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VISIBLEVERTICES(p, S)

Task: Separate the “good”
from the “evil”:

Given p and S,

find in O(nlogn)
time all vertices in
V(S) visible from p!

[3 min]

A

\’.

SN

X




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
[

r < p+Rxo(p) )

[+ {ecE(S)|enr# 0} /
T < balancedBinaryTree(I) '\ \




Computing Visible Vertices A
VISIBLEVERTICES(p, S) ‘ §77
r < p+Rxo(() ‘\\ 1o

[+ {e€E(S)|enr# @} /\\\4 °6
T <+ balancedBinaryTree(I) ' \ i
sort V(S) \




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
[

r < p+Rxo(p) )

[+ {e€E(S)|enr# @} /.

T < balancedBinaryTree(I) ' &
sort V(S) wv=<7:& \

/v < /v or
(Zv = /0" and |po| < |pv'|)




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
4

r<—p | ]RZO((l)) \

[+ {e€E(S)|enr# @} /.

sort V(S) wv=<7:&

T < balancedBinaryTree(I) ' ke \‘

Lo < /v or
(Zv = /0" and |po| < |pv'|)




Computing Visible Vertices

VISIBLEVERTICES(p, S) ‘\
4

r<—p | ]RZO((l)) \

[+ {e€E(S)|enr# @} /.

sort V(S) wv=<7:&

T < balancedBinaryTree(I) ' ke \‘

Lo < /v or
(Zv = /0" and |po| < |pv'|)




Computing Visible Vertices




Computing Visible Vertices

e
VISIBLEVERTICES(p, S) ‘\ ,/ =
r 4 p+Rxo(p) \ 1/1\
I
[+ {e€E(S)|enr+# 0} \ B/ | (6
\ .
T < balancedBinaryTree(I) ' \‘ ‘
€5
sort V(S) o=<v:& \ \V
/v < /v or

W «— @ (Zv = /0" and |pov| < |pv'|)



8-20

Computing Visible Vertices A

VISIBLE;]::RHF;I::(S()p S) “\\ ,% ?T

r s

61
[+ {e€E(S)|enr £}

\‘
T < balancedBinaryTree(I) ' \
€5
sort V(S) ov=<v:& \ ,
/v < /v or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do




Computing Visible Vertices

VISIBLEVERTICES(p, S)
r < p+Rxo(p)

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W« @ (Zv = /0" and |pov| < |pv'|)

foreach v € V(S) do
if VisiBLE(v) then

_

i
‘&/%

61

\\,"




Computing Visible Vertices

eori ‘\\\ 1 T

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then

| W WU {v}

ez

\\,"




Computing Visible Vertices

VISIBLEVERTICES(p, S)
r < p+Rxo(p)

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then

| W WU {v}

7
“\\ ,% 1
\\,"

61




Computing Visible Vertices

eori ‘\\\ 1 T

[+ {e€E(S)|enr £}

T < balancedBinaryTree(I) '
sort V(S) wv=<7:& \
Lv < Lv or

W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then

| W WU {v}

ez

\\, s




Computing Visible Vertices

/v < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do
if VisiBLE(v) then
| W WU {v}

insert into 7 edges incident to v in ;97#

7
VI:IfLE;/]TRH”;I::(S(l)()p, S) “\\’ ,%
I+ {ecE(S)|enr#Q} N
Ti baTancedBinaryTree(I ) '/ k
sort V(S) ov=<v:& \




Computing Visible Vertices

7
VISIBLEVERTICES(p, S) “\\’ ,%

r < p+Rxo(p) ¥

[+ {e€E(S)|enr# @} /\\

N\ 2

T < balancedBinaryTree(I) ' ke \‘ :
€5
sort V(S) wv=<7:& \ \’
Lo < Lo or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
v

if VisiBLE(v) then
| W WU {v}

insert into 7 edges incident to v in ;97#
| delete from 7 edges incident to v in ﬁ_




Computing Visible Vertices

7
VISIBLEVERTICES(p, S) “\\’ ,%

r < p+Rxo(p) ¥

[+ {e€E(S)|enr# @} /\\

N\ 2

T < balancedBinaryTree(I) ' ke \‘ :
€5
sort V(S) wv=<7:& \ \’
Lo < Lo or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
v

if VisiBLE(v) then
| W WU {v}

insert into 7 edges incident to v in ;97#
| delete from 7 edges incident to v in ﬁ_

return W




Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VISIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VIsIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Cases




Cases




Cases




E\'L\7L|T\> E\\WL&I»

Let v’ be the immediate predecessor of v according to <.




E\'L\7L|T\> E\\WL&I»

Let v’ be the immediate predecessor of v according to <.

p

U/




Cases

- &
M

Let v’ be the immediate predecessor of v according to <.




% E\\%”\I»

Let v’ be the immediate predecessor of v according to <.

p p

v’ v’




’3\‘0\\74’\’ E\\%”\I»

Let v’ be the immediate predecessor of v according to <.

p p

v’ v’




’3\31\\7L|T\> E\\%”\I»

Let v’ be the immediate predecessor of v according to <.

p p
v’ v’
0] 0
R ,
v
v




Cases

A

.v\/IT

Let v’ be the immediate predecessor of v according to <.

B

Sy
JI¥

%

%

- 10



Cases

A

.v\/IT

Let v’ be the immediate predecessor of v according to <.

B

%

%

Sy
JI¥

-11



Cases

A

.v\/IT

Let v’ be the immediate predecessor of v according to <.

B

%

a7

Sy
JI¥

-12



Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VIsIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Computing Visible Vertices

VISIBLEVERTICES(p, S)
r+ p+Rxo(p)
[+ {e€E(S)|enr# @}
T < balancedBinaryTree(I)

sort V(S) v=<7:&

Lv < /v or
W «— @ (Zv = /0" and |pov| < |pv'|)
foreach v € V(S) do PDI%_
if VIsIBLE(v) then Iy
| W WU {v} ﬁ/

insert into 7 edges incident to v in ;97#
i delete from 7 edges incident to v in p?‘ O(nlog n)

return W



Computing the Visibility Graph




Computing the Visibility Graph




Algorithm

Running time?



Algorithm

Running time?



Algorithm

Running time?



Algorithm

Running time?



AlgOr ithm Psta@ goal

SHORTESTPATH(S, Pstart, Pgoal ) n=|V(S)|, m = |Eyis(S)
Gyis < VISIBILITYGRAPH(S U { pstart, pgoal}) O(n?logn)

foreach uv € E,;s do O
m
" w0(u0) = dpy (1,0 )
7T <— DIJKSTRA (Gyis, W, Pstart, Pgoa1) O(m+n log n)
return 7t
Running time? O(n?logn)

Theorem. The visibility graph of a set of disjoint
polygonal obstacles with n edges in total can
be computed in O(n?logn) time.
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Theorem. The visibility graph of a set of disjoint
polygonal obstacles with n edges in total can

nlogn -Km

be computed in O(n?logn) time. [Ghosh & Mount]

Theorem. A shortest path between two points among a
set of [...] can be computed in O(nlogn + m)
time i
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Theorem: For a convex constant-complexity translating
robot, a shortest collision-free path among a set
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Translating Polygonal Robots

work space configuration space  visibility graph

g8y
Nl Nl
> a4 P_a

Theorem: For a convex constant-complexity translating
robot, a shortest collision-free path among a set

of polygonal obstacles with n edges in total can

be computed in O(n*logn) time.
[Hershberger & Suri]
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