

Computational Geometry

Visibility Graphs or Finding Shortest Paths

Lecture #12

current location, desired location

current location, desired location

current location, desired location

path to reach the one from the other

current location, desired location

shortest path to reach the one from the other

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Lemma. Given a set S of disjoint polygonal obstacles in \mathbb{R}^2 and points p_{start} and p_{goal} in the free space, any shortest path between p_{start} and p_{goal} is a polygonal path whose inner vertices are vertices of S.

Given a set *S* of disjoint (open) polygons...

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S,

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

We define: u sees $v :\Leftrightarrow$

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

We define: u sees $v:\Leftrightarrow \overline{uv}\subset \mathcal{C}_{\mathrm{free}}$

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

Given a set S of disjoint (open) polygons...

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

Given a set S of disjoint (open) polygons...

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

$$S^* = S \cup \{p_{\text{start}}, p_{\text{goal}}\}.$$

Given a set S of disjoint (open) polygons...

...let V(S) be the vertex set of S.

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

$$G_{\text{vis}}(S^{\star})$$

 $S^{\star} = S \cup \{p_{\text{start}}, p_{\text{goal}}\}.$

Given a set S of disjoint (open) polygons...

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

$$G_{\text{vis}}(S^*)$$
 $S^* = S \cup \{p_{\text{start}}, p_{\text{goal}}\}.$

Given a set S of disjoint (open) polygons...

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

We define: u sees $v:\Leftrightarrow \overline{uv}\subset \mathcal{C}_{\text{free}} \ (=\mathbb{R}^2\setminus \bigcup S)$

Corollary. A shortest path between p_{start} and p_{goal} corresponds to a path in $G_{\text{vis}}(S^*)$, where $S^* = S \cup \{p_{\text{start}}, p_{\text{goal}}\}$.

Given a set S of disjoint (open) polygons...

Let $G_{vis}(S) = (V(S), E_{vis}(S))$ be the *visibility graph* of S, where $E_{vis}(S) = \{uv \mid u, v \in V(S), u \text{ sees } v\}$ and w(uv) = |uv|.

We define: u sees $v:\Leftrightarrow \overline{uv}\subset \mathcal{C}_{\text{free}} \ (=\mathbb{R}^2\setminus \bigcup S)$

Corollary. A shortest path between p_{start} and p_{goal} corresponds to a *shortest* path in $G_{\text{vis}}(S^*)$, where $S^* = S \cup \{p_{\text{start}}, p_{\text{goal}}\}$.

ShortestPath($S, p_{\text{start}}, p_{\text{goal}}$)

ShortestPath($S, p_{\text{start}}, p_{\text{goal}}$)

 $G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})$


```
ShortestPath(S, p_{start}, p_{goal})
G_{vis} \leftarrow VisibilityGraph(S \cup \{p_{start}, p_{goal}\})
foreach uv \in E_{vis} do
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}})
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
\textbf{foreach } uv \in E_{\text{vis}} \textbf{ do}
w(uv) = d_{\text{Eucl.}}(u, v)
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}})
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
\textbf{foreach } uv \in E_{\text{vis}} \textbf{ do}
\lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}})
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
\textbf{foreach } uv \in E_{\text{vis}} \textbf{ do}
\lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}})
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}})
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
\textbf{foreach } uv \in E_{\text{vis}} \textbf{ do}
\lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}})
\textbf{return } \pi
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}})
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
\textbf{foreach } uv \in E_{\text{vis}} \textbf{ do}
\lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}})
\textbf{return } \pi
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}}) n = |V(S)|
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
foreach uv \in E_{\text{vis}} do
\lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}})
return \pi
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}}) n = |V(S)|, m = |E_{\text{vis}}(S)|
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
foreach uv \in E_{\text{vis}} do
 \lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}})
return \pi
```



```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}}) n = |V(S)|, m = |E_{\text{vis}}(S)|
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
foreach uv \in E_{\text{vis}} do
 \lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}})
return \pi
```



```
VISIBILITYGRAPH(S)
```

VISIBILITYGRAPH(S)

Input: a set *S* of disjoint polygons

VISIBILITYGRAPH(S)

Input: a set *S* of disjoint polygons

Output: $G_{vis}(S)$

VISIBILITYGRAPH(S)

