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Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

Let r ∈ P be not collinear with p and q.
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q re

Then e′ = b(q, r) is not parallel to e.
⇒ e ∩ h(r, q) is closer to r than to p or q.
⇒ e is bounded on at least one side. �
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Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Theorem: (i) x Voronoi vtx ⇔

∃x ∈ b(p, p′) : CP(x) ∩ P = {p, p′}
(ii)

|CP(x) ∩ P| ≥ 3

b(p, p′) contains a Voronoi edge⇔
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beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.
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β is x-monotone.
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The beachline β

Lemma. New arcs on β only appear through site events

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

that is, whenever ` hits a new site.
,

Corollary. β consists of at most 2n− 1 arcs.

Lemma. Arcs disappear from β only at circle events.

Definition. Circle event: ` reaches lowest pt of a circle
through three sites above ` whose arcs are
consecutive on β.

Lemma. The Voronoi vtc correspond 1:1 to circle events.
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α← arc on β that will disappear
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treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
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Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.
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• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.
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Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

• Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.
• Check 〈·, αleft, αright〉 and 〈αleft, αright, ·〉 for circle events.
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Running time? O(log n) per event. . .
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Running Time?

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D
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Running Time?

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

exactly n such events

at most 2n− 5 such events



Summary
Theorem. Given a set P of n pts in the plane,

Fortune’s sweep computes Vor(P)
in O(n log n) time and O(n) space.
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Theorem. Given a set P of n pts in the plane,
Fortune’s sweep computes Vor(P)
in O(n log n) time and O(n) space.
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