1

Julius-Maximilians- Chair for X .
UNIVERSITAT INFORMATICS | I|||I | fl
WURZBURG Efficient Algorithms and

Knowledge-Based Systems Institute for Informatics

Computational Geometry

Simple Range Searching

Lecture #11

Dr. Philipp Kindermann Winter Semester 2018/19

Range-Counting Query . =~

construction of a
new airport

construction of a
new airport

construction of a
new airport

Observation.
Query range
depends on,
e.g., dominant
wind directions

construction of a
new airport

. > ‘ﬂ,-,

Observation.
Query range
depends on,
e.g., dominant
wind directions

= non-orthogonal

Non-orthogonal range queries

Query range: O

Non-orthogonal range queries

Query range:
—r=

Non-orthogonal range queries

Query range:
O-8->

Non-orthogonal range queries

Query range:
98-/

Non-orthogonal range queries

Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Non-orthogonal range queries

Query range:
e

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task Design a data structure for the 1-dim. case:

Non-orthogonal range queries

Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task Design a data structure for the 1-dim. case:

— Given a number x, return |P N [x, 00)|.

Non-orthogonal range queries

Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task Design a data structure for the 1-dim. case:

— Given a number x, return |P N [x, 00)|.

— Consider P static / dynamic!

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution.

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

SA AR

oo 00 —0 00006 006 00 oo 00 —0 0000 00 00

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

SA AR

oo 00 —0 00006 006 00 oo 00 —0 0000 00 00

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

SA AR

oo 00 —0 00006 006 00 oo 00 —0 0000 00 00

Lesson. On each level, visit < 1 subtree recursively!

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. @ use balanced binary search trees

® augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

A AR

Pow—o—o—”o—o—o—oo—o—o—‘ oo 00 —0 0000 00 00

V

canonical subset
Lesson. On each level, visit < 1 subtree recursively!

Generalizing to 2 Dimensions

Any ideas?

Generalizing to 2 Dimensions

Any ideas?
© o
o o
® @)
o o ° o
©)
0 o o

Generalizing to 2 Dimensions

Partition the input!

© o

Generalizing to 2 Dimensions

Partition the input! Query...

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree ... recursively!

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree ... recursively!

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S it

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S it

— S is partitioned by Sq,..., S, and

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S it

— S is partitioned by Sq,..., S, and

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a

simplicial partition (of size r) for S if
— S is partitioned by Sy, ..

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S if
— S is partitioned by Sy, ..

—forl1 <i<vr, t 1satr1angleand5 C t;.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S if
— S is partitioned by Sy, ..

—forl1 <i<vr, t 1satr1angleand5 C t;.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S if
— S is partitioned by Sy, ..
—forl1 <i<vr, t 1satr1angleand5 C t;.

Y (S) is fine if |S;| < 2@ forevery 1 <i <.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. The crossing number of ¢ (w.r.t. ¥(S)) is the
number of triangles tq,...,t, crossed by /.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. The crossing number of ¢ (w.r.t. ¥(S)) is the
number of triangles tq,...,t, crossed by /.

The crossing number of ¥(S) is the maximum
crossing number over all possible lines.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Theorem. Forany setS of n ptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O() exists.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Theorem. Forany setS of n ptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/7) exists.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Theorem. For anysetS of nptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Theorem. For anysetS of nptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Theorem. For anysetS of nptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Theorem. Forany setS of n ptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Theorem. Forany setS of n ptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

e AVAV:
canonical ti
subset of v © @ O/\® °

Theorem. Forany setS of n ptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21

' 5(0)]
5(0) N) <
canonical l
subset of v © @ O/\® °

Theorem. Forany setS of n ptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21

5(v) AN
canonical ti T ’
subset of v © @ O/\® °

Theorem. Forany setS of n ptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21

5(v) AN
canonical ti T ’
subset of v © @ ®/\® ®

Theorem. For anysetS of nptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Lemma. A partition tree for S can be constructed in
O(n'™¢) time. The tree uses O(n) storage.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21

