
1

Computational Geometry

Dr. Philipp Kindermann Winter Semester 2018/19

Lecture #11

Simple Range Searching

2 - 1

Range-Counting Query

2 - 2

Range-Counting Query

area affected by the
construction of a
new airport

2 - 3

Range-Counting Query

area affected by the
construction of a
new airport

2 - 4

Range-Counting Query

area affected by the
construction of a
new airport

Observation.
Query range
depends on,
e.g., dominant
wind directions

2 - 5

Range-Counting Query

area affected by the
construction of a
new airport

Observation.
Query range
depends on,
e.g., dominant
wind directions

⇒ non-orthogonal

3 - 1

Non-orthogonal range queries
Query range:

3 - 2

Non-orthogonal range queries
Query range:

3 - 3

Non-orthogonal range queries
Query range:

3 - 4

Non-orthogonal range queries
Query range: ?

3 - 5

Non-orthogonal range queries
Query range:

Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Problem.

?

3 - 6

Non-orthogonal range queries
Query range:

Task Design a data structure for the 1-dim. case:

Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Problem.

?

3 - 7

Non-orthogonal range queries
Query range:

Task Design a data structure for the 1-dim. case:

Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

– Given a number x, return |P ∩ [x, ∞)|.

Problem.

?

3 - 8

Non-orthogonal range queries
Query range:

Task Design a data structure for the 1-dim. case:

Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

– Given a number x, return |P ∩ [x, ∞)|.

– Consider P static / dynamic!

Problem.

?

4 - 1

The 1-Dimensional Case

Solution.

Task. Design a data structure for the 1-dim. case!

4 - 2

The 1-Dimensional Case

Solution. • use balanced binary search trees

Task. Design a data structure for the 1-dim. case!

4 - 3

The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

[see Cormen et al.,
Introduction to Algorithms,
MIT press, 3rd ed., 2009]

4 - 4

The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

[see Cormen et al.,
Introduction to Algorithms,
MIT press, 3rd ed., 2009]

4 - 5

The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

[see Cormen et al.,
Introduction to Algorithms,
MIT press, 3rd ed., 2009]

4 - 6

The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

[see Cormen et al.,
Introduction to Algorithms,
MIT press, 3rd ed., 2009]

4 - 7

The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

[see Cormen et al.,
Introduction to Algorithms,
MIT press, 3rd ed., 2009]

4 - 8

The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

Lesson. On each level, visit ≤ 1 subtree recursively!

[see Cormen et al.,
Introduction to Algorithms,
MIT press, 3rd ed., 2009]

4 - 9

The 1-Dimensional Case

Solution. • use balanced binary search trees
• augment each node with the number of

nodes in its subtree

Task. Design a data structure for the 1-dim. case!

Lesson. On each level, visit ≤ 1 subtree recursively!

[see Cormen et al.,
Introduction to Algorithms,
MIT press, 3rd ed., 2009]

︸ ︷︷ ︸
canonical subset

5 - 1

Generalizing to 2 Dimensions
Any ideas?

5 - 2

Generalizing to 2 Dimensions
Any ideas?

5 - 3

Generalizing to 2 Dimensions
Partition the input!

5 - 4

Generalizing to 2 Dimensions
Partition the input! Query. . .

`

5 - 5

Generalizing to 2 Dimensions
Partition the input! Query. . . in a partition tree

`

5 - 6

Generalizing to 2 Dimensions
Partition the input! Query. . . in a partition tree

`

5 - 7

Generalizing to 2 Dimensions
Partition the input! Query. . . in a partition tree

`

5 - 8

Generalizing to 2 Dimensions
Partition the input! Query. . . in a partition tree . . . recursively!

`

5 - 9

Generalizing to 2 Dimensions
Partition the input! Query. . . in a partition tree . . . recursively!

`

5 - 10

Generalizing to 2 Dimensions

Definition. Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)} is a
simplicial partition (of size r) for S if

Partition the input! Query. . . in a partition tree . . . recursively!

`

5 - 11

Generalizing to 2 Dimensions

Definition. Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)} is a
simplicial partition (of size r) for S if

– S is partitioned by S1, . . . , Sr and
– for 1 ≤ i ≤ r, ti is a triangle and Si ⊂ ti.

