Computational Geometry

Visibility Graphs
or
Finding Shortest Paths
Lecture \#12

Path Planning

current location, desired location

Path Planning

\Longrightarrow
current location,
desired location

Path Planning

current location, desired location

path to reach the one from the other

Path Planning

current location, desired location

shortest path to reach the one from the other

Let's recap...

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space,

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space,

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space,

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space,

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Proof.

Characterization

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^{2} and points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space, any shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ is a polygonal path whose inner vertices are vertices of S.

Visibility Graph

Given a set S of disjoint (open) polygons...

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S,

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\text {vis }}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\text {vis }}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\text {vis }}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\text {vis }}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$.

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$.

We define: u sees $v: \Leftrightarrow$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$. We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$. We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}\left(=\mathbb{R}^{2} \backslash \cup S\right)$

Visibility Graph

Given a set S of disjoint (open) polygons...

...let $V(S)$ be the vertex set of S.

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$. We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}\left(=\mathbb{R}^{2} \backslash \cup S\right)$

Visibility Graph

Given a set S of disjoint (open) polygons...
$p_{\text {start }}$

...let $V(S)$ be the vertex set of S.
${ }^{\square} p_{\text {goal }}$

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\text {vis }}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$.

We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}\left(=\mathbb{R}^{2} \backslash \bigcup S\right)$

Visibility Graph

Given a set S of disjoint (open) polygons...

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$. We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}\left(=\mathbb{R}^{2} \backslash \cup S\right)$

Visibility Graph

Given a set S of disjoint (open) polygons...

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$.

We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}\left(=\mathbb{R}^{2} \backslash \cup S\right)$

$$
S^{\star}=S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\} .
$$

Visibility Graph

Given a set S of disjoint (open) polygons...

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$. We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}\left(=\mathbb{R}^{2} \backslash \cup S\right)$

$$
G_{\mathrm{vis}}\left(S^{\star}\right)
$$

$$
S^{\star}=S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\} .
$$

Visibility Graph

Given a set S of disjoint (open) polygons...

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$. We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }}\left(=\mathbb{R}^{2} \backslash \cup S\right)$

$$
G_{\mathrm{vis}}\left(S^{\star}\right)
$$

$$
S^{\star}=S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\} .
$$

Visibility Graph

Given a set S of disjoint (open) polygons...

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$.
We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }} \quad\left(=\mathbb{R}^{2} \backslash \cup S\right)$
Corollary. A shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ corresponds to a path in $G_{\text {vis }}\left(S^{\star}\right)$, where $S^{\star}=S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}$.

Visibility Graph

Given a set S of disjoint (open) polygons...

Let $G_{\mathrm{vis}}(S)=\left(V(S), E_{\mathrm{vis}}(S)\right)$ be the visibility graph of S, where $E_{\mathrm{vis}}(S)=\{u v \mid u, v \in V(S), u$ sees $v\}$ and $w(u v)=|u v|$.
We define: u sees $v: \Leftrightarrow \overline{u v} \subset \mathcal{C}_{\text {free }} \quad\left(=\mathbb{R}^{2} \backslash \cup S\right)$
Corollary. A shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ corresponds to a shortest path in $G_{\text {vis }}\left(S^{\star}\right)$, where $S^{\star}=S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}$.

Algorithm

ShortestPath $\left(S, p_{\text {start }}, p_{\text {goal }}\right)$

Algorithm

ShortestPath ($S, p_{\text {start }}, p_{\text {goal }}$)
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$

ShortestPath $\left(S, p_{\text {start }}, p_{\text {goal }}\right)$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\mathrm{vis}}$ do

Algorithm

ShortestPath ($S, p_{\text {start }}, p_{\text {goal }}$)
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do

$$
w(u v)=d_{\text {Eucl }}(u, v)
$$

Algorithm

ShortestPath ($S, p_{\text {start }}, p_{\text {goal }}$)
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow$

Algorithm

ShortestPath ($S, p_{\text {start }}, p_{\text {goal }}$)
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do

$$
w(u v)=d_{\text {Eucl }}(u, v)
$$

$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$

ShortestPath $\left(S, p_{\text {start }}, p_{\text {goal }}\right)$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow \operatorname{DijKStRA}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
return π

ShortestPath ($S, p_{\text {start }}, p_{\text {goal }}$)
$G_{\text {vis }} \leftarrow V_{\text {isibilityGraph }}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow \operatorname{DijKStRA}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
return π
Running time?