5(v) AN
canonical ti T ’
subset of v © @ ®/\® ®

Theorem. For anysetS of nptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Lemma. A partition tree for S can be constructed in
O(n'™¢) time. The tree uses O(n) storage.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21

5(v) AN
canonical ti C ’
subset of v © @ O/\® °

Theorem. For anysetS of nptsand any 1 <r <, a fine
‘Matouselk, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

Lemma. A partition tree for S can be constructed in
O(n'™¢) time. The tree uses O(n) storage.

search tree with 7n leaves

Example for a Query

point set S

Example for a Query

point set S
) L

N
2

partition by triangles

Example for a Query

point set 5 h: query range

partition by triangles

Example for a Query

point set 5 h: query range

partition by triangles

Example for a Query

point set 5 h: query range
O t2
TN
b A o/ 15 partition tree for S

26
e

partition by triangles

@@@@@

I3

Example for a Query

point set 5

>

it6

partition by triangles

W
A 4 s partition tree for S

I3

O = selected node

h: query range
AR 5 O = visited node

@@@@@

Example for a Query

point set 5

>

it6

partition by triangles

W
A 4 s partition tree for S

I3

O = selected node

h: query range
AR 5 O = visited node

@ @ @ @& @

N

Example for a Query

O = selected node
O = visited node

point set 5 h: query range

partition tree for S

partition by triangles

oy @3 03 ©9 ©s

N,

recursively visited subtrees

Query Algorithm

Query Algorithm

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else

foreach child v of the root of 7 do
if t(v) C h then

else

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do
if t(v) C h then
| N+ NU{v}
else

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do
if t(v) C h then
| N+ NU{v}
else
if t(v) Nh # @ then

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do
if t(v) C h then
| N+ NU{v}
else
if t(v) Nh # @ then
| N < NUSEeLEcTINHALFPLANE(, 7))

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N« @

if 7 = {u} then
if point stored at u lies in h then Task:

| N g Turn this into a
else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then
| N <+ NU{v}
else
if t(v) Nh # @ then
| N < NUSEeLEcTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N @

if 7 = {u} then
if point stored at u lies in h then Task:

L N {7’{} Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then

| N <+ NU{v}
else
if t(v) Nh # @ then

| N < NUSEeLEcTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N @ >

number

if 7 = {u} then
if point stored at u lies in h then Task:

L N {7’{} Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then

| N <+ NU{v}
else
if t(v) Nh # @ then

| N < NUSEeLEcTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task:

L N {7’{} Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then

| N <+ NU{v}
else
if t(v) Nh # @ then

| N < NUSEeLEcTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task:

I— N < % 1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then
| N+ NU{v}
else
if t(v) Nh # @ then
| N < NUSEeLEcTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task:

I— N < % 1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then
| N« N7} +[5(v)

else
if t(v) Nh # @ then
| N < NUSEeLEcTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task:

I— N < % 1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then

| N < NA7T +[S(0)
else

if t(v) Nh # @ then

L N < N} SswwpetINHALFPLANE(H, 7))
+ COUNT

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task:

I— N < % 1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then

| N < NA7T +[S(0)
else

if t(v) Nh # @ then

L N < N} SswwpetINHALFPLANE(H, 7))
+ COUNT

return N S N k=] |

Analysis of the Partition Tree

Analysis of the Partition Tree

Analysis of the Partition Tree

Analysis of the Partition Tree

Proof. Lete > 0.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.

Theorem. For any set S of n ptsand any 1 <r <, a fine
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!"¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.

Theorem. For any set S of n ptsand any 1 <r <, a fine

‘Matousel, simplicial partition of size r and crossing

DCG 1997] number c¢y/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.Letr = 2(1/2c)¢.

Theorem. For any set S of n ptsand any 1 <r <, a fine

‘Matousel, simplicial partition of size r and crossing

DCG 1997] number c¢y/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).

Proof. Lete > 0.Letr = 2(1/2c)¢.