Partition the input! Query. . . in a partition tree . . . recursively!

`

5 - 12

Generalizing to 2 Dimensions

Definition. Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)} is a
simplicial partition (of size r) for S if

– S is partitioned by S1, . . . , Sr and
– for 1 ≤ i ≤ r, ti is a triangle and Si ⊂ ti.

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si

5 - 13

Generalizing to 2 Dimensions

Definition. Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)} is a
simplicial partition (of size r) for S if

– S is partitioned by S1, . . . , Sr and
– for 1 ≤ i ≤ r, ti is a triangle and Si ⊂ ti.

classes of S

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si

5 - 14

Generalizing to 2 Dimensions

Definition. Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)} is a
simplicial partition (of size r) for S if

– S is partitioned by S1, . . . , Sr and
– for 1 ≤ i ≤ r, ti is a triangle and Si ⊂ ti.

classes of S

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si

5 - 15

Generalizing to 2 Dimensions

Definition. Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)} is a
simplicial partition (of size r) for S if

– S is partitioned by S1, . . . , Sr and
– for 1 ≤ i ≤ r, ti is a triangle and Si ⊂ ti.

classes of S

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

5 - 16

Generalizing to 2 Dimensions

Definition. Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)} is a
simplicial partition (of size r) for S if

Ψ(S) is fine if |Si| ≤ 2 |S|r for every 1 ≤ i ≤ r.

– S is partitioned by S1, . . . , Sr and
– for 1 ≤ i ≤ r, ti is a triangle and Si ⊂ ti.

classes of S

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

5 - 17

Generalizing to 2 Dimensions

Definition. The crossing number of ` (w.r.t. Ψ(S)) is the
number of triangles t1, . . . , tr crossed by `.

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

5 - 18

Generalizing to 2 Dimensions

Definition. The crossing number of ` (w.r.t. Ψ(S)) is the
number of triangles t1, . . . , tr crossed by `.

The crossing number of Ψ(S) is the maximum
crossing number over all possible lines.

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

5 - 19

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

[Matoušek,
DCG 1992]

5 - 20

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

[Matoušek,
DCG 1992]

5 - 21

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

[Matoušek,
DCG 1992]

5 - 22

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

Partition the input! Query. . . in a partition tree . . . recursively!

`

Si
ti

[Matoušek,
DCG 1992]

5 - 23

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

Partition the input! Query. . . in a partition tree . . . recursively!

`

v

Si
ti

[Matoušek,
DCG 1992]

5 - 24

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

Partition the input! Query. . . in a partition tree . . . recursively!

`

v

Si
ti

[Matoušek,
DCG 1992]

5 - 25

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

t(v)

Partition the input! Query. . . in a partition tree . . . recursively!

`

v

Si
ti

[Matoušek,
DCG 1992]

5 - 26

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

t(v)

S(v)
canonical
subset of v

Partition the input! Query. . . in a partition tree . . . recursively!

`

v

Si
ti

[Matoušek,
DCG 1992]

5 - 27

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

t(v)

S(v)
canonical
subset of v

Partition the input! Query. . . in a partition tree . . . recursively!

|S(v)|
`

v

Si
ti

[Matoušek,
DCG 1992]

5 - 28

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

t(v)

S(v)
canonical
subset of v

Partition the input! Query. . . in a partition tree . . . recursively!

|S(v)|
`

v
1 2 . . . r

Si
ti

[Matoušek,
DCG 1992]

5 - 29

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

t(v)

S(v)
canonical
subset of v

Partition the input! Query. . . in a partition tree . . . recursively!

|S(v)|
`

v
1 2 . . . r

Si
ti

[Matoušek,
DCG 1992]

Lemma. A partition tree for S can be constructed in
O(n1+ε) time. The tree uses O(n) storage.

5 - 30

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

t(v)

S(v)
canonical
subset of v

Partition the input! Query. . . in a partition tree . . . recursively!

|S(v)|
`

v
1 2 . . . r

Si
ti

[Matoušek,
DCG 1992]

Lemma. A partition tree for S can be constructed in
O(n1+ε) time. The tree uses O(n) storage.

