1

Julius-Maximilians- Chair for X .
UNIVERSITAT INFORMATICS | I|||I | fl
WURZBURG Efficient Algorithms and

Knowledge-Based Systems

Institute for Informatics

Computational Geometry

Visibility Graphs

or
Finding Shortest Paths
Lecture #12

Dr. Philipp Kindermann Winter Semester 2018/19



Path Planning

® o
~—

T

current location,
desired location



Path Planning

® o
~—

T

current location,
desired location



Path Planning

® o
~—

T

current location, path to reach the
desired location one from the other



Path Planning

® o
~—

T

current location, shortest path to reach the
desired location one from the other



Let’s recap...




Let’s recap...

DP goal




Let’s recap...

Pstart

DP goal




Let’s recap...




Let’s recap...




Let’s recap...




Let’s recap...




Let’s recap...

o~

/\
%] . - _lp goal{

%\X\? o . g shortgst path in the rodd ma




Let’s recap...

%\X\? ¢ . . st path in the rodd ma




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,

Pstart




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,

w,

Zi.




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal in the free space,




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof.



Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof.




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof.




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

psta V V
Proof _ @




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof
(DE




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof
(DE




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof
(DE




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

B




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof %%




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof %%




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof %%




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof %%




Characterization

Lemma. Given a set S of disjoint polygonal obstacles in IR?
and points pstart and Pgoal IN the free space,
any shortest path between pgtart and Pooal is a poly-
gonal path whose inner vertices are vertices of S.

P V

Proof %%%




Visibility Graph

Given a set S of disjoint (open) polygons...




Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.




Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.




Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S), u sees v}



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S), u sees v}



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S), u sees v}



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S), u sees v}



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S), u sees v}



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S), u sees v}

- 10



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S), u sees v}

-11



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v &



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v 1< UD C Cree



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Ps’car!c:I
O
Pgoal

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
o vertex set of S.

Ru
" Pgoal

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
o vertex set of S.

Ru
" Pgoal

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)

S =SU {Pstart/ Pgoal}°



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
o vertex set of S.

Ru
" Pgoal

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)

GViS(S*)
S =SU {Pstart/ Pgoal}°



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Pstart
Pgoal

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)

GViS(S*)
S =SU {Pstart/ Pgoal}°



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Pstart
Pgoal

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)

Corollary. A shortest path between pgiart and Pooal

corresponds to a path in Gyis(5%),
where 5* = S U { pstart, Pgoal}-



Visibility Graph

Given a set S of disjoint (open) polygons...

..let V(S) be the
vertex set of S.

Pstart
Pgoal

Let Gyis(S) = (V(S), Evis(S)) be the visibility graph of S,
where Eyis(S)={uv | u,v € V(S),u sees v} and w(uv) = |uv|.

We define: u sees v < U0 C Chee (= RZ2\US)

Corollary. A shortest path between pgiart and Pooal
corresponds to a shortest path in Gyis(5*),
where 5* = S U { pstart, Pgoal}-



Algorithm p@ |




Algorithm p@ﬂ |




Algorithm p@ﬂ |




Algorithm p@ﬂ |




Algorithm p@ﬂ |




Algorithm p@ﬂ |




Algorithm p@ﬂ |




Algorithm Psta@ goal

Running time?



Algorithm Psta@ goal

Running time?



Algorithm Psta@ goal

, m = |Eyis(S)]

Running time?



Algorithm

Running time?



Algorithm

Running time?



Algorithm

Running time?



Computing the Visibility Graph




Computing the Visibility Graph

v A




Computing the Visibility Graph




Computing the Visibility Graph




Computing the Visibility Graph




Computing the Visibility Graph




Computing the Visibility Graph




Computing the Visibility Graph




Computing the Visibility Graph




Computing the Visibility Graph




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices

VISIBLEVERTICES(p, S)

Task: Separate the “good”
from the “evil”:

Given p and S,

find in O(nlogn)
time all vertices in
V(S) visible from p!

[3 min]

A

\’.

