

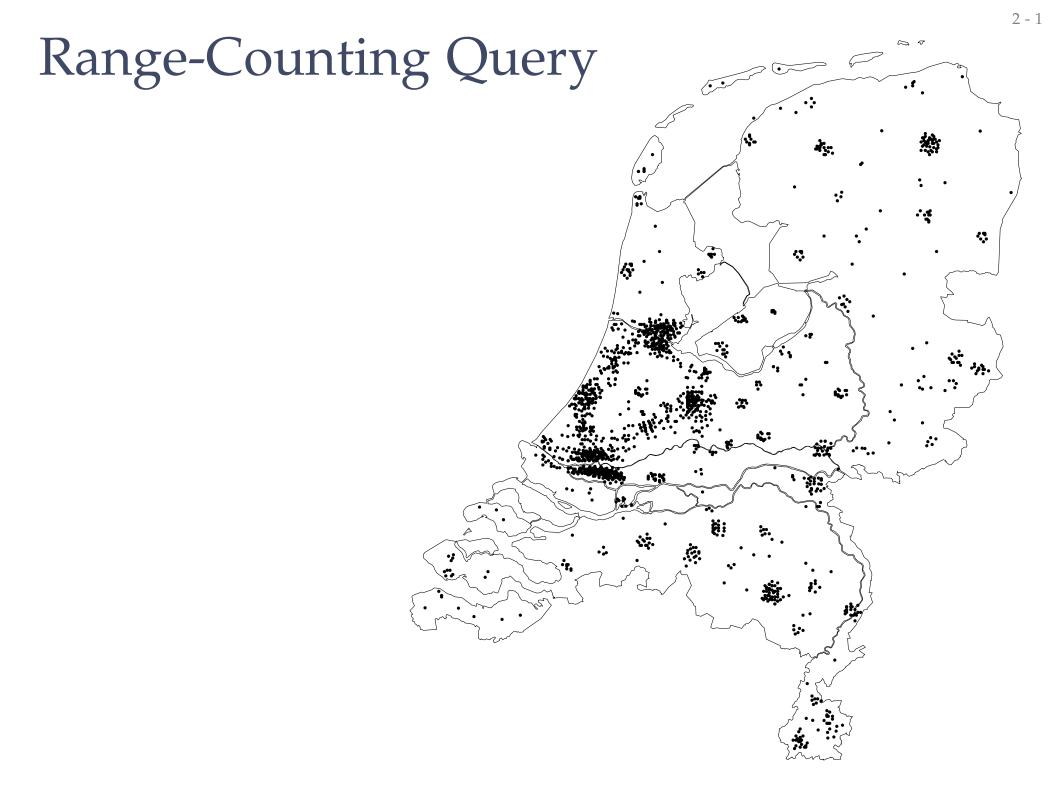
Computational Geometry

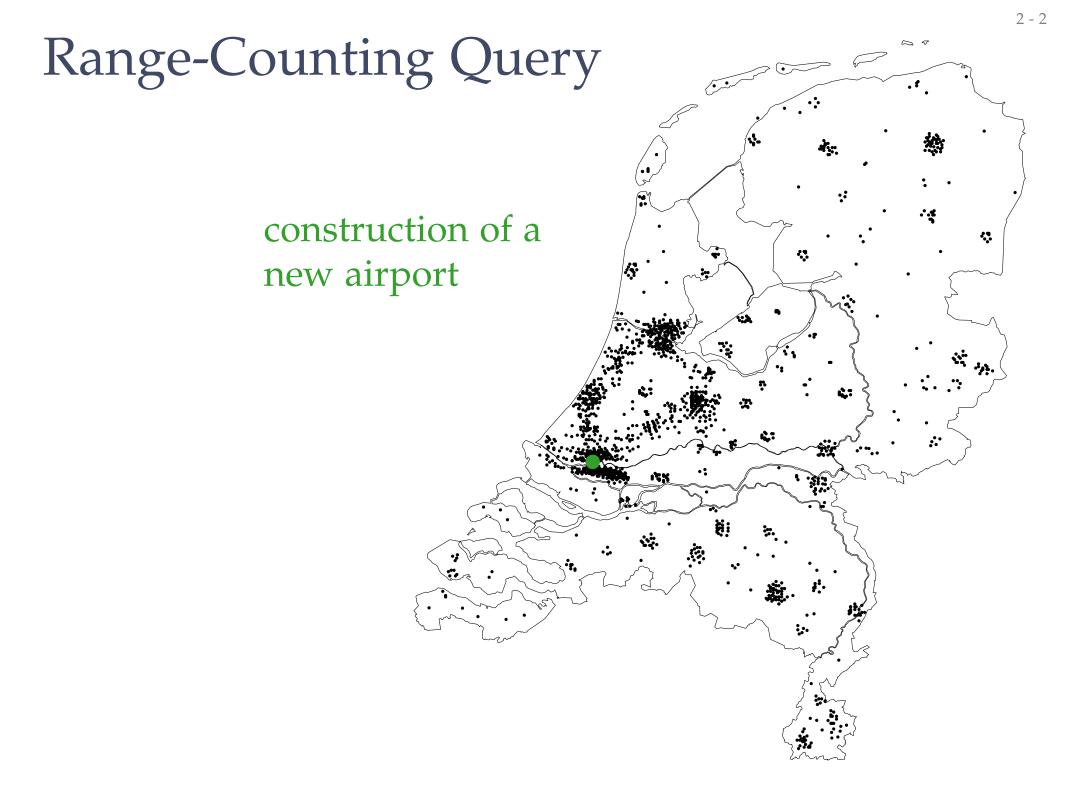
Simple Range Searching

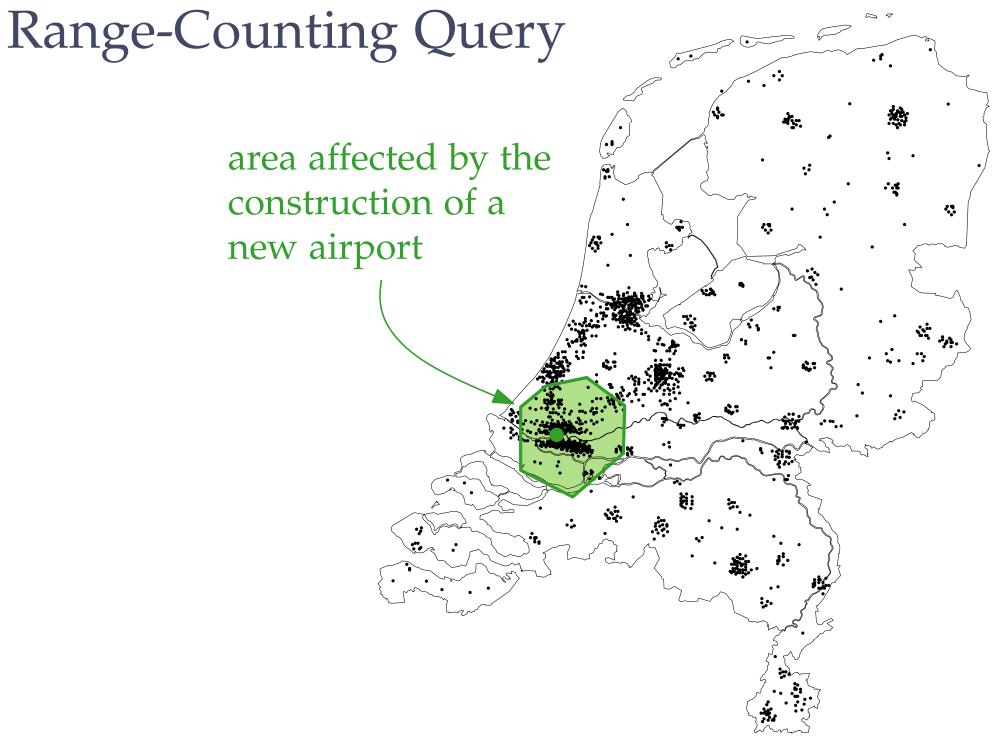
Lecture #11

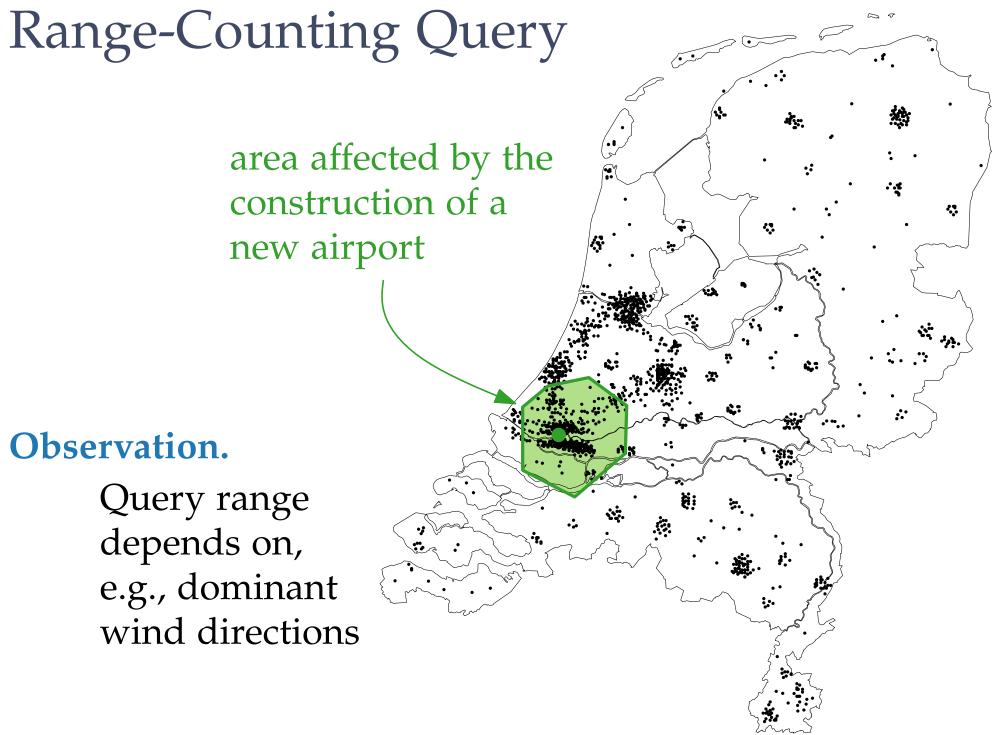
Dr. Philipp Kindermann

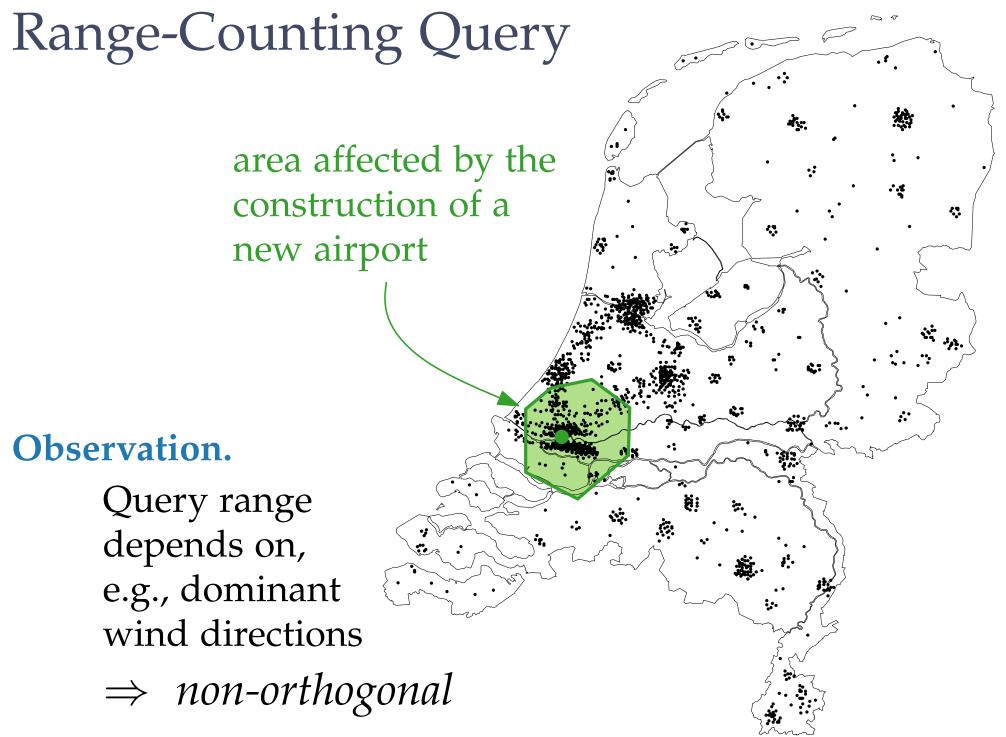
Winter Semester 2018/19

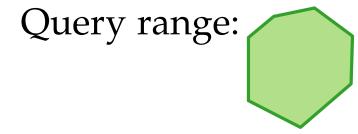


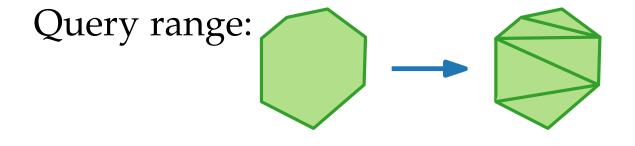


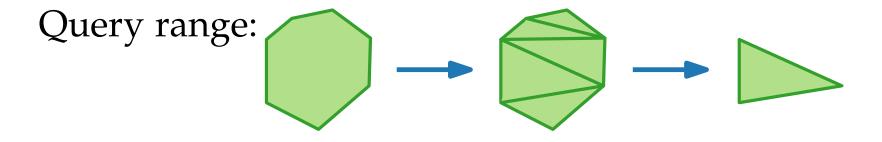


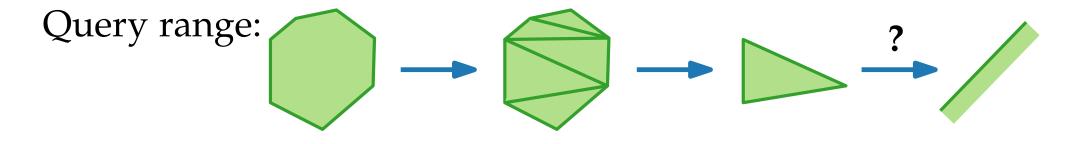




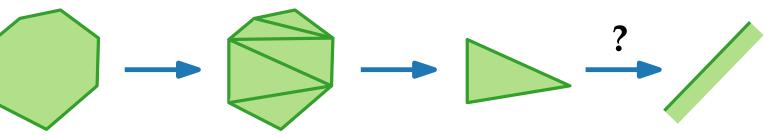








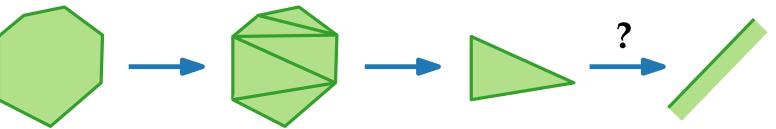
Query range:



Problem.

Given a set *P* of *n* points, preprocess *P* such that *half-space range-counting queries* can be answered quickly.

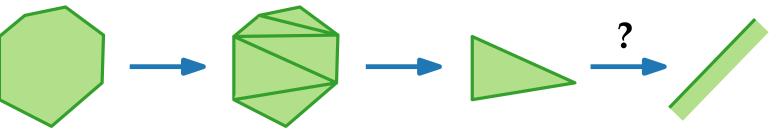
Query range:



Problem. Given a set *P* of *n* points, preprocess *P* such that *half-space range-counting queries* can be answered quickly.

TaskDesign a data structure for the 1-dim. case:

Query range:

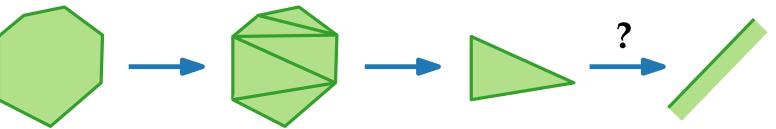


Problem. Given a set *P* of *n* points, preprocess *P* such that *half-space range-counting queries* can be answered quickly.

TaskDesign a data structure for the 1-dim. case:

– Given a number *x*, return $|P \cap [x, \infty)|$.

Query range:



Problem. Given a set *P* of *n* points, preprocess *P* such that *half-space range-counting queries* can be answered quickly.

Task

- Design a data structure for the 1-dim. case:
 - Given a number *x*, return $|P \cap [x, \infty)|$.
 - Consider *P* static / dynamic!

Task.Design a data structure for the 1-dim. case!

Solution.

Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

• augment each node with the number of nodes in its subtree [see Cormen et al.,

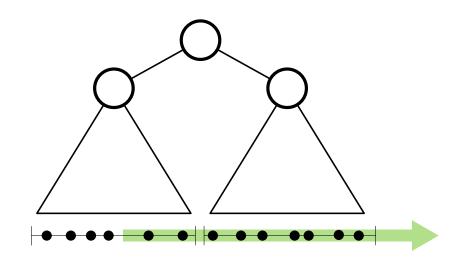