5 - 31

Generalizing to 2 Dimensions

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

t(v)

S(v)
canonical
subset of v

Partition the input! Query. . . in a partition tree . . . recursively!

|S(v)|
`

v
1 2 . . . r

Si
ti

[Matoušek,
DCG 1992]

search tree with n leaves

Lemma. A partition tree for S can be constructed in
O(n1+ε) time. The tree uses O(n) storage.

6 - 1

Example for a Query

point set S

6 - 2

Example for a Query

t1
t2 t4

t5

t3
t6

t7

partition by triangles

point set S

6 - 3

Example for a Query

t1
t2 t4

t5

t3
t6

t7

h: query rangepoint set S

partition by triangles

point set S

6 - 4

Example for a Query

t1
t2 t4

t5

t3
t6

t7

h: query rangepoint set S

partition by triangles

point set S

6 - 5

Example for a Query

v1 v7v5 v6v4v3v2

t1
t2 t4

t5

t3
t6

t7

h: query range

partition tree for S

point set S

partition by triangles

point set S

6 - 6

Example for a Query

v1 v7v5 v6v4v3v2

t1
t2 t4

t5

t3
t6

t7

= selected node
= visited node

h: query range

partition tree for S

point set S

partition by triangles

point set S

6 - 7

Example for a Query

v1 v7v5 v6v4v3v2

t1
t2 t4

t5

t3
t6

t7

= selected node
= visited node

h: query range

partition tree for S

point set S

partition by triangles

point set S

6 - 8

Example for a Query

v1 v7v5 v6v4v3v2

t1

recursively visited subtrees

t2 t4

t5

t3
t6

t7

= selected node
= visited node

h: query range

partition tree for S

point set S

partition by triangles

point set S

7 - 1

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅ // set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 2

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N // with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 3

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N // with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 4

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N // with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 5

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N // with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 6

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N // with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 7

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N // with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 8

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N // with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 9

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

7 - 10

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

Count

7 - 11

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

number

Count

7 - 12

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

number
0

Count

7 - 13

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

number

1

0

Count

7 - 14

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

number

1

0

+|S(v)|

Count

7 - 15

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

number

1

0

+|S(v)|

Count

+ Count

7 - 16

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree T for pt set S)
N ← ∅

if T = {µ} then
if point stored at µ lies in h then

N ← {µ}
else

foreach child ν of the root of T do
if t(ν) ⊂ h then

N ← N ∪ {ν}
else

if t(ν) ∩ h 6= ∅ then
N ← N ∪ SelectInHalfplane(h, Tν)

return N

Task:

Turn this into a
range counting
query algorithm!

// with S ∩ h =
⋃

ν∈N S(ν)

// set of selected nodes

v1 v7v5 v6v4v3v2

t1

t2
t4

t5

t3
t6

t7

number

1

0

+|S(v)|

Count

+ Count

8 - 1

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

8 - 2

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T

8 - 3

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

8 - 4

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

8 - 5

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992]

8 - 6

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

8 - 7

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

8 - 8

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

8 - 9

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

8 - 10

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

8 - 11

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

8 - 12

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

8 - 13

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/r

8 - 14

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0.

Theorem. For any set S of n pts and any 1 ≤ r ≤ n, a fine
simplicial partition of size r and crossing
number O(

√
r) exists. For any ε > 0, such a

partition can be built in O(n1+ε) time.

[Matoušek,
DCG 1992] c

√
r

Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

8 - 15

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

8 - 16

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c

8 - 17

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

8 - 18

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

8 - 19

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

8 - 20

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

8 - 21

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

logb a = 1+1/2ε
1/ε = ε + 1/2

8 - 22

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

logb a = 1+1/2ε
1/ε = ε + 1/2

8 - 23

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

logb a = 1+1/2ε
1/ε = ε + 1/2

8 - 24

Analysis of the Partition Tree
Lemma. For any ε > 0, there is a partition tree T for S s.t.:

for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Proof. Let ε > 0. Let r = 2(
√

2c)1/ε.