1 ifn =1,
= o(m < { no 1

Theorem. For any set S of n ptsand any 1 <r <, a fine
simplicial partition of size r and crossing
number c¢+/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).

Proof. Lete > 0.Letr = 2(1/2c)¢.

1 ifn =1,
=>Q(n)§{r+ if n > 1.

Theorem. For any set S of n ptsand any 1 <r <, a fine
simplicial partition of size r and crossing
number c¢+/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.Letr = 2(1/2c)¢.
1 iftn=1
< . ’
= Q(n) < { r+ ZveC(k) if n > 1.
C(h) : all children v of the root s.t. h crosses t(v)

Theorem. For any set S of n ptsand any 1 <r <, a fine
simplicial partition of size r and crossing
number c¢+/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.Letr = 2(1/2c)¢.
1 ifn=1
= Q(n) < . '
Q) <{ 14 gy QSO 0>
C(h) : all children v of the root s.t. h crosses t(v)

Theorem. For any set S of n ptsand any 1 <r <, a fine
simplicial partition of size r and crossing
number c¢+/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.Letr = 2(1/2c)¢.
1 ifn=1
= Q(n) < . '
Q) <{ 14 gy QSO 0>
C(h) : all children v of the root s.t. h crosses t(v)

Theorem. For any set S of n ptsand any 1 <r <, a fine
simplicial partition of size r and crossing
number c¢+/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).

Proof. Lete > 0.Letr = 2(1/2c)¢.
1 iftn=1
= < o\ '
Q)< { 14 5y QS 051
C(h) : all children v of the root s.t. h crosses t(v)

Theorem. For any set S of n ptsand any 1 <r <, a fine
simplicial partition of size r and crossing
number c¢+/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma.

Proof.

Theorem.

For any ¢ > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Lete > 0. Letr = 2(\50)1/8
ifn =1,

= Q(n) —{ r+NQ Stoy]) if o> 1.

C(h) : all children v of the root s.t. h crosses t(v)

For any set S of n pts and any 1 < r < n, a fine
simplicial partition of size r and crossing
number c¢+/r exists. For any ¢ > 0, such a
partition can be built in O(n!*¢) time.

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

Proof.

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Lete > 0.Letr = 2(\fc)1/8
ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < r+c\/2(v20)/°Q(2n/2(v/26))

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

Proof.

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Lete > 0. Let r = 2(\/_c)1/8
ifn =1,
= Q(n) < { r+NQ [SéoT]) ifn > 1.
C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < r+ &y/2(V20) /2 Q(2n/2(v/2e) V*)
— 2dl/e ¢ d1+1/28Q(n/d1/€) for d = \/2¢

- 16

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that kNS = U, cn S(V).
Proof. Lete > 0.Letr = 2(\/_C)1/e
ifn=1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) <r-+ c\/2(\/§c)1/€Q(2n/2(ﬁc)1/8)
= 241/ 4 g1H1/26 (1 /dV€) ford = v/2¢
Master Theorem: f(1n) € O(n'°8:%~¢) = Q(n) € O(n'°8?)

-17

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that kNS = U, cn S(V).
Proof. Lete > 0.Letr = 2(\/_C)1/e
ifn=1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) <r-+ c\/2(\/§c)1/€Q(2n/2(ﬁc)1/8)
= 2d1/& + 1126 (1 /dV€) ford = v/2¢
Master Theorem: f(1n) € O(n!°8:%~¢) = Q(n) € O(n'°8?)

- 18

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that kNS = U, cn S(V).
Proof. Lete > 0.Letr = 2(\/_C)1/e
ifn=1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) <r-+ c\/2(\/§c)1/€Q(2n/2(ﬁc)1/8)
=24V + @1 F1/26Q(n/d'V/€) ford = \/2¢
Master Theorem: f(1n) € O(n!°8:%—¢') = Q(n) € O(n'°8?)