Introduction to Algorithms, MIT press, 3rd ed., 2009]

Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

• augment each node with the number of nodes in its subtree [see Cormen et al.,

Introduction to Algorithms, MIT press, 3rd ed., 2009]

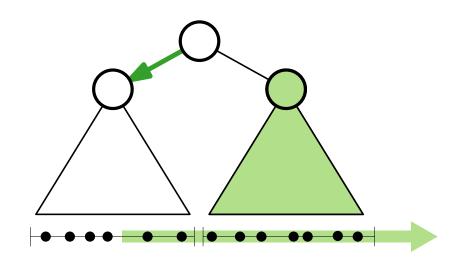


Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

• augment each node with the number of nodes in its subtree [see Cormen et al.,

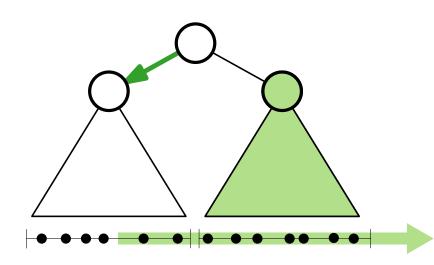
Introduction to Algorithms, MIT press, 3rd ed., 2009]

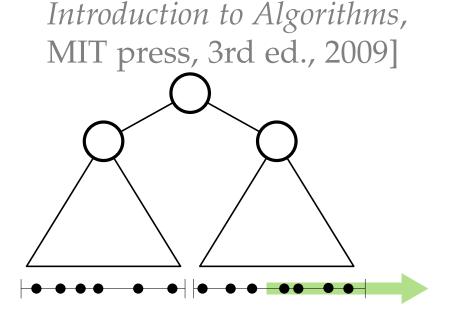


Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

• augment each node with the number of nodes in its subtree [see Cormen et al.,

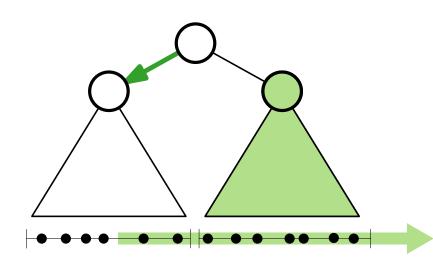


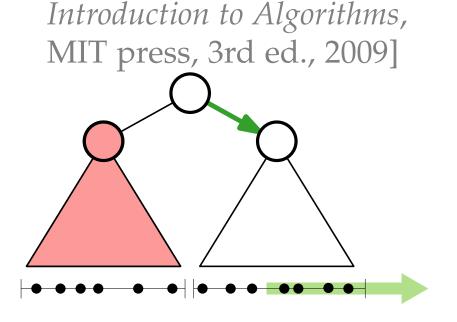


Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

• augment each node with the number of nodes in its subtree [see Cormen et al.,

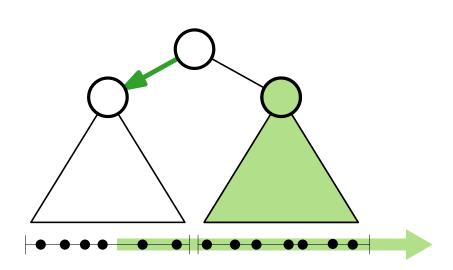


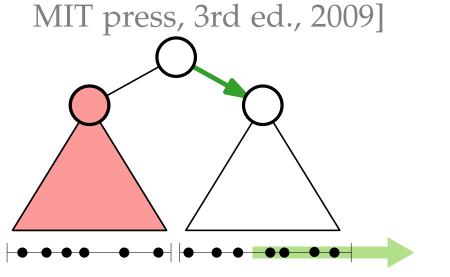


Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

• augment each node with the number of nodes in its subtree [see Cormen et al.,





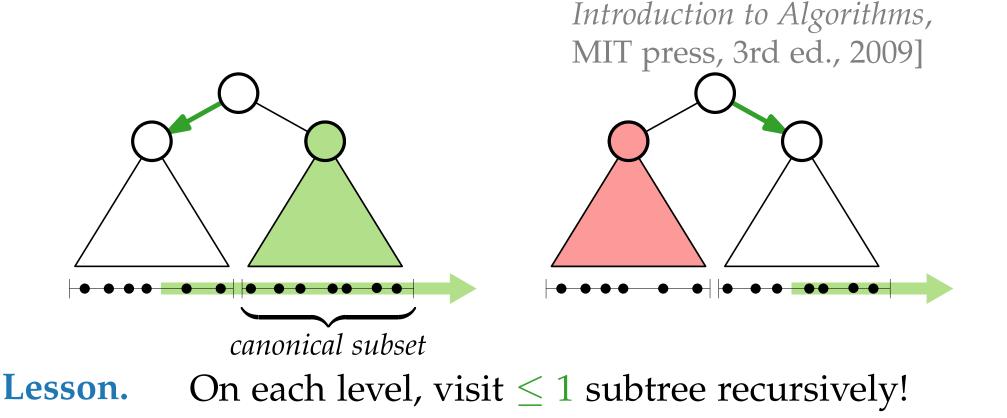
Introduction to Algorithms,

Lesson. On each level, visit ≤ 1 subtree recursively!

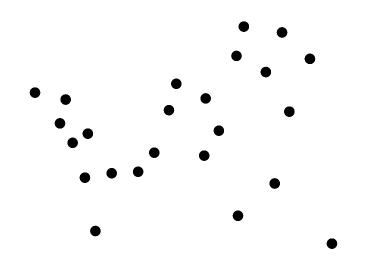
Task.Design a data structure for the 1-dim. case!

Solution. • use balanced binary search trees

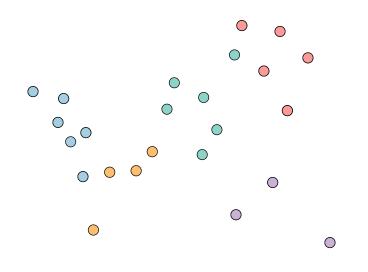
• augment each node with the number of nodes in its subtree [see Cormen et al.,



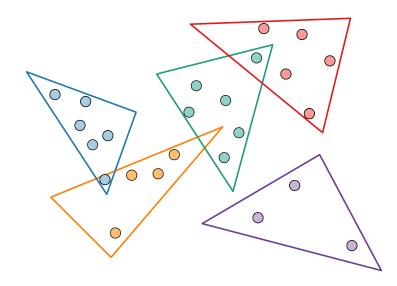
Any ideas?



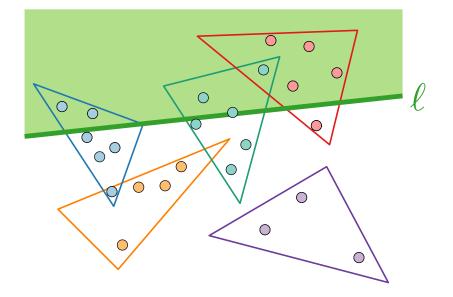
Any ideas?



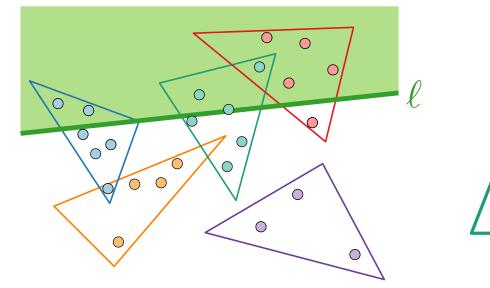
Partition the input!

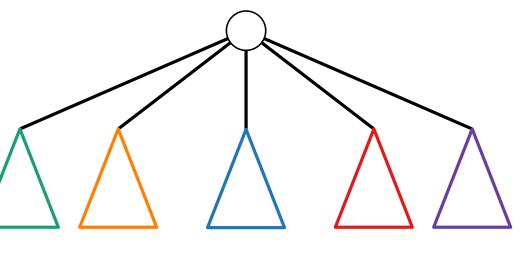


Partition the input! Query...