⇒ Q(n) ≤
{

1 if n = 1,
r + ∑v∈C(h) Q(|S(v)|) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

2n/rc
√

r

⇒ Q(n) ≤ r + c
√

2(
√

2c)1/εQ(2n/2(
√

2c)1/ε)

= 2d1/ε + d1+1/2εQ(n/d1/ε) for d =
√

2c
Master Theorem: f (n) ∈ O(nlogb a−ε′)⇒ Q(n) ∈ O(nlogb a)

logb a = 1+1/2ε
1/ε = ε + 1/2 ⇒ Q(n) ∈ O(n1/2+ε)

9 - 1

Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in
O(n1+ε) time. The tree uses O(n) storage.

9 - 2

Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in
O(n1+ε) time. The tree uses O(n) storage.

Lemma. For any ε > 0, there is a partition tree T for S s.t.:
for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

9 - 3

Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in
O(n1+ε) time. The tree uses O(n) storage.

Lemma. For any ε > 0, there is a partition tree T for S s.t.:
for a query half-plane h,
SelectInHalfplane selects in O(n1/2+ε) time
a set N of O(n1/2+ε) nodes of T
with the property that h ∩ S =

⋃
ν∈N S(ν).

Corollary. Half-plane range counting queries can be
answered in O(n1/2+ε) time
using O(n) space and O(n1+ε) prep.

10 - 1

Back to Triangular Range Queries
Any ideas?

10 - 2

Back to Triangular Range Queries
Any ideas? Just use SelectInHalfplane!

10 - 3

Back to Triangular Range Queries
Any ideas?

Theorem. Given a set S of n pts in the plane, for any ε > 0, a
triangular range-counting query can be answered
in O(n1/2+ε) time using a partition tree.

Just use SelectInHalfplane!

10 - 4

Back to Triangular Range Queries
Any ideas?

Theorem. Given a set S of n pts in the plane, for any ε > 0, a
triangular range-counting query can be answered
in O(n1/2+ε) time using a partition tree.

The tree can be built in O(n1+ε) time and uses
O(n) space.

Just use SelectInHalfplane!

10 - 5

Back to Triangular Range Queries
Any ideas?

Theorem. Given a set S of n pts in the plane, for any ε > 0, a
triangular range-counting query can be answered
in O(n1/2+ε) time using a partition tree.

The tree can be built in O(n1+ε) time and uses
O(n) space.
The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Just use SelectInHalfplane!

10 - 6

Back to Triangular Range Queries
Any ideas?

Theorem. Given a set S of n pts in the plane, for any ε > 0, a
triangular range-counting query can be answered
in O(n1/2+ε) time using a partition tree.

The tree can be built in O(n1+ε) time and uses
O(n) space.
The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?

Just use SelectInHalfplane!

10 - 7

Back to Triangular Range Queries
Any ideas?

Theorem. Given a set S of n pts in the plane, for any ε > 0, a
triangular range-counting query can be answered
in O(n1/2+ε) time using a partition tree.

The tree can be built in O(n1+ε) time and uses
O(n) space.
The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?
Use cutting trees! (Chapter 16.3)

Just use SelectInHalfplane!

10 - 8

Back to Triangular Range Queries
Any ideas?

Theorem. Given a set S of n pts in the plane, for any ε > 0, a
triangular range-counting query can be answered
in O(n1/2+ε) time using a partition tree.

The tree can be built in O(n1+ε) time and uses
O(n) space.
The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?
Use cutting trees! (Chapter 16.3)

Query time O(log3n), prep. & storage O(n2+ε).

Just use SelectInHalfplane!

11 - 1

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

11 - 2

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

11 - 3

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

11 - 4

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

11 - 5

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

11 - 6

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

Hint:

11 - 7

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

s

Hint:

11 - 8

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

s

pleft(s)

pright(s)

Hint:

11 - 9

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

s

pleft(s)

pright(s)
s′

Hint:

11 - 10

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

s

pleft(s)

pright(s)
s′

pleft(s′)

pright(s′)
Hint:

11 - 11

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

s

pleft(s)

pright(s)
s′

pleft(s′)

pright(s′)
Hint:

11 - 12

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

s

pleft(s)

pright(s)
s′

pleft(s′)

pright(s′)
Hint:

[3 min]

11 - 13

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

s′

pleft(s′)

pright(s′)

11 - 14

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)

11 - 15

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)
`+

11 - 16

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)
`+

11 - 17

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)

11 - 18

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)

11 - 19

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)

`−

11 - 20

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)

`−

11 - 21

Multi-Level Partition Trees
Idea. Store with each internal node not just a number,

|S(v)|

but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line `.

