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Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task Design a data structure for the 1-dim. case:

— Given a number x, return |P N [x, 00)|.

— Consider P static / dynamic!
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The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]
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Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S if
— S is partitioned by Sy, ..
—forl1 <i<vr, t 1satr1angleand5 C t;.

Y (S) is fine if |S;| < 2@ forevery 1 <i <.
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Theorem. For anysetS of nptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing
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O = selected node
O = visited node

point set 5 h: query range
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Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/2+¢) time
a set N of O(n'/2¢) nodes of T

with the property that kNS = U, cn S(v).

Corollary. Half-plane range counting queries can be
answered in O(n!/21¢) time
using O(n) space and O(n!™¢) prep.



Back to Triangular Range Queries

Any ideas?

10 -



Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

10 -



Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!




10 -4

Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.



Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.



10-6

Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?



Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?
Use cutting trees! (Chapter 16.3)



Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?
Use cutting trees! (Chapter 16.3)

Query time O(log®n), prep. & storage O(n>"¢).
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Query Algorithm

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N+ O
if 7 = {u} then
| if segment stored in y intersects ¢ then N < {y}
else
foreach child v of 7’s root do
if t(v) C " then
| N < N U SelectInHalfplane(¢—, T,255°¢)
else
if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7, )

re_turn N
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