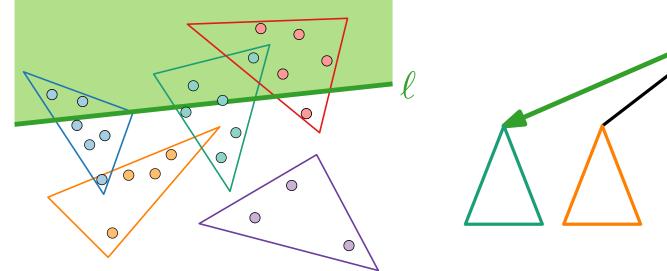


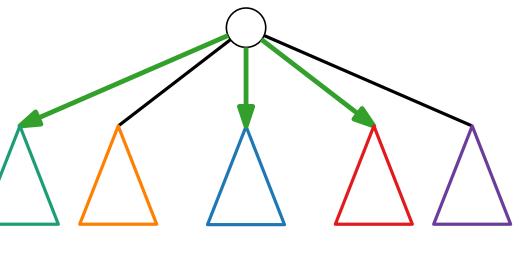
Partition the input! Query... in a *partition tree*



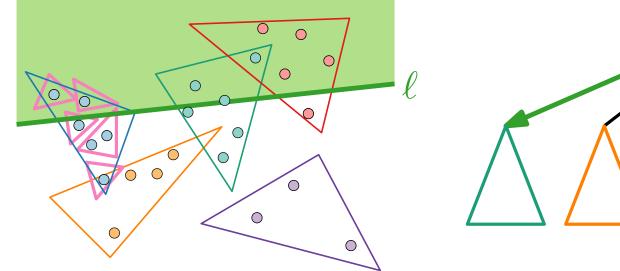


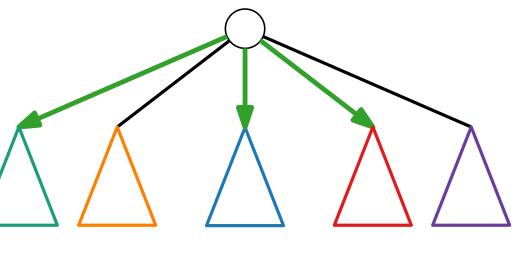
Partition the input! Query... in a *partition tree*



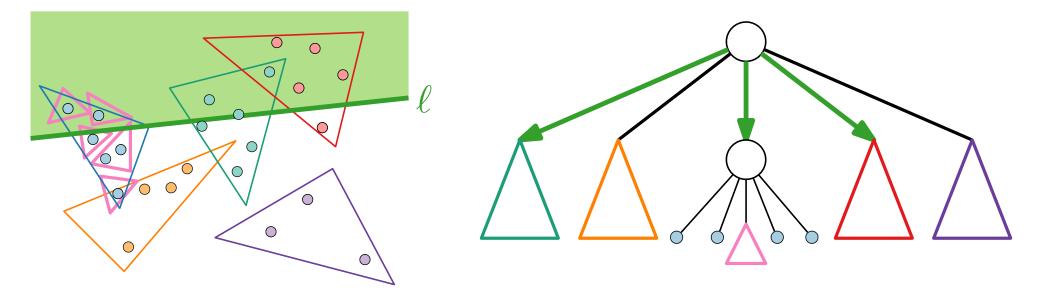


Partition the input! Query... in a *partition tree*

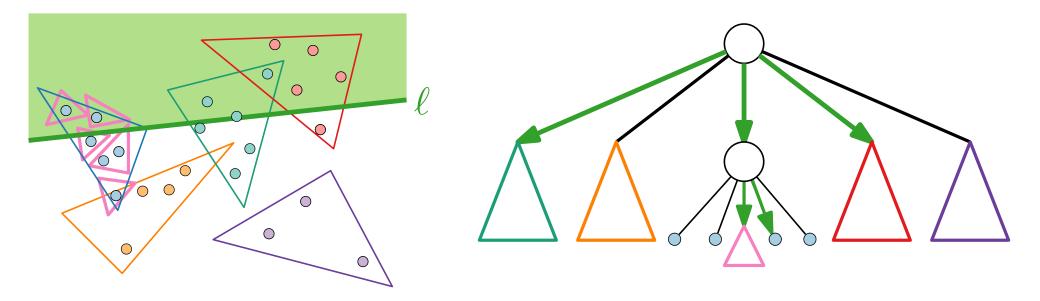




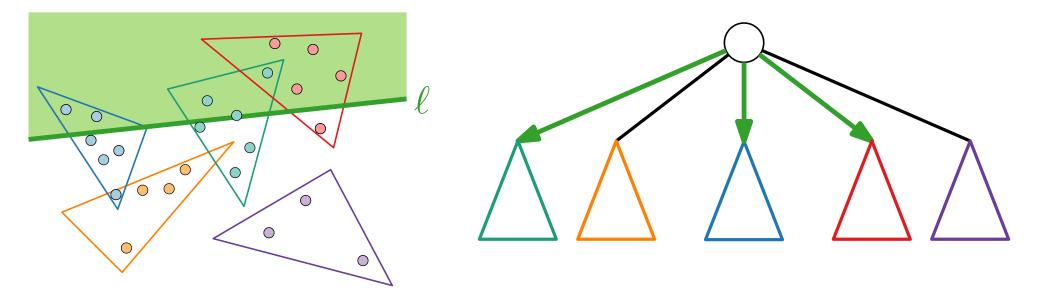
Partition the input! Query... in a *partition tree* ... recursively!



Partition the input! Query... in a *partition tree* ... recursively!

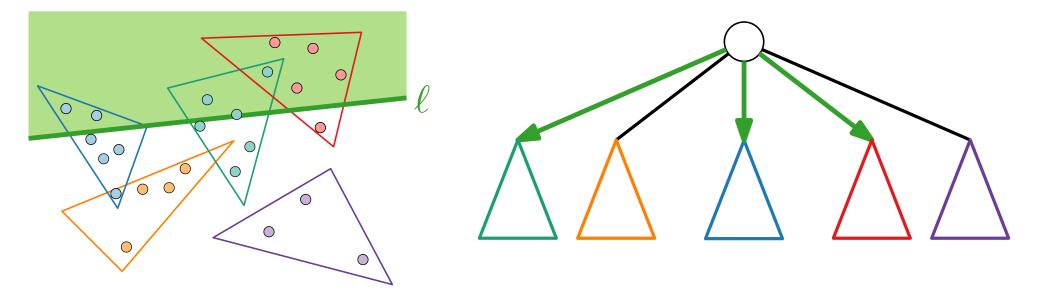


Partition the input! Query... in a *partition tree* ... recursively!



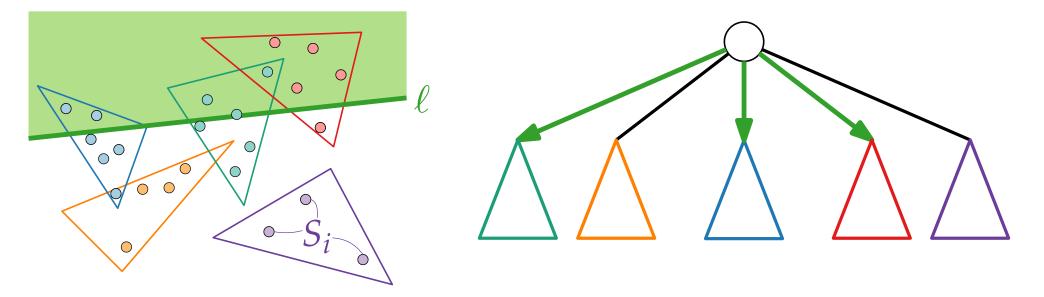
Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if

Partition the input! Query... in a *partition tree* ... recursively!



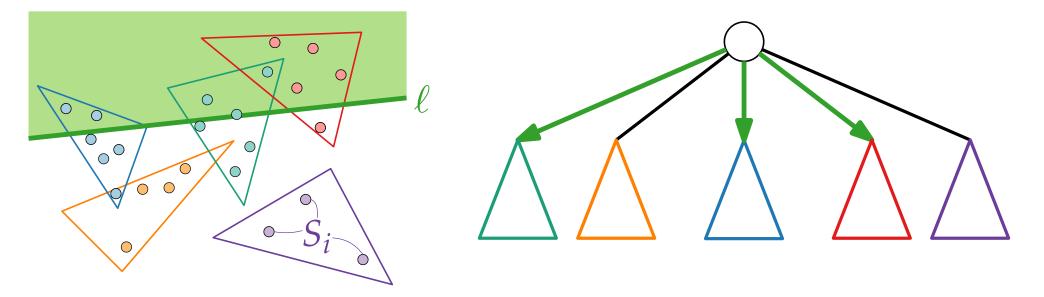
Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if -S is partitioned by S_1, \dots, S_r and

Partition the input! Query... in a *partition tree* ... recursively!



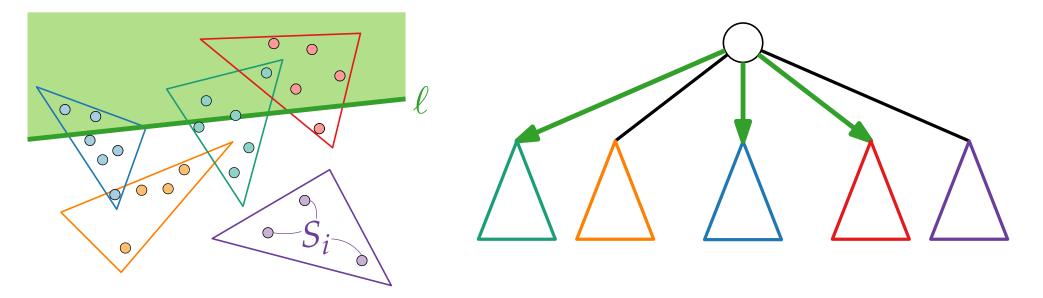
Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if -S is partitioned by S_1, \dots, S_r and

Partition the input! Query... in a *partition tree* ... recursively!



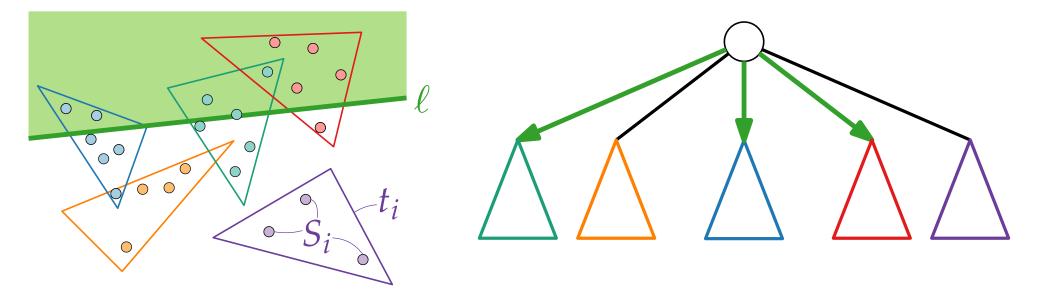
Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if *classes* of *S* – *S* is partitioned by S_1, \dots, S_r and

Partition the input! Query... in a *partition tree* ... recursively!



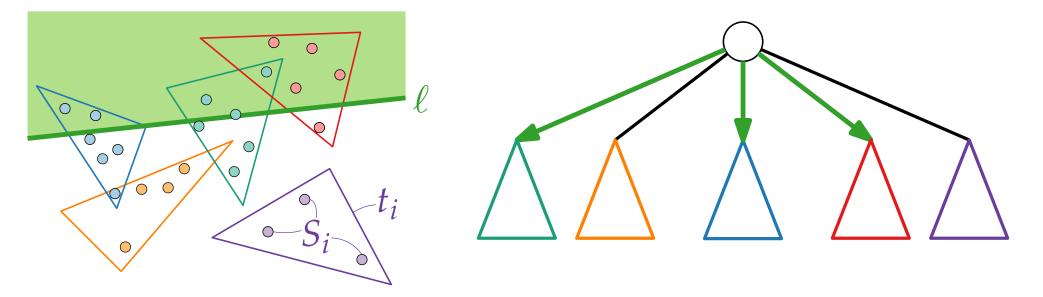
Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if -S is partitioned by S_1, \dots, S_r and $-for 1 \le i \le r, t_i$ is a triangle and $S_i \subset t_i$.

Partition the input! Query... in a *partition tree* ... recursively!



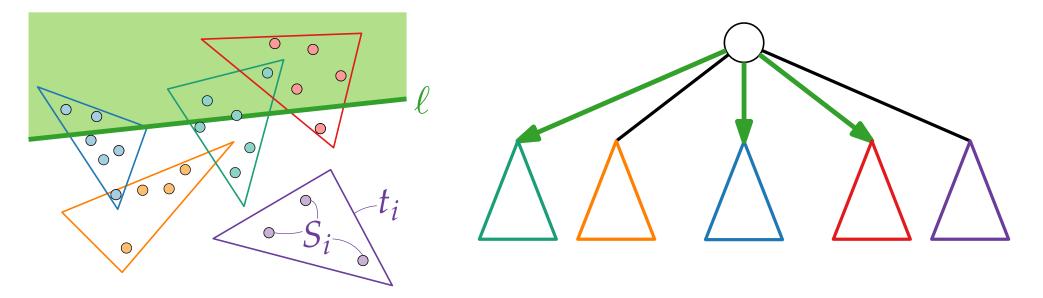
Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if -S is partitioned by S_1, \dots, S_r and $-for 1 \le i \le r, t_i$ is a triangle and $S_i \subset t_i$.

Partition the input! Query... in a *partition tree* ... recursively!