`

pleft(s′)

pright(s′)

`−

12 - 1

Query Algorithm
SelectIntSegments(line `, two-level partition tree T for S)

N ← ∅
if T = {µ} then

if segment stored in µ intersects ` then N ← {µ}
else

foreach child ν of T ’s root do
if t(ν) ⊂ `+ then

N ← N ∪ SelectInHalfplane(`−, T assoc
ν)

else
if t(ν) ∩ ` 6= ∅ then

N ← N ∪ SelectIntSegments(`, Tν)

return N

– first-level tree stores Pright(S)
– second-level trees store subsets of Pleft(S)

12 - 2

Query Algorithm
SelectIntSegments(line `, two-level partition tree T for S)

N ← ∅
if T = {µ} then

if segment stored in µ intersects ` then N ← {µ}
else

foreach child ν of T ’s root do
if t(ν) ⊂ `+ then

N ← N ∪ SelectInHalfplane(`−, T assoc
ν)

else
if t(ν) ∩ ` 6= ∅ then

N ← N ∪ SelectIntSegments(`, Tν)

return N

stores Pleft(Sseg(ν)), where
Sseg(ν) = {s | pright(s) ∈ S(ν)}

For S′ ⊆ S, let
Pright(S′) = {pright(s) | s ∈ S′}left left

– first-level tree stores Pright(S)
– second-level trees store subsets of Pleft(S)

12 - 3

Query Algorithm
SelectIntSegments(line `, two-level partition tree T for S)

N ← ∅
if T = {µ} then

if segment stored in µ intersects ` then N ← {µ}
else

foreach child ν of T ’s root do
if t(ν) ⊂ `+ then

N ← N ∪ SelectInHalfplane(`−, T assoc
ν)

else
if t(ν) ∩ ` 6= ∅ then

N ← N ∪ SelectIntSegments(`, Tν)

return N
!!!
⋃

ν∈N S(ν) = {s ∈ S | pright(s) above ` and pleft(s) below `}.

stores Pleft(Sseg(ν)), where
Sseg(ν) = {s | pright(s) ∈ S(ν)}

For S′ ⊆ S, let
Pright(S′) = {pright(s) | s ∈ S′}left left

– first-level tree stores Pright(S)
– second-level trees store subsets of Pleft(S)

12 - 4

Query Algorithm
SelectIntSegments(line `, two-level partition tree T for S)

N ← ∅
if T = {µ} then

if segment stored in µ intersects ` then N ← {µ}
else

foreach child ν of T ’s root do
if t(ν) ⊂ `+ then

N ← N ∪ SelectInHalfplane(`−, T assoc
ν)

else
if t(ν) ∩ ` 6= ∅ then

N ← N ∪ SelectIntSegments(`, Tν)

return N
!!!
⋃

ν∈N S(ν) = {s ∈ S | pright(s) above ` and pleft(s) below `}.
below above ?

stores Pleft(Sseg(ν)), where
Sseg(ν) = {s | pright(s) ∈ S(ν)}

For S′ ⊆ S, let
Pright(S′) = {pright(s) | s ∈ S′}left left

– first-level tree stores Pright(S)
– second-level trees store subsets of Pleft(S)

12 - 5

Query Algorithm
SelectIntSegments(line `, two-level partition tree T for S)

N ← ∅
if T = {µ} then

if segment stored in µ intersects ` then N ← {µ}
else

foreach child ν of T ’s root do
if t(ν) ⊂ `+ then

N ← N ∪ SelectInHalfplane(`−, T assoc
ν)

else
if t(ν) ∩ ` 6= ∅ then

N ← N ∪ SelectIntSegments(`, Tν)

return N
!!!
⋃

ν∈N S(ν) = {s ∈ S | pright(s) above ` and pleft(s) below `}.
below above ?

stores Pleft(Sseg(ν)), where
Sseg(ν) = {s | pright(s) ∈ S(ν)}

For S′ ⊆ S, let
Pright(S′) = {pright(s) | s ∈ S′}left left

– first-level tree stores Pright(S)
– second-level trees store subsets of Pleft(S)