Input: a set *S* of disjoint polygons

Output: $G_{vis}(S)$

$$E \leftarrow \emptyset$$


```
VISIBILITYGRAPH(S)

Input: a set S of disjoint polygons

Output: G_{vis}(S)

E \leftarrow \emptyset

foreach v \in V(S) do
```



```
VisibilityGraph(S)

Input: a set S of disjoint polygons
Output: G_{vis}(S)

E \leftarrow \emptyset

foreach v \in V(S) do

W = VisibleVertices(v, S)
```



```
VISIBILITYGRAPH(S)

Input: a set S of disjoint polygons
Output: G_{\text{vis}}(S)

E \leftarrow \emptyset

foreach v \in V(S) do

W = \text{VISIBLEVERTICES}(v, S)
E \leftarrow E \cup \{vw \mid w \in W\}
```



```
VISIBILITYGRAPH(S)
 Input: a set S of disjoint polygons
  Output: G_{vis}(S)
  E \leftarrow \emptyset
  foreach v \in V(S) do
      W = VisibleVertices(v, S)
    E \leftarrow E \cup \{vw \mid w \in W\}
  return (V(S), E)
```



```
VISIBILITYGRAPH(S)
 Input: a set S of disjoint polygons
  Output: G_{vis}(S)
  E \leftarrow \emptyset
  foreach v \in V(S) do
      W = VisibleVertices(v, S)
    E \leftarrow E \cup \{vw \mid w \in W\}
  return (V(S), E)
```

O(n).


```
VISIBILITYGRAPH(S)
 Input: a set S of disjoint polygons
  Output: G_{vis}(S)
  E \leftarrow \emptyset
  foreach v \in V(S) do
      W = VISIBLE VERTICES(v, S)
     E \leftarrow E \cup \{vw \mid w \in W\}
  return (V(S), E)
```

O(n)


```
VISIBLE VERTICES (p, S)
```


VisibleVertices(p, S)

Task: Separate the "good"

from the "evil"

VisibleVertices(p, S)

Task: Separate the "good" from the "evil":

Given p and S, find in $O(n \log n)$ time all vertices in V(S) visible from p!

[3 min]

$$r \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$r \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$r \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

VisibleVertices(p, S)

$$r \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

VisibleVertices(p, S)

$$r \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$ sort V(S)

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$

$$v \prec v' :\Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

rotational plane sweep

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' :\Leftrightarrow$$
 $\angle v < \angle v' \text{ or }$
 $(\angle v = \angle v' \text{ and } |pv| < |pv'|)$

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$ $\angle v < \angle v'$ or

$$W \leftarrow \emptyset$$
 $(\angle v = \angle v' \text{ and } |pv| < |pv'|)$

foreach $v \in V(S)$ do

if $V_{ISIBLE}(v)$ then

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$ $\angle v < \angle v'$ or

$$W \leftarrow \emptyset$$
 ($\angle v$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

if Visible(
$$v$$
) then $W \leftarrow W \cup \{v\}$

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

if
$$Visible(v)$$
 then

$$W \leftarrow W \cup \{v\}$$

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

if
$$VISIBLE(v)$$
 then

$$W \leftarrow W \cup \{v\}$$

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' :\Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

foreach $v \in V(S)$ do

if VISIBLE(v) then

$$W \leftarrow W \cup \{v\}$$

insert into \mathcal{T} edges incident to v in \overrightarrow{pv}^+

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

foreach $v \in V(S)$ do

if VISIBLE(v) then

$$W \leftarrow W \cup \{v\}$$

insert into \mathcal{T} edges incident to v in \overrightarrow{pv}^+ delete from \mathcal{T} edges incident to v in \overrightarrow{pv}

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

foreach $v \in V(S)$ do

if VISIBLE(v) then

$$W \leftarrow W \cup \{v\}$$

insert into \mathcal{T} edges incident to v in \overrightarrow{pv}^+ delete from \mathcal{T} edges incident to v in \overrightarrow{pv}

return W

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

foreach $v \in V(S)$ do

if VISIBLE(v) then

$$W \leftarrow W \cup \{v\}$$

insert into \mathcal{T} edges incident to v in \overrightarrow{pv}^+ delete from \mathcal{T} edges incident to v in \overrightarrow{pv}^-

return W

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

foreach $v \in V(S)$ do

if $V_{ISIBLE}(v)$ then ?

$$W \leftarrow W \cup \{v\}$$

insert into \mathcal{T} edges incident to v in \overrightarrow{pv}^+ delete from \mathcal{T} edges incident to v in \overrightarrow{pv}^-

return W

Cases

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

Let v' be the immediate predecessor of v according to \prec .

 e_6

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

foreach $v \in V(S)$ do

if $V_{ISIBLE}(v)$ then ?