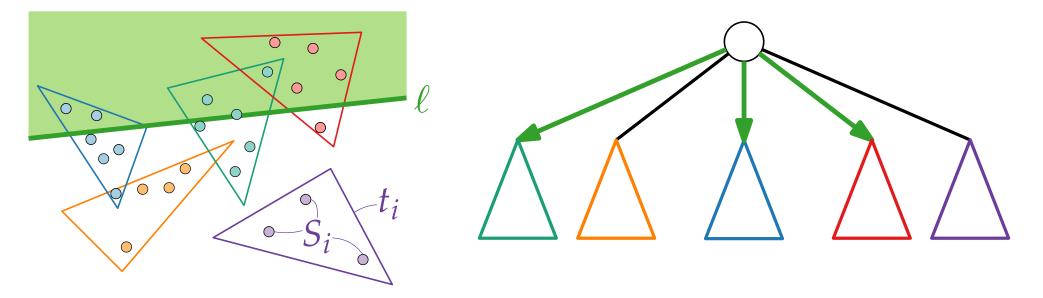
Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if -S is partitioned by S_1, \dots, S_r and - for $1 \le i \le r$, t_i is a triangle and $S_i \subset t_i$. $\Psi(S)$ is *fine* if $|S_i| \le 2\frac{|S|}{r}$ for every $1 \le i \le r$.

Partition the input! Query... in a *partition tree* ... recursively!



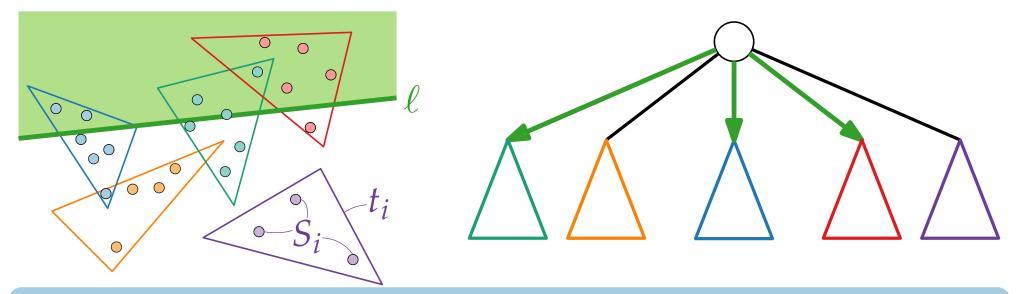
Definition. The *crossing number* of ℓ (w.r.t. $\Psi(S)$) is the number of triangles t_1, \ldots, t_r crossed by ℓ .

Partition the input! Query... in a *partition tree* ... recursively!

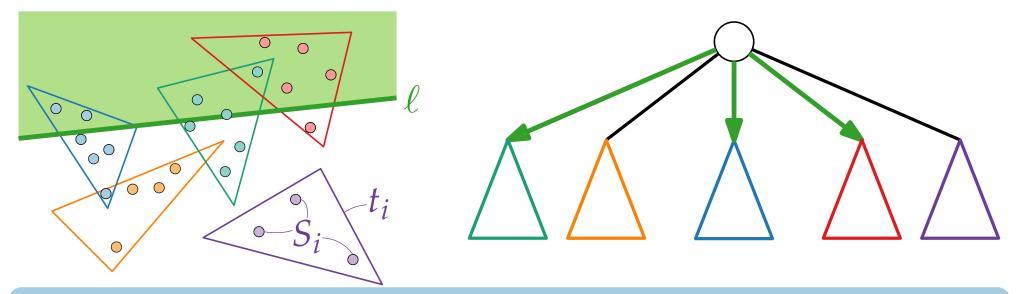


Definition. The *crossing number* of ℓ (w.r.t. $\Psi(S)$) is the number of triangles t_1, \ldots, t_r crossed by ℓ .

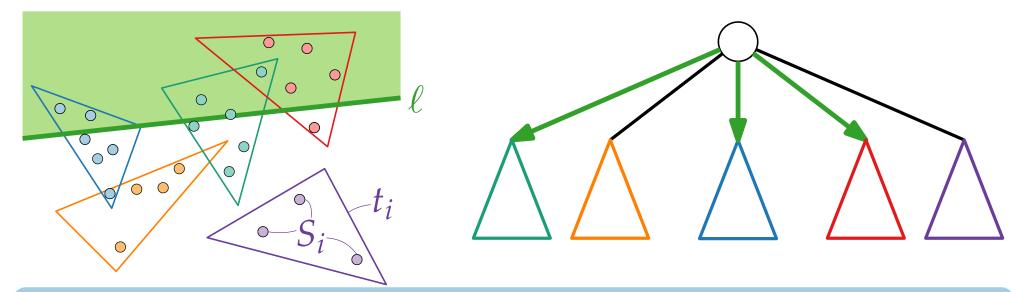
The *crossing number* of $\Psi(S)$ is the maximum crossing number over all possible lines.



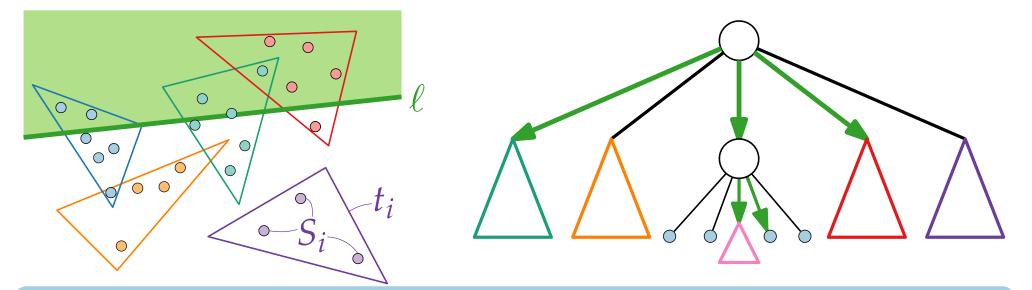
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number O() exists.



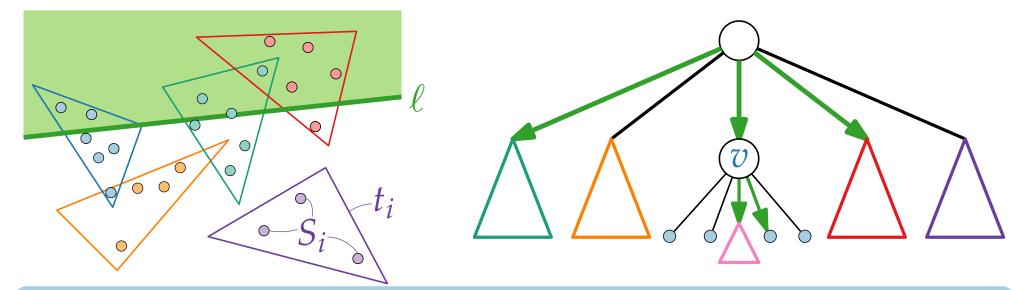
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists.



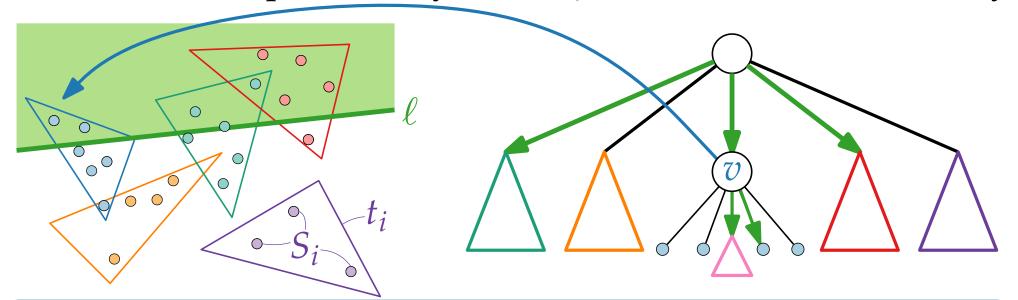
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing **DCG 1992**] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.



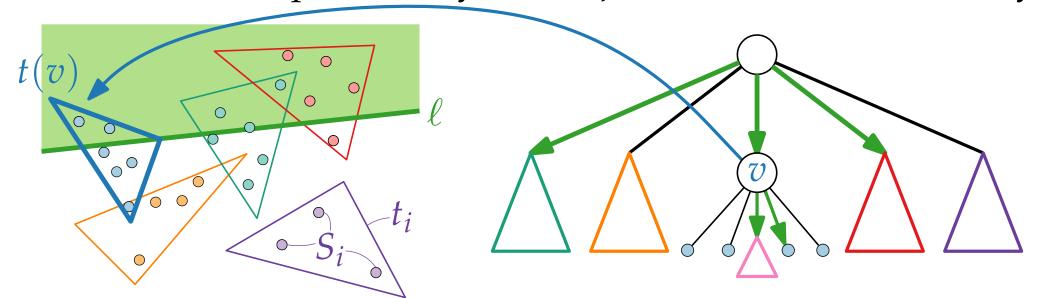
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.



Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

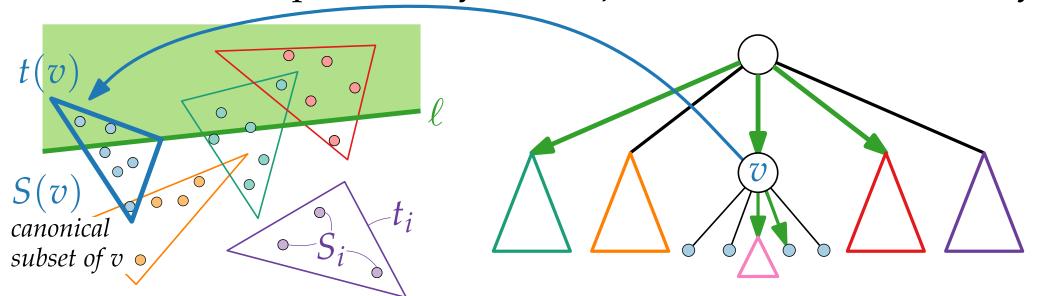


Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing **DCG 1992**] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.



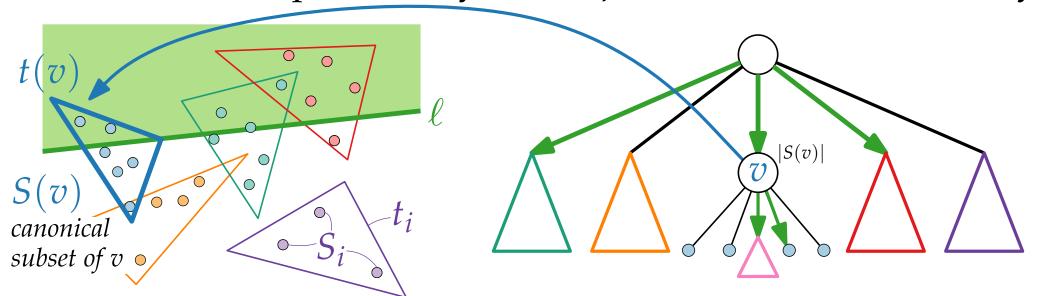
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Partition the input! Query... in a *partition tree* ... recursively!



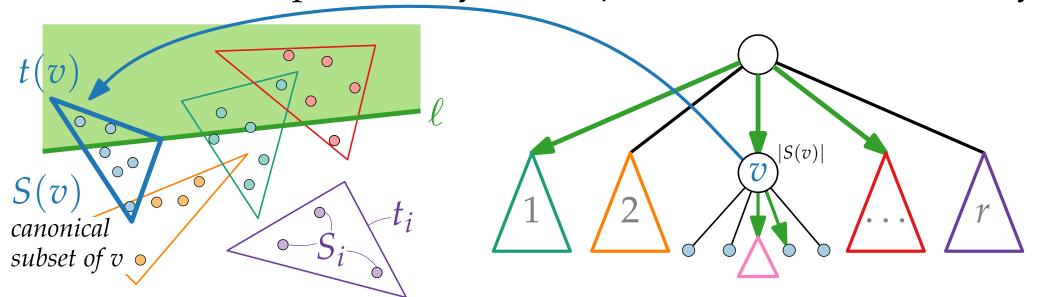
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Partition the input! Query... in a *partition tree* ... recursively!



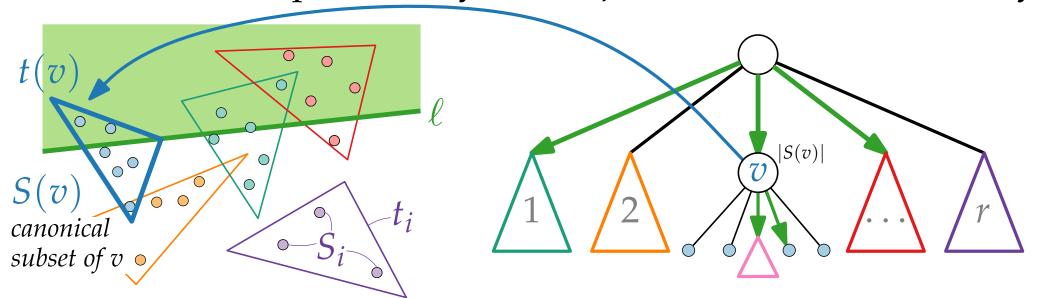
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Partition the input! Query... in a *partition tree* ... recursively!



Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Partition the input! Query... in a *partition tree* ... recursively!