SN

X




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
[

r < p+Rxo(p) )

[+ {ecE(S)|enr# 0} /
T < balancedBinaryTree(I) '\ \




Computing Visible Vertices A
VISIBLEVERTICES(p, S) ‘ §77
r < p+Rxo(() ‘\\ 1o

[+ {e€E(S)|enr# @} /\\\4 °6
T <+ balancedBinaryTree(I) ' \ i
sort V(S) \




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
[

r < p+Rxo(p) )

[+ {e€E(S)|enr# @} /.

T < balancedBinaryTree(I) ' &
sort V(S) wv=<7:& \

/v < /v or
(Zv = /0" and |po| < |pv'|)




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
4

r<—p | ]RZO((l)) \

[+ {e€E(S)|enr# @} /.

sort V(S) wv=<7:&

T < balancedBinaryTree(I) ' ke \‘

Lo < /v or
(Zv = /0" and |po| < |pv'|)




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
4

r<—p | ]RZO((l)) \

[+ {e€E(S)|enr# @} /.

sort V(S) wv=<7:&

T < balancedBinaryTree(I) ' ke \‘

Lo < /v or
(Zv = /0" and |po| < |pv'|)




Computing Visible Vertices




Computing Visible Vertices

e
VISIBLEVERTICES(p, S) ‘\ ,/ =
r 4 p+Rxo(p) \ 1/1\
I
[+ {e€E(S)|enr+# 0} \ B/ | (6
\ .
T < balancedBinaryTree(I) ' \‘ ‘
€5
sort V(S) o=<v:& \ \V
/v < /v or

W «— @ (Zv = /0" and |pov| < |pv'|)



8-20

Computing Visible Vertices A

VISIBLE;]::RHF;I::(S()p S) “\\ ,% ?T

r s

61
[+ {e€E(S)|enr £}

\‘
T < balancedBinaryTree(I) ' \
€5
sort V(S) ov=<v:& \ ,
/v < /v or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do




Computing Visible Vertices

VISIBLEVERTICES(p, S)
r < p+Rxo(p)

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W« @ (Zv = /0" and |pov| < |pv'|)

foreach v € V(S) do
if VisiBLE(v) then

_

i
‘&/%

61

\\,"




Computing Visible Vertices

eori ‘\\\ 1 T

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then

| W WU {v}

ez

\\,"




Computing Visible Vertices

VISIBLEVERTICES(p, S)
r < p+Rxo(p)

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then

| W WU {v}

7
“\\ ,% 1
\\,"

61




Computing Visible Vertices

eori ‘\\\ 1 T

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then

| W WU {v}

ez

\\, s




Computing Visible Vertices

/v < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then
| W WU {v}

insert into 7 edges incident to v in ;97#

7
VI:IfLE;/]TRH”;I::(S(l)()p, S) “\\’ ,%
I+ {ecE(S)|enr#Q} N
Ti baTancedBinaryTree(I ) '/ k
sort V(S) ov=<v:& \




Computing Visible Vertices

7
VISIBLEVERTICES(p, S) “\\’ ,%

r < p+Rxo(p) ¥

[+ {e€E(S)|enr# @} /\\

N\ 2

T < balancedBinaryTree(I) ' ke \‘ :
€5
sort V(S) wv=<7:& \ \’
Lo < Lo or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
v

if VisiBLE(v) then
| W WU {v}

insert into 7 edges incident to v in ;97#
| delete from 7 edges incident to v in ﬁ_




Computing Visible Vertices

7
VISIBLEVERTICES(p, S) “\\’ ,%

r < p+Rxo(p) ¥

[+ {e€E(S)|enr# @} /\\

N\ 2

T < balancedBinaryTree(I) ' ke \‘ :
€5
sort V(S) wv=<7:& \ \’
Lo < Lo or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
v

if VisiBLE(v) then
| W WU {v}

insert into 7 edges incident to v in ;97#
| delete from 7 edges incident to v in ﬁ_

return W




Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VISIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VIsIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Cases




Cases




Cases




E\'L\7L|T\> E\\WL&I»

Let v’ be the immediate predecessor of v according to <.




E\'L\7L|T\> E\\WL&I»

Let v’ be the immediate predecessor of v according to <.

p

U/




Cases

- &
M

Let v’ be the immediate predecessor of v according to <.