Algorithm

ShortestPath $\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|$
$G_{\text {vis }} \leftarrow \operatorname{ViSIBILItyGRAPH}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow \operatorname{DiJKSTRA}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
return π
Running time?

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do
$L w(u v)=d_{\text {Eucl. }}(u, v)$
$\pi \leftarrow \operatorname{DijKStRA}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
return π
Running time?

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vise }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {wis }}$ do
$L w(u v)=d_{\text {Eucl. }}(u, v)$
$O(m)$
$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vise }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
return π
Running time?

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$ foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m)$
$O(m+n \log n)$
return π
Running time?

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$?
foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m)$
$O(m+n \log n)$
return π
Running time?

Computing the Visibility Graph

VisibilityGraph (S)

Computing the Visibility Graph

VisibilityGraph(S)
Input: a set S of disjoint polygons

Computing the Visibility Graph
VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$

Computing the Visibility Graph
VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$

Computing the Visibility Graph
VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do

Computing the Visibility Graph
VisibilityGraph(S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do
$W=\operatorname{VisibleVertices}(v, S)$

Computing the Visibility Graph
VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do
$W=\operatorname{VisibleVertices}(v, S)$
$E \leftarrow E \cup\{v w \mid w \in W\}$

Computing the Visibility Graph
VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do

$$
W=\operatorname{VisibleVertices}(v, S)
$$

$$
E \leftarrow E \cup\{v w \mid w \in W\}
$$

return $(V(S), E)$

Computing the Visibility Graph

VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do

$$
W=\operatorname{VisibleVertices}(v, S)
$$

$$
E \leftarrow E \cup\{v w \mid w \in W\}
$$

return $(V(S), E)$

Computing the Visibility Graph

VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do

$$
W=\operatorname{VisibleVertices}(v, S)
$$

$$
E \leftarrow E \cup\{v w \mid w \in W\}
$$

return $(V(S), E)$
$O(n)$.
?

Computing Visible Vertices

VisibleVertices (p, S)

Computing Visible Vertices VisibleVertices (p, S)

Computing Visible Vertices VisibleVertices (p, S)

Computing Visible Vertices

 VisibleVertices (p, S)

Computing Visible Vertices

 VisibleVertices (p, S)

Computing Visible Vertices

VisibleVertices (p, S)
Task: Separate the "good" from the "evil"

Computing Visible Vertices

 VisibleVertices (p, S)Task: Separate the "good" from the "evil":

Given p and S, find in $O(n \log n)$ time all vertices in $V(S)$ visible from p !
[3 min]

Computing Visible Vertices
VisibleVertices (p, S)

$$
r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}
$$

Computing Visible Vertices

VisibleVertices (p, S)

$$
r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}
$$

Computing Visible Vertices
VisibleVertices (p, S)

$$
\begin{aligned}
& r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0} \\
& I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}
\end{aligned}
$$

Computing Visible Vertices
VisibleVertices (p, S)

$$
\begin{aligned}
& r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0} \\
& I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}
\end{aligned}
$$

Computing Visible Vertices VisibleVertices (p, S)

$$
\begin{aligned}
& r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0} \\
& I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}
\end{aligned}
$$

$\mathcal{T} \leftarrow$ balancedBinaryTree (I)

Computing Visible Vertices VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)

Computing Visible Vertices VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I) sort $V(S)$

Computing Visible Vertices

VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$$
\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
$$

$\overbrace{e_{5}}^{e_{6}}$

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$$
\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
$$

$\overbrace{e_{5}}^{e_{6}}$

Computing Visible Vertices

VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$$
\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
$$

rotational plane sweep

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S)$

$$
\begin{aligned}
& v \prec v^{\prime}: \Leftrightarrow \\
& \angle v<\angle v^{\prime} \text { or } \\
& \left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
\end{aligned}
$$

Computing Visible Vertices VisibleVertices (p, S)

$$
\begin{aligned}
& r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0} \\
& I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}
\end{aligned}
$$