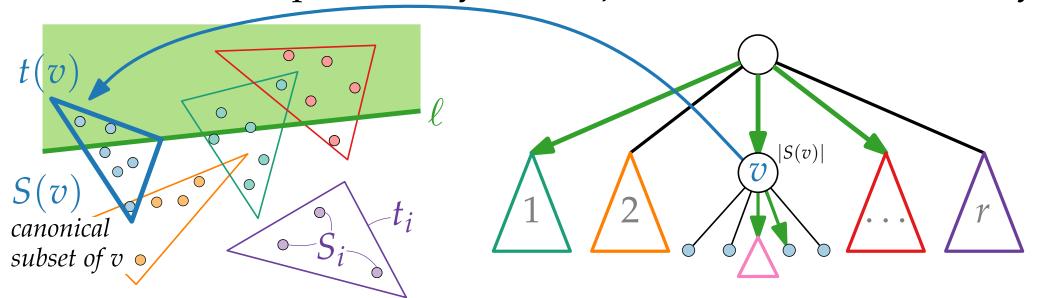


Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Lemma.

A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

Partition the input! Query... in a *partition tree* ... recursively!

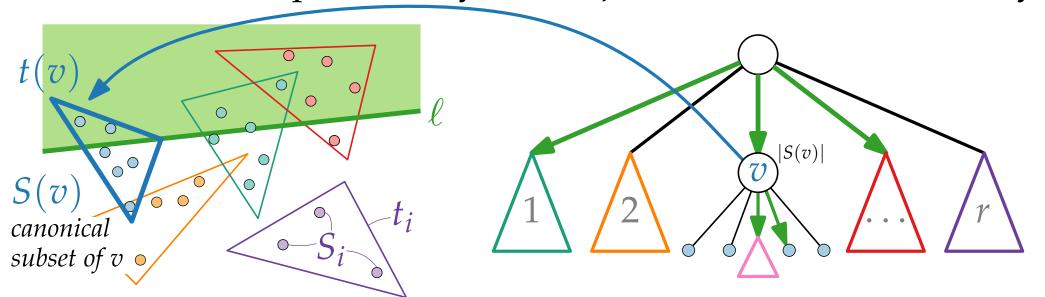


Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Lemma.

A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

Partition the input! Query... in a *partition tree* ... recursively!



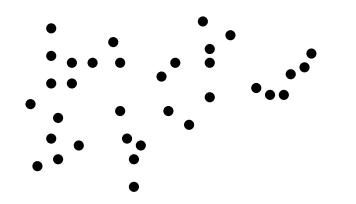
Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Lemma.

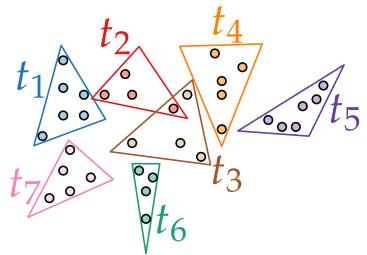
A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

search tree with *n* leaves

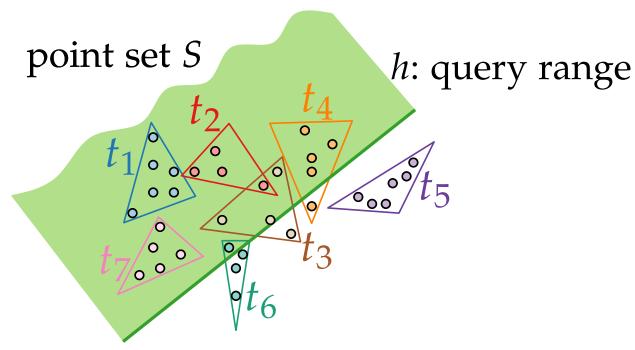
point set S



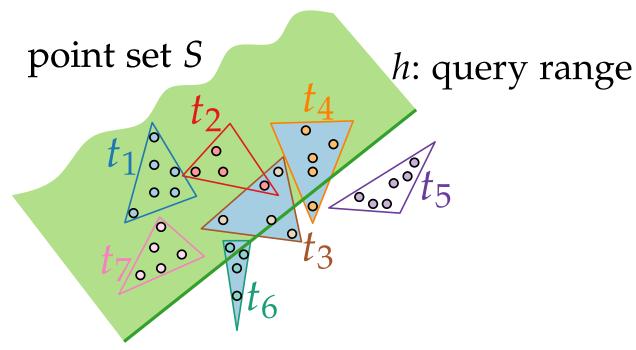
point set S



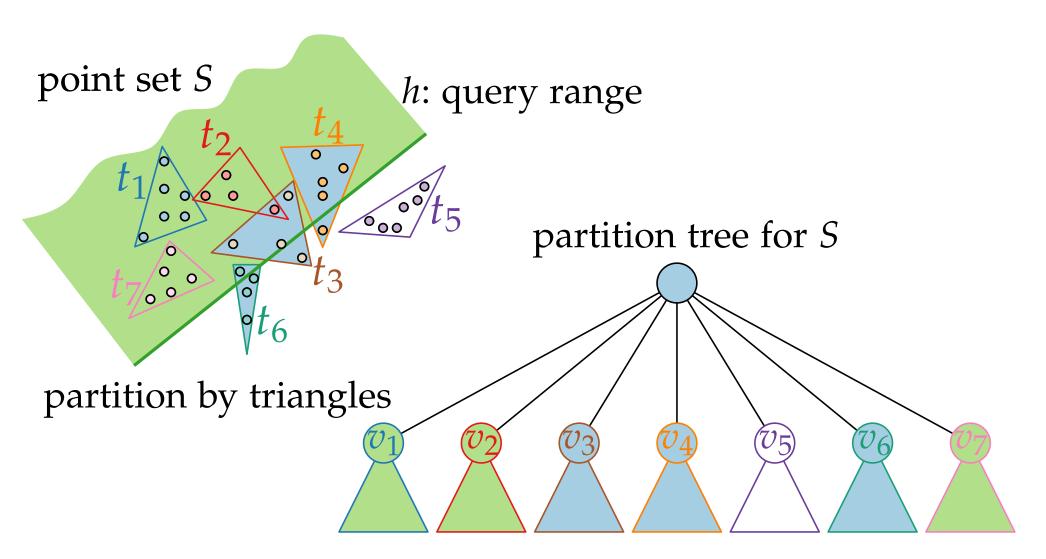
partition by triangles

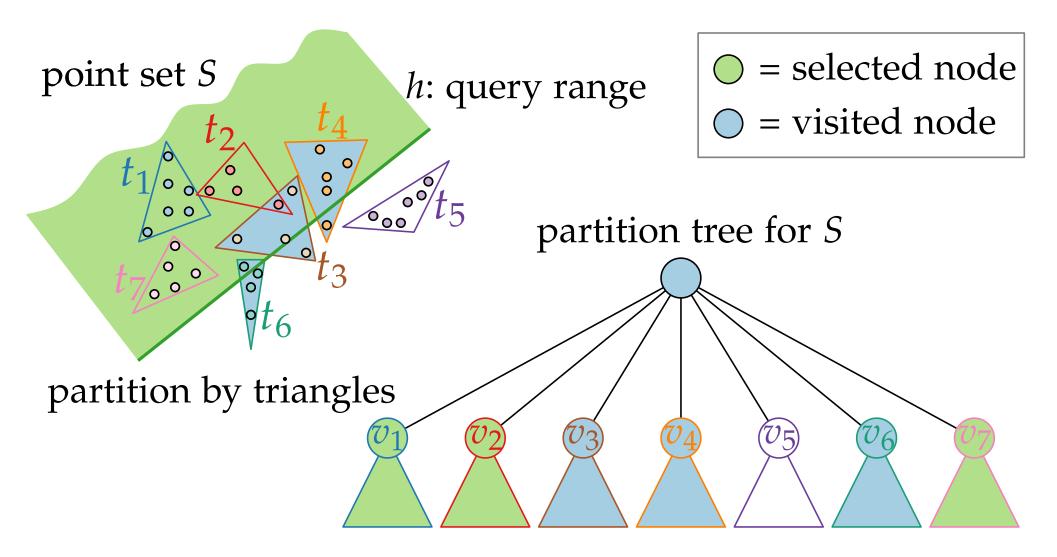


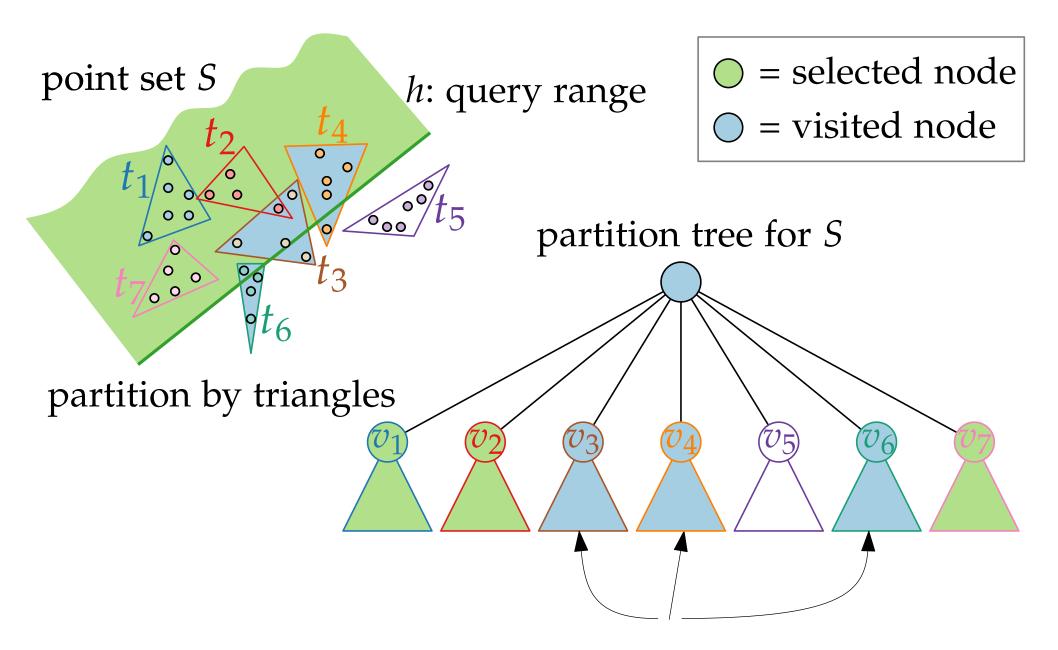
partition by triangles

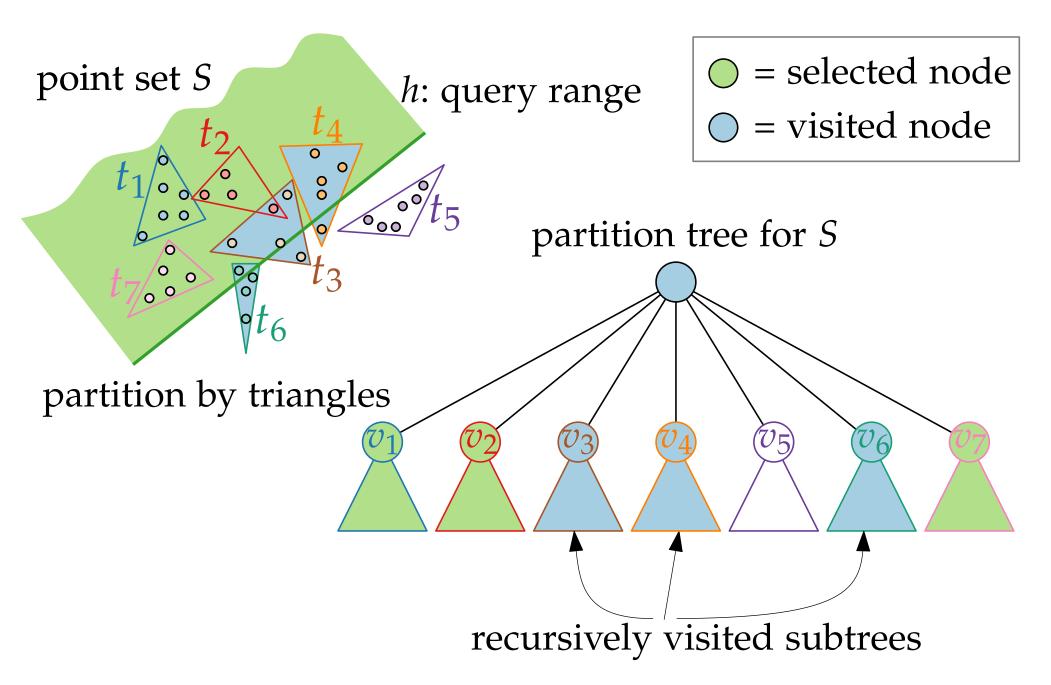


partition by triangles



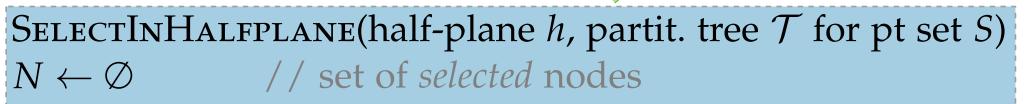






SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \emptyset$ // set of selected nodes

7 - 1



7 - 2

```
if \mathcal{T} = \{\mu\} then
```

else

SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \emptyset$ // set of selected nodes

