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.
Step 4: Inserting s_{i} (for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
$O(n)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Lemma $5 \Rightarrow$
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.)

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.
Step 4: Inserting s_{i} (for $N\left(\log ^{\star} n\right)<i \leq n$) using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O\left(\log n / N\left(\log ^{\star} n\right)\right)=$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.)

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.
Step 4: Inserting s_{i} (for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)})=$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm. $)$

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.

Step 4: Inserting s_{i} (for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)}_{>n / 2})=$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.)

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.
Step 4: Inserting s_{i} (for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)}_{>n / 2})=O(1)$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.)

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.
Step 4: Inserting s_{i} (for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)}_{>n / 2})=O(1)\}$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
$O(n)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Lemma $5 \Rightarrow$
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.)

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.
Step 4: Inserting s_{i} (for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)}$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)}_{>n / 2})=O(1)\} \cdot O(n)=$

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation
Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
Step 3: Phases 1 to $\log ^{\star} n$
Step 3.2: Walking the polygon
Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.)

Lemma 4. Let $1 \leq j \leq k \leq n$ and $q \in \mathbb{R}^{2}$. Suppose location of q in $\mathcal{Q}\left(S_{j}\right)$ is known, then q can be located in $\mathcal{Q}\left(S_{k}\right)$ in expected time $5\left(H_{k}-H_{j}\right) \in O(\log k / j)$.
Step 4: Inserting $s_{i}\left(\right.$ for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)} O(n)$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)}_{>n / 2})=O(1)\} \cdot O(n)=$]

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation

Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
$O(n)$
$\left(\log ^{\star} n\right)$.
Step 3.2: Walking the polygon

Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

$$
N(h)=O(n)
$$

$$
\text { Lem. } 4 \Rightarrow \text { expected location cost }
$$

$$
O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)
$$

Step 4: Inserting $s_{i}\left(\right.$ for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)} O(n)$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)})=O(1)\} \cdot O(n)=$]

Time Complexity

$$
N(h):=\left\lceil n / \log ^{(h)} n\right\rceil
$$

Step 1: Random permutation

Step 2: Setting up $\mathcal{T}_{1}, \mathcal{Q}_{1}$, and $\pi(v)$
$O(n)$
$\left(\log ^{\star} n\right)$.
Step 3.2: Walking the polygon

Step 3.1: Inserting $s_{i}=v_{i} w_{i}$ using $\mathcal{Q}_{N(h-1)}$

- threading cost: Lem. $2 \Rightarrow$ expected $O(1)$ per segm.
- locating cost: Know the location of v_{i} in $\mathcal{Q}_{N(h-1)}$.

$$
\text { Lem. } 4 \Rightarrow \text { expected location cost }
$$

$$
N(h)=O(n)
$$

$$
O(\log (i / N(h-1))) \subseteq O\left(\log ^{(h)} n\right)
$$

Step 4: Inserting $s_{i}\left(\right.$ for $\left.N\left(\log ^{\star} n\right)<i \leq n\right)$ using $\mathcal{Q}_{N\left(\log ^{\star} n\right)} O(n)$

- threading cost: Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / \underbrace{N\left(\log ^{\star} n\right)}_{>n / 2})=O(1) \frac{\underbrace{O\left(n \log ^{\star} n\right)}}{O(n)=\rfloor}$

The Results

Theorem. Let S be the edge set of a polygon, $|S|=n$.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O\left(n \log ^{\star} n\right)$ expected time.
- The expected size of $\mathcal{Q}(S)$ is $O(n)$.
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

The Results

Theorem. Let S be the edge set of a polygon, $|S|=n$.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O\left(n \log ^{\star} n\right)$ expected time.
- The expected size of $\mathcal{Q}(S)$ is $O(n)$.
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Theorem. Let S be the edge set of a plane straight-line graph with k connected components, $|S|=n$.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O\left(n \log ^{\star} n+k \log n\right)$ expected time.
- The expected size of $\mathcal{Q}(S)$ is $O(n)$.
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