$\mathcal{T} \leftarrow$ balancedBinaryTree (I) sort $V(S)$

$$
v \prec v^{\prime}: \Leftrightarrow
$$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$$
W \leftarrow \varnothing
$$

$$
\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
$$

Computing Visible Vertices

VisibleVertices (p, S)

$$
\begin{aligned}
& r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0} \\
& I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}
\end{aligned}
$$

$\mathcal{T} \leftarrow$ balancedBinaryTree (I) sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$ $\angle v<\angle v^{\prime}$ or
$W \leftarrow \varnothing \quad\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do

Computing Visible Vertices

VisibleVertices (p, S)

$$
\begin{aligned}
& r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0} \\
& I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}
\end{aligned}
$$

$\mathcal{T} \leftarrow$ balancedBinaryTree (I) sort $V(S)$

$$
v \prec v^{\prime}: \Leftrightarrow
$$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$$
W \leftarrow \varnothing \quad\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
$$

foreach $v \in V(S)$ do if $\operatorname{Visible}(v)$ then

Computing Visible Vertices VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S)$

$$
v \prec v^{\prime}: \Leftrightarrow
$$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing \quad\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then

$$
\lfloor W \leftarrow W \cup\{v\}
$$

Computing Visible Vertices

VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing \quad\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if Visible (v) then

$$
\lfloor W \leftarrow W \cup\{v\}
$$

Computing Visible Vertices

VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing \quad\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if Visible (v) then

$$
L W \leftarrow W \cup\{v\}
$$

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$$
W \leftarrow \varnothing \quad\left(\angle v=\angle v^{\prime} \text { and }|p v|<\left|p v^{\prime}\right|\right)
$$

foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then

$$
W \leftarrow W \cup\{v\}
$$

insert into \mathcal{T} edges incident to v in $\vec{p} \vec{v}^{+}$

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing$
$\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then
$W \leftarrow W \cup\{v\}$

insert into \mathcal{T} edges incident to v in $\overrightarrow{p v}^{+}$ delete from \mathcal{T} edges incident to v in $\vec{p} \vec{v}^{-}$

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing$
$\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then
$W \leftarrow W \cup\{v\}$

insert into \mathcal{T} edges incident to v in $\vec{p}^{+}+$ delete from \mathcal{T} edges incident to v in $\overrightarrow{p r}^{-}$
return W

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing$
$\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then

$$
W \leftarrow W \cup\{v\}
$$

insert into \mathcal{T} edges incident to v in $\overrightarrow{p v}^{+}$ delete from \mathcal{T} edges incident to v in $\overrightarrow{p r}^{-}$
return W

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing$
$\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then

$$
W \leftarrow W \cup\{v\}
$$

insert into \mathcal{T} edges incident to v in \vec{p}^{+} delete from \mathcal{T} edges incident to v in \vec{p}^{-}
return W

Cases

Cases

Cases

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Cases

Let v^{\prime} be the immediate predecessor of v according to \prec.

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing$
$\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then

$$
W \leftarrow W \cup\{v\}
$$

insert into \mathcal{T} edges incident to v in $\overrightarrow{p v}^{+}$ delete from \mathcal{T} edges incident to v in \vec{p}^{-}
return W

Computing Visible Vertices
VisibleVertices (p, S)
$r \leftarrow p+\mathbb{R}_{\geq 0}\binom{1}{0}$
$I \leftarrow\{e \in E(S) \mid e \cap r \neq \varnothing\}$
$\mathcal{T} \leftarrow$ balancedBinaryTree (I)
sort $V(S) \quad v \prec v^{\prime}: \Leftrightarrow$

$$
\angle v<\angle v^{\prime} \text { or }
$$

$W \leftarrow \varnothing$
$\left(\angle v=\angle v^{\prime}\right.$ and $\left.|p v|<\left|p v^{\prime}\right|\right)$
foreach $v \in V(S)$ do
if $\operatorname{Visible}(v)$ then

$$
W \leftarrow W \cup\{v\}
$$

insert into \mathcal{T} edges incident to v in $\vec{p}^{+}+$ delete from \mathcal{T} edges incident to v in \vec{p}^{-}
return W

Computing the Visibility Graph

VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do

$$
W=\operatorname{VisibleVertices}(v, S)
$$

$$
E \leftarrow E \cup\{v w \mid w \in W\}
$$

return $(V(S), E)$
$O(n)$.
?