7 - 3

if
$$\mathcal{T} = \{\mu\}$$
 then
| if point stored at μ lies in h then
| $N \leftarrow \{\mu\}$

else

SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \emptyset$ // set of selected nodes

7 - 4

```
if \mathcal{T} = \{\mu\} then
| if point stored at \mu lies in h then
| N \leftarrow \{\mu\}
```

else

foreach child ν of the root of \mathcal{T} **do**

```
SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S)
N \leftarrow \emptyset // set of selected nodes
```

7 - 5

```
if \mathcal{T} = \{\mu\} then
| if point stored at \mu lies in h then
| N \leftarrow \{\mu\}
```

else

```
foreach child \nu of the root of \mathcal{T} do | if t(\nu) \subset h then
```

else

SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \emptyset$ // set of selected nodes

7 - 6

```
if \mathcal{T} = \{\mu\} then
| if point stored at \mu lies in h then
| N \leftarrow \{\mu\}
```

else

```
foreach child v of the root of \mathcal{T} do

if t(v) \subset h then

| N \leftarrow N \cup \{v\}

else
```

SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \emptyset$ // set of selected nodes

7 - 7

```
if \mathcal{T} = \{\mu\} then
| if point stored at \mu lies in h then
| N \leftarrow \{\mu\}
```

else

```
foreach child v of the root of \mathcal{T} do

if t(v) \subset h then

\mid N \leftarrow N \cup \{v\}

else

\mid \mathbf{if} t(v) \cap h \neq \emptyset then
```

```
SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S)
N \leftarrow \emptyset // set of selected nodes
```

7 - 8

```
if \mathcal{T} = \{\mu\} then
| if point stored at \mu lies in h then
| N \leftarrow \{\mu\}
```

else

```
foreach child v of the root of \mathcal{T} do

if t(v) \subset h then

\mid N \leftarrow N \cup \{v\}

else

\mid \mathbf{if} t(v) \cap h \neq \emptyset then

\mid N \leftarrow N \cup \text{SelectInHalFPLANE}(h, \mathcal{T}_v)

return N \quad // \text{ with } S \cap h = \bigcup_{v \in N} S(v)
```

SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \emptyset$ // set of selected nodes

Task:

Turn this into a

range *counting*

query algorithm!

7 - 9

if $\mathcal{T} = \{\mu\}$ then | if point stored at μ lies in h then | $N \leftarrow \{\mu\}$

else

```
foreach child \nu of the root of \mathcal{T} do

if t(\nu) \subset h then

\mid N \leftarrow N \cup \{\nu\}

else
```

```
if t(\nu) \cap h \neq \emptyset then
\[ N \leftarrow N \cup \text{SelectInHalfplane}(h, \mathcal{T}_{\nu}) \]
```

7 - 10 Query Algorithm Count SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) // set of *selected* nodes $N \leftarrow \emptyset$ if $\mathcal{T} = \{\mu\}$ then Task: if point stored at *µ* lies in *h* then $| N \leftarrow \{\mu\}$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(v) \subset h$ then $N \leftarrow N \cup \{\nu\}$ else if $t(\nu) \cap h \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectInHalfplane}(h, \mathcal{T}_{\nu}) |$ // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

Query Algorithm Count SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) // set of selected nodes $N \leftarrow \emptyset$ number if $\mathcal{T} = \{\mu\}$ then Task: if point stored at *µ* lies in *h* then $| N \leftarrow \{\mu\}$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(\nu) \subset h$ then $N \leftarrow N \cup \{\nu\}$ else if $t(\nu) \cap h \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectInHalfplane}(h, \mathcal{T}_{\nu}) |$ // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

Query Algorithm Count SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) // set of selected nodes $N \leftarrow \not \sim 0$ number if $\mathcal{T} = \{\mu\}$ then Task: if point stored at *µ* lies in *h* then $| N \leftarrow \{\mu\}$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(v) \subset h$ then $N \leftarrow N \cup \{\nu\}$ else if $t(\nu) \cap h \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectInHalfplane}(h, \mathcal{T}_{\nu}) |$ // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

Query Algorithm Count SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) // set of selected nodes $N \leftarrow \not \sim 0$ number if $\mathcal{T} = \{\mu\}$ then Task: if point stored at *µ* lies in *h* then $| N \leftarrow \{\mu\} 1$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(\nu) \subset h$ then $N \leftarrow N \cup \{\nu\}$ else if $t(\nu) \cap h \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectInHalfplane}(h, \mathcal{T}_{\nu}) |$ // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

Query Algorithm Count **SELECTINHALFPLANE**(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \not \sim 0$ // set of selected nodes number if $\mathcal{T} = \{\mu\}$ then Task: if point stored at *µ* lies in *h* then $| N \leftarrow \{\mu\} 1$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(v) \subset h$ then $N \leftarrow N \sqcup \{v\} + |S(v)|$ else if $t(\nu) \cap h \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectInHalfplane}(h, \mathcal{T}_{v}) |$ // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

Query Algorithm Count **SELECTINHALFPLANE**(half-plane h, partit. tree \mathcal{T} for pt set S) // set of selected nodes $N \leftarrow \not \sim 0$ number if $\mathcal{T} = \{\mu\}$ then Task: if point stored at *µ* lies in *h* then $| N \leftarrow \{u\} 1$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(v) \subset h$ then $N \leftarrow N \sqcup \{v\} + |S(v)|$ else if $t(\nu) \cap h \neq \emptyset$ then $- N \leftarrow N \nvdash \text{SelectInHalfplane}(h, \mathcal{T}_{\nu}) \\ + \text{Count}$ // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

Query Algorithm Count SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S) // set of selected nodes $N \leftarrow \not \sim 0$ number if $\mathcal{T} = \{\mu\}$ then Task: if point stored at *µ* lies in *h* then $| N \leftarrow \{\mu\} 1$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(v) \subset h$ then $N \leftarrow N \sqcup \{v\} + |S(v)|$ else if $t(\nu) \cap h \neq \emptyset$ then $- N \leftarrow N \nvdash \text{SelectInHalfplane}(h, \mathcal{T}_{\nu}) \\ + \text{Count}$ // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.:

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T}

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Proof. Let $\varepsilon > 0$.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Proof. Let $\varepsilon > 0$.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Proof. Let $\varepsilon > 0$.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. **Proof.** Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{v \in N} S(v)$. **Proof.** Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. $\Rightarrow Q(n) \leq \begin{cases} 1 & \text{if } n = 1, \\ \text{if } n > 1. \end{cases}$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{v \in N} S(v)$. **Proof.** Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. $\Rightarrow Q(n) \leq \begin{cases} 1 & \text{if } n = 1, \\ r+ & \text{if } n > 1. \end{cases}$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \le \begin{cases} 1\\ r + \sum_{v \in C(h)} \end{cases}$ if n = 1, if n > 1. C(h) : all children v of the root s.t. h crosses t(v)

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. **Proof.** Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. $\Rightarrow Q(n) \leq \begin{cases} 1 & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v)

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. **Proof.** Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. $\Rightarrow Q(n) \leq \begin{cases} 1 & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v)

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. Proof. $\Rightarrow Q(n) \leq \begin{cases} 1 & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v)

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. Proof. $\Rightarrow Q(n) \leq \begin{cases} 1 & c\sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v)

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & c\sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v)

 $\Rightarrow Q(n) \le r + c\sqrt{2(\sqrt{2}c)^{1/\varepsilon}Q(2n/2(\sqrt{2}c)^{1/\varepsilon})}$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c \sqrt{2} (\sqrt{2}c)^{1/\varepsilon} Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c\sqrt{2}(\sqrt{2}c)^{1/\varepsilon}Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_b a - \varepsilon'}) \Rightarrow Q(n) \in O(n^{\log_b a})$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}\varepsilon)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c\sqrt{2}(\sqrt{2}c)^{1/\varepsilon}Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_b a - \varepsilon'}) \Rightarrow Q(n) \in O(n^{\log_b a})$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c\sqrt{2}(\sqrt{2}c)^{1/\varepsilon}Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_b a} - \varepsilon') \Rightarrow Q(n) \in O(n^{\log_b a})$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c\sqrt{2}(\sqrt{2}c)^{1/\varepsilon}Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a} - \varepsilon'}) \Rightarrow Q(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a}})$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c\sqrt{2}(\sqrt{2}c)^{1/\varepsilon}Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a} - \varepsilon'}) \Rightarrow Q(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a}})$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c \sqrt{2} (\sqrt{2}c)^{1/\varepsilon} Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a} - \varepsilon'}) \Rightarrow Q(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a}})$ $\log_{h} a = \frac{1+1/2\epsilon}{1/\epsilon} =$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c \sqrt{2} (\sqrt{2}c)^{1/\varepsilon} Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a} - \varepsilon'}) \Rightarrow Q(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a}})$ $\log_{h} a = \frac{1+1/2\epsilon}{1/\epsilon} = \epsilon + 1/2$

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. Let $\varepsilon > 0$. Let $r = 2(\sqrt{2c})^{1/\varepsilon}$. **Proof.** $\Rightarrow Q(n) \leq \begin{cases} 1 & \sqrt{r} & 2n/r & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v) $\Rightarrow Q(n) \le r + c\sqrt{2}(\sqrt{2}c)^{1/\varepsilon}Q(2n/2(\sqrt{2}c)^{1/\varepsilon})$ $= 2d^{1/\epsilon} + d^{1+1/2\epsilon}Q(n/d^{1/\epsilon})$ for $d = \sqrt{2c}$ Master Theorem: $f(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a} - \varepsilon'}) \Rightarrow Q(n) \in O(n^{\log_{\mathbf{b}} \mathbf{a}})$ $\log_{\mathbf{h}} a = \frac{1+1/2\varepsilon}{1/\varepsilon} = \varepsilon + 1/2 \Rightarrow Q(n) \in O(n^{1/2+\varepsilon}) \square$

Lemma.

A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

Lemma. A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Lemma. A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Corollary. Half-plane range counting queries can be answered in $O(n^{1/2+\varepsilon})$ time using O(n) space and $O(n^{1+\varepsilon})$ prep.

Back to Triangular Range Queries

Any ideas?

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Theorem. Given a set *S* of *n* pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree.

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Theorem. Given a set *S* of *n* pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree.

The tree can be built in $O(n^{1+\varepsilon})$ time and uses O(n) space.

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Theorem. Given a set *S* of *n* pts in the plane, for any ε > 0, a triangular range-counting query can be answered in O(n^{1/2+ε}) time using a partition tree.
The tree can be built in O(n^{1+ε}) time and uses O(n) space.
The points inside the query range can be reported in O(k) additional time, where k is the number of reported pts.

10 - 6

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Theorem. Given a set *S* of *n* pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree. The tree can be built in $O(n^{1+\varepsilon})$ time and uses O(n) space. The points inside the query range can be reported in O(k) additional time, where *k* is the number of reported pts.

Can we do better?

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Theorem. Given a set *S* of *n* pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree. The tree can be built in $O(n^{1+\varepsilon})$ time and uses O(n) space. The points inside the query range can be reported in O(k) additional time, where *k* is the number of reported pts.

Can we do better?

Use cutting trees! (Chapter 16.3)

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Theorem. Given a set *S* of *n* pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree. The tree can be built in $O(n^{1+\varepsilon})$ time and uses O(n) space. The points inside the query range can be reported in O(k) additional time, where *k* is the number of reported pts.

Can we do better?

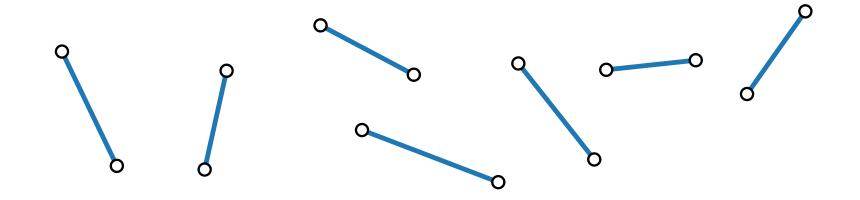
Use cutting trees! (Chapter 16.3) Query time $O(\log^3 n)$, prep. & storage $O(n^{2+\epsilon})$.

Idea. Store with each internal node not just a number,

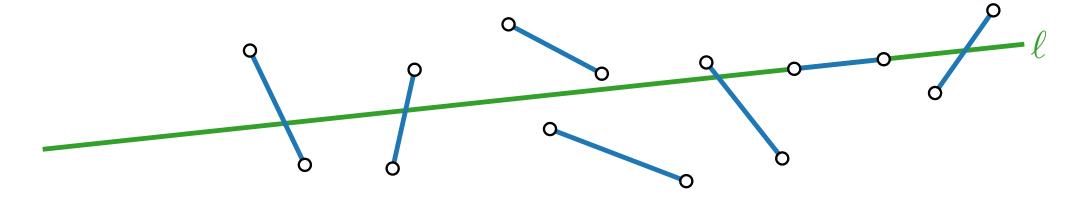
Idea. Store with each internal node not just a number,

Idea. Store with each internal node not just a number, but another data structure!