- 19

8-20

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that kNS = U, cn S(V).
Proof. Lete > 0.Letr = 2(\/_C)1/e
ifn=1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) <r-+ c\/2(\/§c)1/€Q(2n/2(ﬁc)1/8)
— 2dl/e + le/ZSQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that kNS = U, cn S(V).
Proof. Lete > 0.Letr = 2(\/_C)1/e
ifn=1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) <r-+ c\/2(\/§c)1/€Q(2n/2(ﬁc)1/8)
— 2dl/e + le/ZSQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

logga =

-21

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.Letr = 2(\/_c)1/8
ifn =1,
= Q(n) < { r+NQ [SéoT]) ifn > 1.
C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < r+ Ey/2(V/20) /2 Q(2n/2(v/2e) V*)
— 2dl/e + le/ZSQ(n/dl/E) for d = \/2¢
Master Theorem: f(n) € O(n'°8%—¢) = Q(n) € O(n'°8)

_ 1+1/2¢e
logya = /s £ =

-22

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that h1 NS = |J,en S(V).
Proof. Lete > 0.Letr = 2(\/_c)1/8
ifn =1,
= Q(n) < { r+NQ [SéoT]) ifn > 1.
C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < r+ Ey/2(V/20) /2 Q(2n/2(v/2e) V*)
— 2dl/e + le/ZSQ(n/dl/E) for d = \/2¢
Master Theorem: f(n) € O(n'°8%—¢) = Q(n) € O(n'°8)

logya = 1+11//828 —e¢+1/2

-23

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/27¢) time
a set N of O(n'/2%¢) nodes of T

with the property that kNS = U, cn S(V).
Proof. Lete > 0.Letr = 2(\/_C)1/e
ifn=1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) <r-+ c\/2(\/§c)1/€Q(2n/2(ﬁc)1/8)
— 2dl/e + le/ZSQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

logya = —17;%28 —e+1/2 = Q(n) € O(nl/2+¢)

- 24

Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in
O(n'™"¢) time. The tree uses O(n) storage.

Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in
O(n'™"¢) time. The tree uses O(n) storage.

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/2+¢) time
a set N of O(n'/2¢) nodes of T

with the property that kNS = U, cn S(v).

Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in
O(n'™"¢) time. The tree uses O(n) storage.

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.:

for a query half-plane £,
SELECTINHALFPLANE selects in O(n!/2+¢) time
a set N of O(n'/2¢) nodes of T

with the property that kNS = U, cn S(v).

Corollary. Half-plane range counting queries can be
answered in O(n!/21¢) time
using O(n) space and O(n!™¢) prep.

Back to Triangular Range Queries

Any ideas?

10 -

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

10 -

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

10 -4

Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.

10-6

Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?

Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?
Use cutting trees! (Chapter 16.3)

Back to Triangular Range Queries
Any ideas? Just use SELECTINHALFPLANE!

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

The points inside the query range can be
reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?
Use cutting trees! (Chapter 16.3)

Query time O(log®n), prep. & storage O(n>"¢).

Multi-Level Partition Trees

Idea. Store with each internal node not just a number,

11 -

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,

Multi-Level Partition Trees S(v)]

Idea.

Store with each internal node not just a number,
but another data structure!

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

\] N/

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

BN

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:

BN

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:

A=

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:
p left S

A=

pmght S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:
p left S

A

pmght S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:
p left S

\ f

p r1ght S P left

Multi-Level Partition Trees S(v)]

Idea.

Task.

Hint:

Store with each internal node not just a number,
but another data structure!

Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Pleft (S)

-11

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. |Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:
Pleft (S)

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

] Prlght 14

P left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

] Prlght

P left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Q prlght

P left

g—l—

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Q prlght

P left

g—l—

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

] Prlght

P left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

XY p mgl}Z 14

p left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Prlght 14
XY][-

Dleft (S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Prlght 14
XY][-

Dleft (S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Prlght 14
XY][-

Dleft (S

Query Algorithm

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N+ O
if 7 = {u} then
| if segment stored in y intersects ¢ then N < {y}
else
foreach child v of 7’s root do
if t(v) C " then
| N < N U SelectInHalfplane(¢—, T,255°¢)
else
if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7,)

re_turn N

For S’ C S, let

Query AlgOI'lthm p left (S/) _ {pleft (S) ’ = S/}

right right

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N < O
if 7 = {u} then
‘ if segment stored in u intersects ¢ then N < {u}

else stores Pieft(Sseg(v)), where
foreach child v of T'’s root\do Sees (v) = {s | prignt(s) € S(v)}
if t(v) C ¢ then ~—
| N < N U SelectInHalfplane(¢—, T,255°¢)
else

if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7,)

re_turn N

For S’ C S, let

Query AlgOI'lthm p left (S/) _ {pleft (S) ’ = S/}

right right

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N < O
if 7 = {u} then
‘ if segment stored in u intersects ¢ then N < {u}

else stores Pieft(Sseg(v)), where
foreach child v of T'’s root\do Sees (v) = {s | prignt(s) € S(v)}
if t(v) C ¢ then ~—
| N < N U SelectInHalfplane(¢—, T,255°¢)
else

if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7,)

return N
M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

For S’ C S, let

Query AlgOrlthm p left (S/) _ {pleft (S) ’ = S/}

right right

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N < O
if 7 = {u} then
‘ if segment stored in u intersects ¢ then N < {u}

else stores Pieft(Sseg(v)), where
foreach child v of T'’s root\do Sees (v) = {s | prignt(s) € S(v)}
if t(v) C ¢ then ~—
| N < N U SelectInHalfplane(¢—, T,255°¢)
else

if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7,)

return N below above - ?

M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

For S’ C S, let

Query AlgOrlthm p left (S/) _ {pleft (S) ’ = S/}

right right

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N < O
if 7 = {u} then
‘ if segment stored in u intersects ¢ then N < {u}

else stores Pieft(Sseg(v)), where
foreach child v of T's root\do Sees (v) = {s | prignt(s) € S(v)}
if t(v) C ¢ then ~—
| N < N U SelectInHalfplane(¢—, T,255°¢)
else

if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7,)

return N below above - ?

M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

For S’ C S, let

Query AlgOrlthm p left (S/) _ {pleft (S) ’ = S/}

right right

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N < O
if 7 = {u} then
‘ if segment stored in u intersects ¢ then N < {u}

else stores Pieft(Sseg(v)), where
foreach child v of T’s root\do Sees (v) = {s | prignt(s) € S(v)}

if t(v) C ¢+ "then —
| N < N U SelectInHalfplane(¢—, T,255°¢)

else
if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7,)

return N below above - ?

M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

13-1

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Results

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by /.

— The selection takes O(n1/2%¢) time.

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree 7 for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by /.

— The selection takes O(n1/2%¢) time.

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n'/?* €) time

using O(nlog n) space and O() prep.

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree 7 for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by /.

— The selection takes O(n1/2%¢) time.

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n'/?* €) time

using O(nlog n) space and O(n'™ €) prep.

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree 7 for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by /.

— The selection takes O(n1/2%¢) time.

o-level objects
Corollary. Let S be a set of n_sﬂgmés in the pllane.
We can count the number of in S

in a J-level intersested=by=acrareryHIE in O(n'/?* €) time
query using O(nlog 1) space and O(n'™ ¢) prep.

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree 7 for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by /.

— The selection takes O(n1/2%¢) time.

o-level objects
Corollary. Let S be a set of n_sﬂgmés in the pllane.
We can count the number of in S

in a J-level intersested=by=acrarery e in O(n'/?1%) time
query using O(nlog’ ' n) space and O(n!+%) prep.

	Titel
	Range-Counting Query
	Non-orthogonal range queries
	The 1-Dimensional Case
	Generalizing to 2 Dimensions
	Example for a Query
	Query Algorithm
	Analysis of the Partition Tree
	Back to Triangular Range Queries
	Multi-Level Partition Trees
	Query Algorithm
	Results