Computing the Visibility Graph

VisibilityGraph (S)
Input: a set S of disjoint polygons
Output: $G_{\text {vis }}(S)$
$E \leftarrow \varnothing$
foreach $v \in V(S)$ do
$W=\operatorname{VisibleVertices}(v, S)$
$E \leftarrow E \cup\{v w \mid w \in W\}$
return $(V(S), E)$
$O(n)$.
$O(n \log n)$

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow V \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$?
foreach $u v \in E_{\text {vis }}$ do
$L w(u v)=d_{\text {Eucl. }}(u, v)$
$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m)$
$O(m+n \log n)$ return π
Running time?

Algorithm

ShortestPath $\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right) O\left(n^{2} \log n\right)$ foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m)$
$O(m+n \log n)$ return π
Running time?

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right) O\left(n^{2} \log n\right)$ foreach $u v \in E_{\text {vis }}$ do
$\left\lfloor w(u v)=d_{\text {Eucl. }}(u, v)\right.$
$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m)$
$O(m+n \log n)$
return π
Running time?

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right) O\left(n^{2} \log n\right)$ foreach $u v \in E_{\text {vis }}$ do
$L w(u v)=d_{\text {Eucl. }}(u, v)$
$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
return π
Running time?
$O(m)$
$O(m+n \log n)$
$O\left(n^{2} \log n\right)$

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right) O\left(n^{2} \log n\right)$ foreach $u v \in E_{\text {vis }}$ do

$$
w(u v)=d_{\mathrm{Eucl}}(u, v)
$$

$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m+n \log n)$
return π
Running time?
$O\left(n^{2} \log n\right)$
Theorem. The visibility graph of a set of disjoint polygonal obstacles with n edges in total can be computed in $O\left(n^{2} \log n\right)$ time.

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right) O\left(n^{2} \log n\right)$ foreach $u v \in E_{\text {vis }}$ do

$$
w(u v)=d_{\mathrm{Eucl}}(u, v)
$$

$\pi \leftarrow \operatorname{DijKstra}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m+n \log n)$
return π
Running time?
$O\left(n^{2} \log n\right)$
Theorem. The visibility graph of a set of disjoint polygonal obstacles with n edges in total can be computed in $O\left(n^{2} \log n\right)$ time.

Theorem. A shortest path between two points among a set of [...] can be computed in $O(n \log n+m)$ time with $O\left(n^{2} \log n\right)$ preproc.

Algorithm

$\operatorname{ShortestPath}\left(S, p_{\text {start }}, p_{\text {goal }}\right) \quad n=|V(S)|, m=\left|E_{\text {vis }}(S)\right|$
$G_{\text {vis }} \leftarrow \operatorname{VisibilityGraph}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right) O\left(n^{2} \log n\right)$ foreach $u v \in E_{\text {vis }}$ do

$$
w(u v)=d_{\mathrm{Eucl}}(u, v)
$$

$\pi \leftarrow \operatorname{DiJKSTRA}\left(G_{\text {vis }}, w, p_{\text {start }}, p_{\text {goal }}\right)$
$O(m+n \log n)$
return π
Running time?
$O\left(n^{2} \log n\right)$
Theorem. The visibility graph of a set of disjoint polygonal obstacles with n edges in total can be computed in $\left.O\left(n^{2} \log n\right)^{n \log n}\right)^{m}$ time. [Ghosh \& Mount]

Theorem. A shortest path between two points among a set of [...] can be computed in $O(n \log n+m)$ time with $O\left(n^{2} \log n\right)$ preproc.

Translating Polygonal Robots

work space

Translating Polygonal Robots

work space

configuration space

Translating Polygonal Robots

work space

configuration space
visibility graph

Translating Polygonal Robots

work space

configuration space
visibility graph

Translating Polygonal Robots

work space

Theorem: For a convex constant-complexity translating robot, a shortest collision-free path among a set of polygonal obstacles with n edges in total can be computed in $O\left(n^{2} \log n\right)$ time.

Translating Polygonal Robots

work space

configuration space
visibility graph

Theorem: For a convex constant-complexity translating robot, a shortest collision-free path among a set of polygonal obstacles with n edges in total can be computed in $O\left(n^{\mathbb{8}} \log n\right)$ time.
[Hershberger \& Suri]