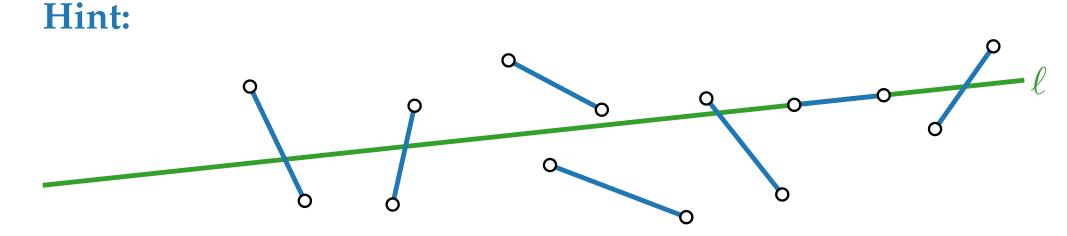
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



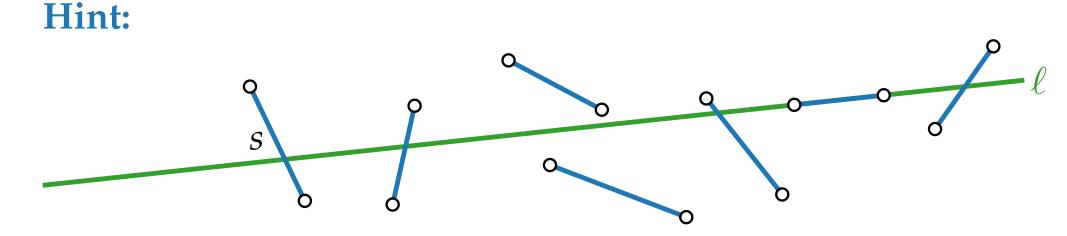
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



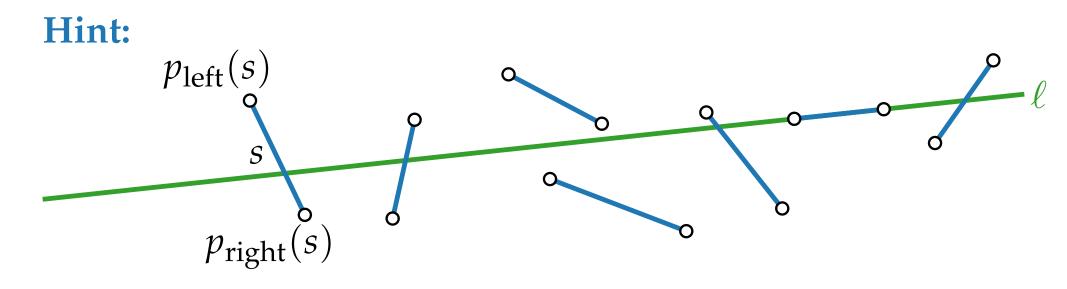
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



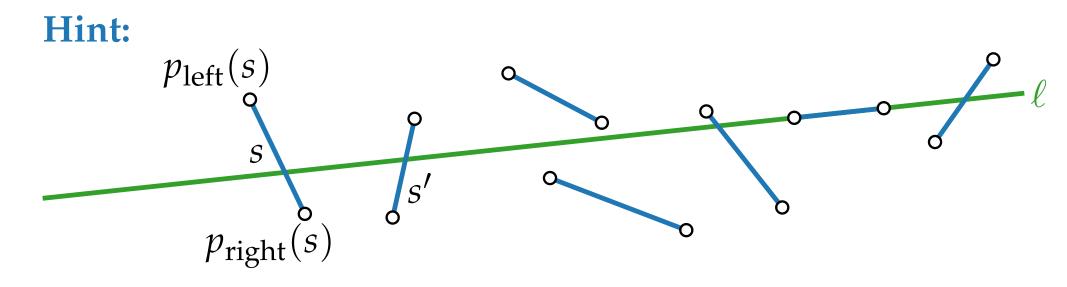
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



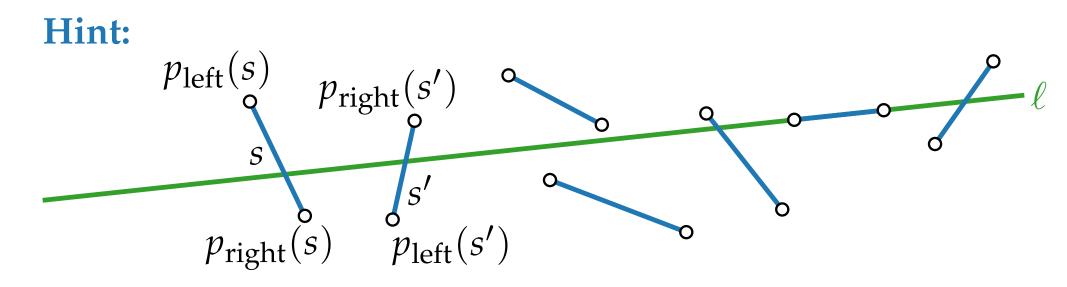
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



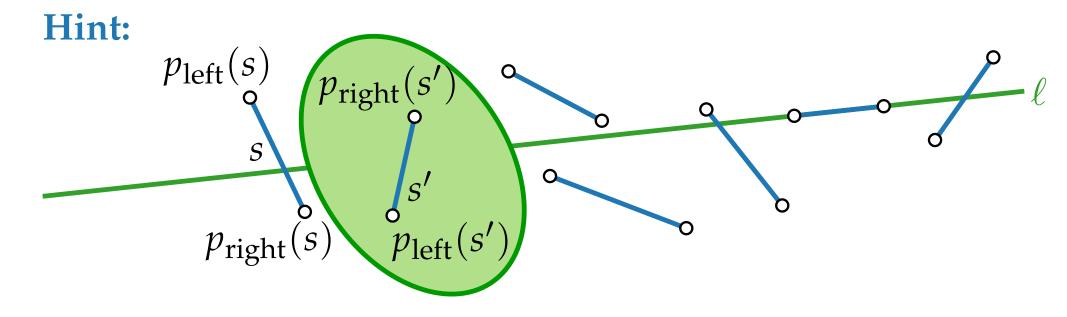
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .

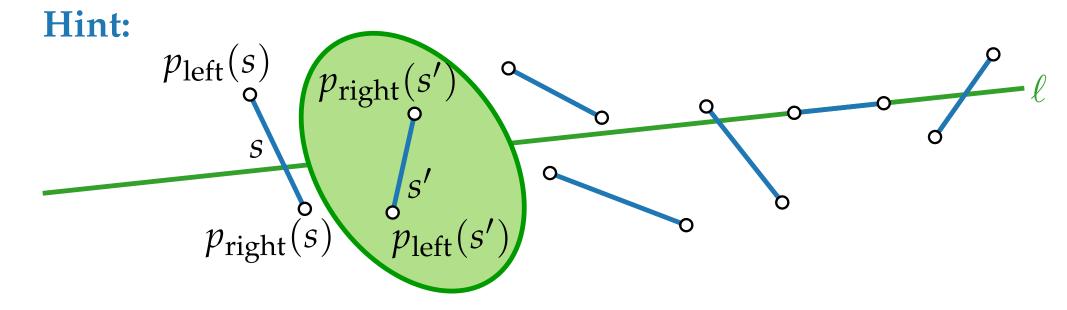


|S(v)|

11 - 12

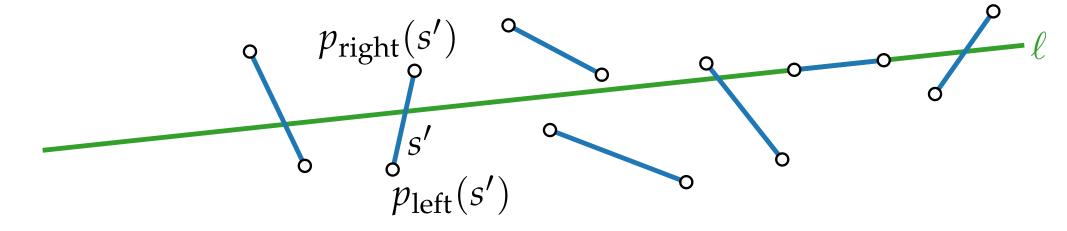
Idea. Store with each internal node not just a number, but another data structure!

Task.Design a fast data structure for line segments
that counts all segments intersecting a query line ℓ .

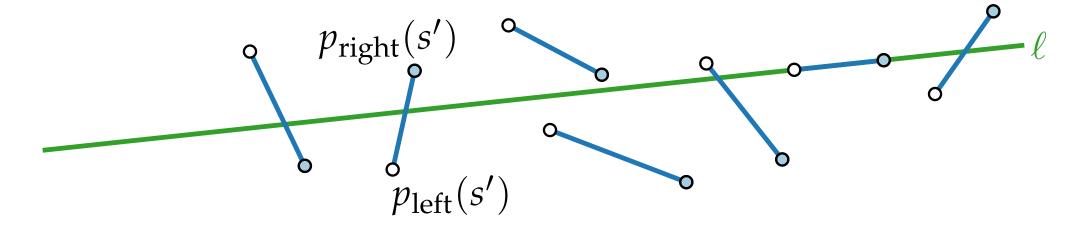


[3 min]

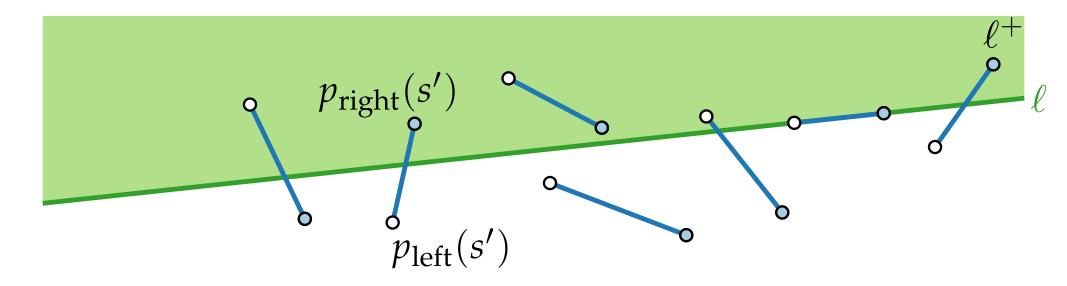
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



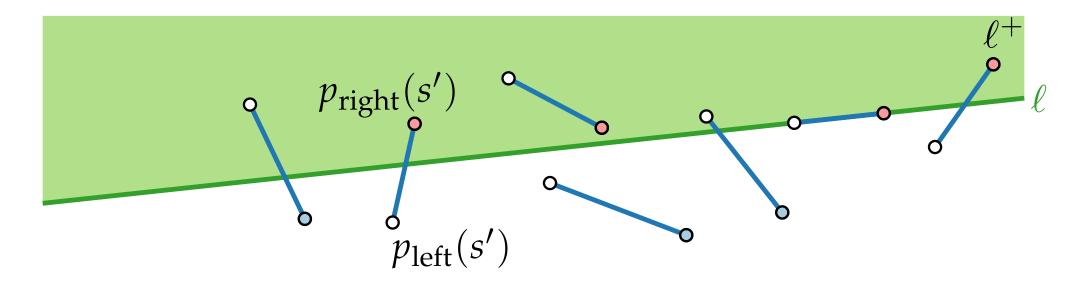
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



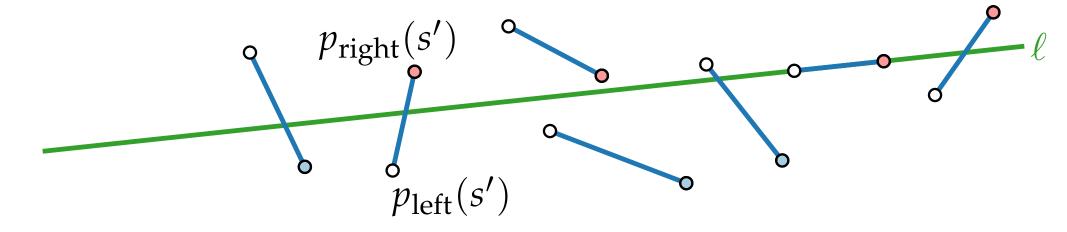
- Idea. Store with each internal node not just a number, but another data structure!
- **Task.** Design a fast data structure for line segments that counts all segments intersecting a query line ℓ .



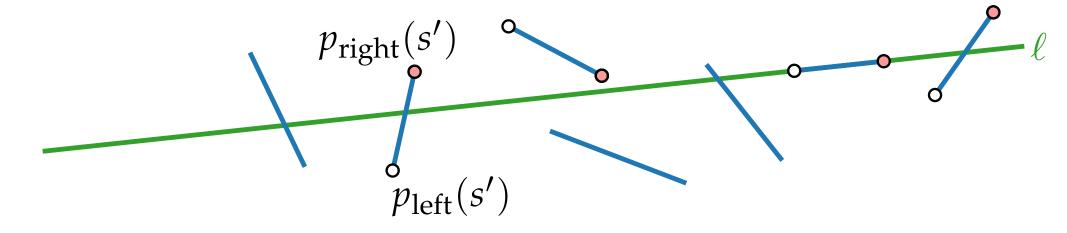
- Idea. Store with each internal node not just a number, but another data structure!
- **Task.** Design a fast data structure for line segments that counts all segments intersecting a query line ℓ .