$$W \leftarrow W \cup \{v\}$$

insert into \mathcal{T} edges incident to v in \overrightarrow{pv}^+ delete from \mathcal{T} edges incident to v in \overrightarrow{pv}^-

return W

 e_6

Computing Visible Vertices

VisibleVertices(p, S)

$$\mathbf{r} \leftarrow p + \mathbb{R}_{\geq 0} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \text{balancedBinaryTree}(I)$

sort
$$V(S)$$
 $v \prec v' :\Leftrightarrow$

$$v \prec v' : \Leftrightarrow$$

$$\angle v < \angle v'$$
 or

$$W \leftarrow \emptyset$$

$$(\angle v = \angle v' \text{ and } |pv| < |pv'|)$$

foreach $v \in V(S)$ do

if
$$V_{ISIBLE}(v)$$
 then $O(1)$

$$W \leftarrow W \cup \{v\}$$

insert into \mathcal{T} edges incident to v in \overrightarrow{pv}^+ delete from \mathcal{T} edges incident to v in \overrightarrow{pv}^-

return W

Computing the Visibility Graph

```
VISIBILITYGRAPH(S)
 Input: a set S of disjoint polygons
  Output: G_{vis}(S)
  E \leftarrow \emptyset
  foreach v \in V(S) do
      W = VISIBLE VERTICES(v, S)
     E \leftarrow E \cup \{vw \mid w \in W\}
  return (V(S), E)
```

O(n).

Computing the Visibility Graph

```
VISIBILITYGRAPH(S)
 Input: a set S of disjoint polygons
  Output: G_{vis}(S)
  E \leftarrow \emptyset
  foreach v \in V(S) do
      W = VISIBLE VERTICES(v, S)
     E \leftarrow E \cup \{vw \mid w \in W\}
  return (V(S), E)
```

$$O(n)$$
· $O(n \log n)$

Running time?

Running time?


```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}}) n = |V(S)|, m = |E_{\text{vis}}(S)|
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})) O(n^2 \log n)
foreach uv \in E_{\text{vis}} do
 \lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}}) O(m + n \log n)
return \pi
```

Running time?


```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}}) n = |V(S)|, m = |E_{\text{vis}}(S)|

G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})) O(n^2 \log n)

foreach uv \in E_{\text{vis}} do

uv \in E_{\text{vis}} do
```

Running time?

 $O(n^2 \log n)$


```
n = |V(S)|, m = |E_{vis}(S)|
SHORTESTPATH(S, p_{\text{start}}, p_{\text{goal}})
   G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})
                                                                           O(n^2 \log n)
   foreach uv \in E_{vis} do
                                                                            O(m)
        w(uv) = d_{\text{Eucl.}}(u, v)
   \pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}})
                                                                            O(m + n \log n)
   return \pi
                                                                            O(n^2 \log n)
```

Running time?

Theorem.

The visibility graph of a set of disjoint polygonal obstacles with *n* edges in total can be computed in $O(n^2 \log n)$ time.


```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}}) n = |V(S)|, m = |E_{\text{vis}}(S)|
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})) O(n^2 \log n)
foreach uv \in E_{\text{vis}} do
 \lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}}) O(m + n \log n)
return \pi
```

Running time?

 $O(n^2 \log n)$

Theorem. The visibility graph of a set of disjoint polygonal obstacles with n edges in total can be computed in $O(n^2 \log n)$ time.

Theorem. A shortest path between two points among a set of [...] can be computed in $O(n \log n + m)$ time with $O(n^2 \log n)$ preproc.


```
ShortestPath(S, p_{\text{start}}, p_{\text{goal}}) n = |V(S)|, m = |E_{\text{vis}}(S)|
G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{p_{\text{start}}, p_{\text{goal}}\})) O(n^2 \log n)
foreach uv \in E_{\text{vis}} do
 \lfloor w(uv) = d_{\text{Eucl.}}(u, v)
\pi \leftarrow \text{Dijkstra}(G_{\text{vis}}, w, p_{\text{start}}, p_{\text{goal}}) O(m + n \log n)
return \pi
```

Running time?

 $O(n^2 \log n)$

Theorem. The visibility graph of a set of disjoint polygonal obstacles with n edges in total can be computed in $O(n^2 \log n)$ time. [Ghosh & Mount]

Theorem. A shortest path between two points among a set of [...] can be computed in $O(n \log n + m)$ time with $O(n^2 \log n)$ preproc.

work space

work space

work space

configuration space

visibility graph

work space

configuration space

visibility graph

work space

Theorem: For a convex constant-complexity translating robot, a shortest collision-free path among a set of polygonal obstacles with n edges in total can be computed in $O(n^2 \log n)$ time.

work space

Theorem: For a convex constant-complexity translating robot, a shortest collision-free path among a set of polygonal obstacles with n edges in total can be computed in $O(n^2 \log n)$ time.

[Hershberger & Suri]