12 - 6

Query Algorithm
SelectIntSegments(line `, two-level partition tree T for S)

N ← ∅
if T = {µ} then

if segment stored in µ intersects ` then N ← {µ}
else

foreach child ν of T ’s root do
if t(ν) ⊂ `+ then

N ← N ∪ SelectInHalfplane(`−, T assoc
ν)

else
if t(ν) ∩ ` 6= ∅ then

N ← N ∪ SelectIntSegments(`, Tν)

return N
!!!
⋃

ν∈N S(ν) = {s ∈ S | pright(s) above ` and pleft(s) below `}.
below above ?

stores Pleft(Sseg(ν)), where
Sseg(ν) = {s | pright(s) ∈ S(ν)}

For S′ ⊆ S, let
Pright(S′) = {pright(s) | s ∈ S′}left left

– first-level tree stores Pright(S)
– second-level trees store subsets of Pleft(S)

13 - 1

Results
Lemma. A 2-level partition tree for line-intersection queries

among a set of n segments uses O(n log n) storage.

13 - 2

Results
Lemma.

Lemma.

A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log n) storage.

Let S be a set of n segments in the plane. For any
ε > 0, there is a 2-level partition tree T for S s.t.

13 - 3

Results
Lemma.

Lemma.

A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log n) storage.

Let S be a set of n segments in the plane. For any
ε > 0, there is a 2-level partition tree T for S s.t.

given a query line `, we can select O(n1/2+ε)
nodes from T whose canonical subsets
represent the segments intersected by `.

–

13 - 4

Results
Lemma.

Lemma.

A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log n) storage.

Let S be a set of n segments in the plane. For any
ε > 0, there is a 2-level partition tree T for S s.t.

given a query line `, we can select O(n1/2+ε)
nodes from T whose canonical subsets
represent the segments intersected by `.

– The selection takes O(n1/2+ε) time.

–

13 - 5

Results
Lemma.

Lemma.

A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log n) storage.

Let S be a set of n segments in the plane. For any
ε > 0, there is a 2-level partition tree T for S s.t.

given a query line `, we can select O(n1/2+ε)
nodes from T whose canonical subsets
represent the segments intersected by `.

– The selection takes O(n1/2+ε) time.

–

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n1/2+δε) time
using O(n logδ−1 n) space and O(n1+δε) prep.

13 - 6

Results
Lemma.

Lemma.

A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log n) storage.

Let S be a set of n segments in the plane. For any
ε > 0, there is a 2-level partition tree T for S s.t.

given a query line `, we can select O(n1/2+ε)
nodes from T whose canonical subsets
represent the segments intersected by `.

– The selection takes O(n1/2+ε) time.

–

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n1/2+δε) time
using O(n logδ−1 n) space and O(n1+δε) prep.

13 - 7

Results
Lemma.

Lemma.

A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log n) storage.

Let S be a set of n segments in the plane. For any
ε > 0, there is a 2-level partition tree T for S s.t.

given a query line `, we can select O(n1/2+ε)
nodes from T whose canonical subsets
represent the segments intersected by `.

– The selection takes O(n1/2+ε) time.

–

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n1/2+δε) time
using O(n logδ−1 n) space and O(n1+δε) prep.

δ-level objects

in a δ-level
query

13 - 8

Results
Lemma.

Lemma.

A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log n) storage.

Let S be a set of n segments in the plane. For any
ε > 0, there is a 2-level partition tree T for S s.t.

given a query line `, we can select O(n1/2+ε)
nodes from T whose canonical subsets
represent the segments intersected by `.

– The selection takes O(n1/2+ε) time.

–

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n1/2+δε) time
using O(n logδ−1 n) space and O(n1+δε) prep.

δ-level objects

in a δ-level
query

	Titel
	Range-Counting Query
	Non-orthogonal range queries
	The 1-Dimensional Case
	Generalizing to 2 Dimensions
	Example for a Query
	Query Algorithm
	Analysis of the Partition Tree
	Back to Triangular Range Queries
	Multi-Level Partition Trees
	Query Algorithm
	Results