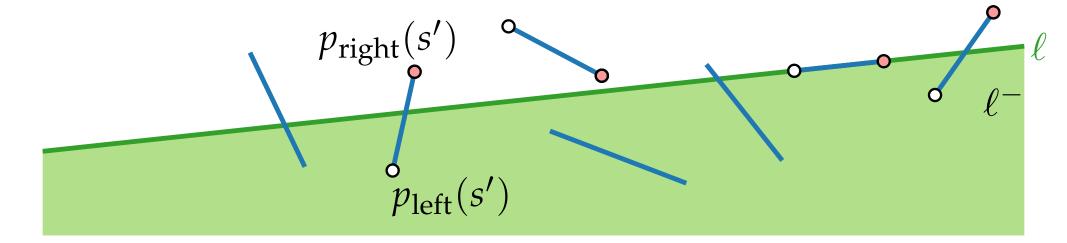
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



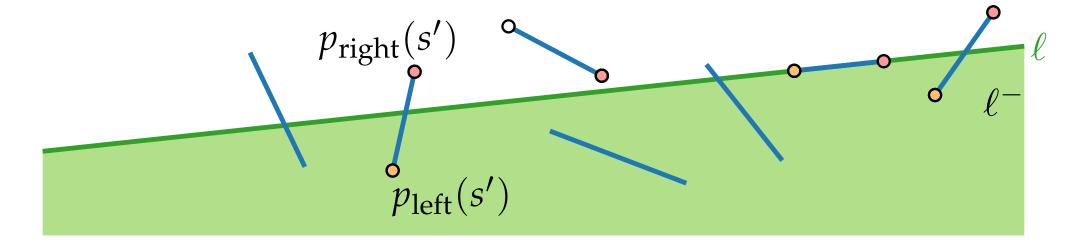
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



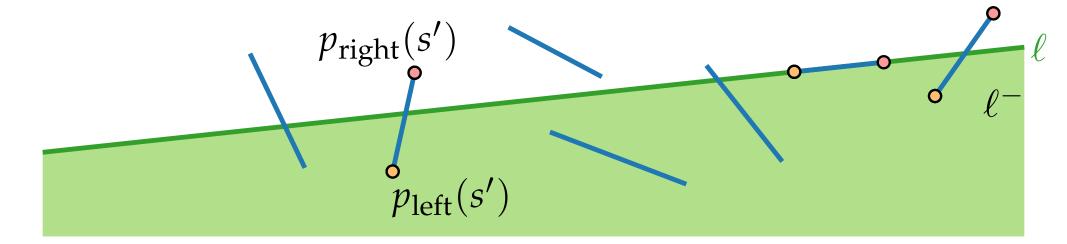
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .

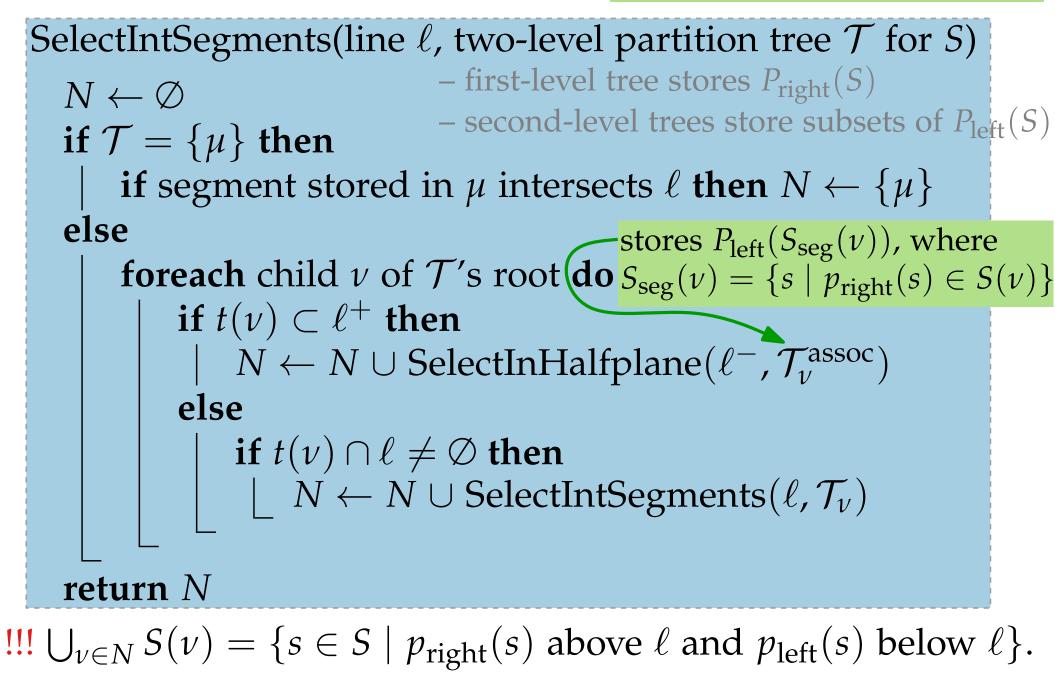


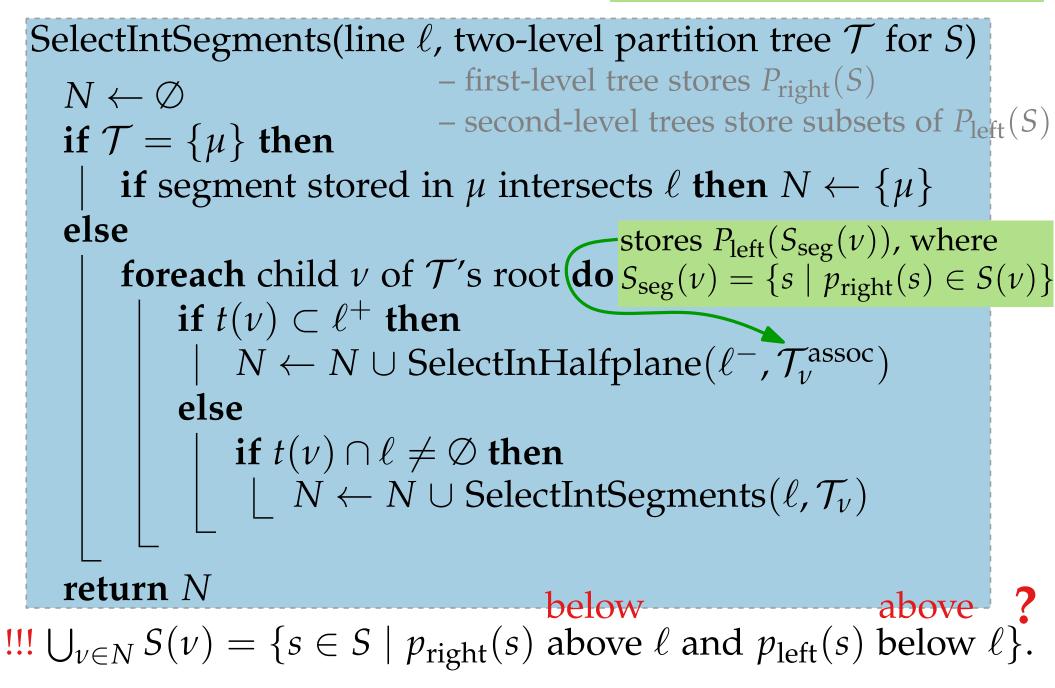
- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



```
SelectIntSegments(line \ell, two-level partition tree \mathcal{T} for S)
                                        - first-level tree stores P_{\text{right}}(S)
   N \leftarrow \emptyset
                                        – second-level trees store subsets of P_{\text{left}}(S)
   if \mathcal{T} = \{\mu\} then
        if segment stored in \mu intersects \ell then N \leftarrow \{\mu\}
   else
        foreach child \nu of \mathcal{T}'s root do
              if t(\nu) \subset \ell^+ then
                   N \leftarrow N \cup \text{SelectInHalfplane}(\ell^{-}, \mathcal{T}_{\nu}^{\text{assoc}})
              else
                   if t(\nu) \cap \ell \neq \emptyset then
                     | N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_{\nu})
   return N
```

SelectIntSegments(line ℓ , two-level partition tree \mathcal{T} for *S*) - first-level tree stores $P_{\text{right}}(S)$ $N \leftarrow \emptyset$ – second-level trees store subsets of $P_{\text{left}}(S)$ if $\mathcal{T} = \{\mu\}$ then if segment stored in μ intersects ℓ then $N \leftarrow \{\mu\}$ else -stores $P_{\text{left}}(S_{\text{seg}}(\nu))$, where **foreach** child ν of \mathcal{T} 's root **do** $S_{seg}(\nu) = \{s \mid p_{right}(s) \in S(\nu)\}$ if $t(\nu) \subset \ell^+$ then $N \leftarrow N \cup \text{SelectInHalfplane}(\ell^{-}, \mathcal{T}_{\nu}^{\text{assoc}})$ else if $t(\nu) \cap \ell \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_{\nu})$ return N





SelectIntSegments(line ℓ , two-level partition tree \mathcal{T} for S) - first-level tree stores $P_{\text{right}}(S)$ $N \leftarrow \emptyset$ – second-level trees store subsets of $P_{\text{left}}(S)$ if $\mathcal{T} = \{\mu\}$ then if segment stored in μ intersects ℓ then $N \leftarrow \{\mu\}$ else stores $P_{\text{left}}(S_{\text{seg}}(\nu))$, where **foreach** child ν of \mathcal{T} 's root **do** $S_{\text{seg}}(\nu) = \{s \mid p_{\text{right}}(s) \in S(\nu)\}$ if $t(\nu) \subset \ell^+$ then $N \leftarrow N \cup \text{SelectInHalfplane}(\ell^{-}, \mathcal{T}_{\nu}^{\text{assoc}})$ else if $t(\nu) \cap \ell \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_{\nu}) |$ return N belowabove $::: \bigcup_{\nu \in N} S(\nu) = \{ s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell \}.$

SelectIntSegments(line ℓ , two-level partition tree \mathcal{T} for S) - first-level tree stores $P_{\text{right}}(S)$ $N \leftarrow \emptyset$ – second-level trees store subsets of $P_{\text{left}}(S)$ if $\mathcal{T} = \{\mu\}$ then if segment stored in μ intersects ℓ then $N \leftarrow \{\mu\}$ else -stores $P_{\text{left}}(S_{\text{seg}}(\nu))$, where **foreach** child ν of \mathcal{T} 's root **do** $S_{\text{seg}}(\nu) = \{s \mid p_{\text{right}}(s) \in S(\nu)\}$ if $t(\nu) \subset \ell^+$ then $N \leftarrow N \cup \text{SelectInHalfplane}(\ell^{-}, \mathcal{T}_{1'}^{\text{assoc}})$ else if $t(\nu) \cap \ell \neq \emptyset$ then $| N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_{\nu}) |$ return N belowabove $::! \cup_{\nu \in N} S(\nu) = \{ s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell \}.$

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

- given a query line ℓ , we can select $O(n^{1/2+\epsilon})$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ .

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

- given a query line ℓ , we can select $O(n^{1/2+\epsilon})$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ .

– The selection takes $O(n^{1/2+\varepsilon})$ time.

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

given a query line ℓ, we can select O(n^{1/2+ε}) nodes from T whose canonical subsets represent the segments intersected by ℓ.
The selection takes O(n^{1/2+ε}) time.

Corollary. Let *S* be a set of *n* segments in the plane. We can count the number of segments in *S* intersected by a query line in $O(n^{1/2+ \varepsilon})$ time using $O(n \log n)$ space and O() prep.

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

given a query line ℓ, we can select O(n^{1/2+ε}) nodes from T whose canonical subsets represent the segments intersected by ℓ.
The selection takes O(n^{1/2+ε}) time.

Corollary. Let *S* be a set of *n* segments in the plane. We can count the number of segments in *S* intersected by a query line in $O(n^{1/2+ \varepsilon})$ time using $O(n \log n)$ space and $O(n^{1+\varepsilon})$ prep.

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

- given a query line ℓ , we can select $O(n^{1/2+\epsilon})$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ .

– The selection takes $O(n^{1/2+\varepsilon})$ time.

Corollary. Let *S* be a set of *n* segments in the plane. We can count the number of segments in *S* **in a \delta-level intersected by a query line** in $O(n^{1/2+ \varepsilon})$ time **query** using $O(n \log n)$ space and $O(n^{1+\varepsilon})$ prep.

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

- given a query line ℓ , we can select $O(n^{1/2+\epsilon})$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ .

– The selection takes $O(n^{1/2+\varepsilon})$ time.

Corollary. Let *S* be a set of *n* segments in the plane. We can count the number of segments in *S* **in a \delta-level intersected by a query line** in $O(n^{1/2+\delta\varepsilon})$ time **query** using $O(n \log^{\delta-1} n)$ space and $O(n^{1+\delta\varepsilon})$ prep.