
1

Computational Geometry

Dr. Philipp Kindermann Winter Semester 2018/19

Lecture #11

Simple Range Searching
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that half-space range-counting queries can be
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Non-orthogonal range queries
Query range:

Task Design a data structure for the 1-dim. case:

Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

– Given a number x, return |P ∩ [x, ∞)|.

– Consider P static / dynamic!

Problem.

?
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The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

Lesson. On each level, visit ≤ 1 subtree recursively!

[see Cormen et al.,
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︸ ︷︷ ︸
canonical subset
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Generalizing to 2 Dimensions

Definition. The crossing number of ` (w.r.t. Ψ(S)) is the
number of triangles t1, . . . , tr crossed by `.

The crossing number of Ψ(S) is the maximum
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search tree with n leaves
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DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)



8 - 13

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
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Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in
O(n1+ε) time. The tree uses O(n) storage.

Lemma. For any ε > 0, there is a partition tree T for S s.t.:
for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Corollary. Half-plane range counting queries can be
answered in O(n1/2+ε) time
using O(n) space and O(n1+ε) prep.
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triangular range-counting query can be answered
in O(n1/2+ε) time using a partition tree.

The tree can be built in O(n1+ε) time and uses
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The points inside the query range can be
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Just use SelectInHalfplane!
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