% E\\%”\I»

Let v’ be the immediate predecessor of v according to <.

p p

v’ v’




’3\‘0\\74’\’ E\\%”\I»

Let v’ be the immediate predecessor of v according to <.

p p

v’ v’




’3\31\\7L|T\> E\\%”\I»

Let v’ be the immediate predecessor of v according to <.

p p
v’ v’
0] 0
R ,
v
v




Cases

A

.v\/IT

Let v’ be the immediate predecessor of v according to <.

B

Sy
JI¥

%

%

- 10



Cases

A

.v\/IT

Let v’ be the immediate predecessor of v according to <.

B

%

%

Sy
JI¥

-11



Cases

A

.v\/IT

Let v’ be the immediate predecessor of v according to <.

B

%

a7

Sy
JI¥

-12



Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VIsIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VIsIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Computing the Visibility Graph




Computing the Visibility Graph




Algorithm

Running time?



Algorithm

Running time?



Algorithm

Running time?



Algorithm

Running time?



AlgOr ithm Psta@ goal

SHORTESTPATH(S, Pstart, Pgoal ) n=|V(S)|, m = |Eyis(S)
Gyis < VISIBILITYGRAPH(S U { pstart, pgoal}) O(n?logn)

foreach uv € E,;s do O
m
" w0(u0) = dpy (1,0 )
7T <— DIJKSTRA (Gyis, W, Pstart, Pgoa1) O(m+n log n)
return 7t
Running time? O(n?logn)

Theorem. The visibility graph of a set of disjoint
polygonal obstacles with n edges in total can
be computed in O(n?logn) time.



Al g or ].thm Psta@gm

SHORTESTPATH(S, Pstart, Pgoal ) n=|V(S)|, m = |Eyis(S)
Gyis < VISIBILITYGRAPH(S U { pstart, pgoal}) O(n?logn)

foreach uv € E,;s do O(m
() = dige (1,0) i
7T <— DIKSTRA(Gyis, W, Pstart, Pgoa1) O(m + nlogn)
return 7t
Running time? O(n?logn)

Theorem. The visibility graph of a set of disjoint
polygonal obstacles with n edges in total can
be computed in O(n?logn) time.

Theorem. A shortest path between two points among a
set of [...] can be computed in O(nlogn + m)
time with O(n?logn) preproc.



Al g or ].thm Psta@gm

SHORTESTPATH(S, Pstart, Pgoal ) n=|V(S)|, m = |Eyis(S)
Gyis < VISIBILITYGRAPH(S U { pstart, pgoal}) O(n?logn)

foreach uv € E,;s do O(m
() = dige (1,0) i
7T <— DIKSTRA(Gyis, W, Pstart, Pgoa1) O(m + nlogn)
return 7t
Running time? O(n?logn)

Theorem. The visibility graph of a set of disjoint
polygonal obstacles with n edges in total can

nlogn -Km

be computed in O(n?logn) time. [Ghosh & Mount]

Theorem. A shortest path between two points among a
set of [...] can be computed in O(nlogn + m)
time i



Translating Polygonal Robots

work space

poo @
k7
>4




Translating Polygonal Robots

work space configuration space

g8 g
Nl Nl
> a4 P_a




Translating Polygonal Robots

work space configuration space  visibility graph

pooooe g -y
Nl Nl kﬂ
> 4P Al |Pea




Translating Polygonal Robots

work space configuration space  visibility graph

g8 g
Nl Nl
> a4 P_a




13-5

Translating Polygonal Robots

work space configuration space  visibility graph

g8y
Nl Nl
> a4 P_a

Theorem: For a convex constant-complexity translating
robot, a shortest collision-free path among a set

of polygonal obstacles with n edges in total can
be computed in O(n?logn) time.




13-6

Translating Polygonal Robots

work space configuration space  visibility graph

g8y
Nl Nl
> a4 P_a

Theorem: For a convex constant-complexity translating
robot, a shortest collision-free path among a set

of polygonal obstacles with n edges in total can

be computed in O(n*logn) time.
[Hershberger & Suri]




	Titel
	Path Planning
	Let's recap...
	Characterization
	Visibility Graph
	Algorithm
	Computing the Visibility Graph
	Computing Visible Vertices
	Cases
	Algorithm
	Translating Polygonal Robots

