
Computational Geometry

Lecture #7

Voronoi Diagrams
or

The Post-Office Problem

Steven Chaplick Winter Semester 2019/20

[Comp. Geom A&A : Chapter 7]

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

p

q

The Post-Office Problem

p

q

b(p, q)

The Post-Office Problem

p

q

b(p, q) = {x ∈ R2 : |xp| = |xq|}

The Post-Office Problem

p

q

b(p, q)

h(p, q)

= {x ∈ R2 : |xp| = |xq|}

The Post-Office Problem

p

q

b(p, q)

h(p, q)

= {x ∈ R2 : |xp| = |xq|}

= {x : |xp| < |xq|}

The Post-Office Problem

p

q

b(p, q)

h(p, q) h(q, p)

= {x ∈ R2 : |xp| = |xq|}

= {x : |xp| < |xq|}

The Post-Office Problem

p

q

b(p, q)

h(p, q) h(q, p)

= {x ∈ R2 : |xp| = |xq|}

= {x : |xp| < |xq|} = {x : |xq| < |xp|}

The Post-Office Problem

The Post-Office Problem

P = {p1, p2, . . . , pn}

The Post-Office Problem

The Post-Office Problem

Vor(P) =
Voronoi diagram

of P

The Post-Office Problem

Vor(P) =
Voronoi diagram

of P

The Post-Office Problem

Vor(P) =
Voronoi diagram

of P

The Post-Office Problem

Tasks: 1) Define Voronoi cells, edges and vertices!

The Post-Office Problem

Tasks: 1) Define Voronoi cells, edges and vertices!

2) Are Voronoi cells convex?

The Voronoi diagram

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

The Voronoi diagram

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)[Voronoi diagram]
p

p′

p′′

The Voronoi diagram

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)[Voronoi diagram]
p

p′

p′′

The Voronoi diagram

V({p}) =

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

The Voronoi diagram

V({p}) =

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=V(p)

The Voronoi diagram

V({p}) =

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}
[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}
[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}
[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}
[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}
[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)=

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}
[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}
[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}
[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

(w/o the endpts)

V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}
[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

(w/o the endpts)

V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

(w/o the endpts)

V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

(w/o the endpts)

V(p)

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

(w/o the endpts)

V(p)

{x : |xp|=|xp′|=|xp′′| and |xp| ≤ |xq| ∀q}=

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

(w/o the endpts)

V(p)

{x : |xp|=|xp′|=|xp′′| and |xp| ≤ |xq| ∀q}=

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

(w/o the endpts)

V(p)

{x : |xp|=|xp′|=|xp′′| and |xp| ≤ |xq| ∀q}=

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

subdivision of R2

(w/o the endpts)

V(p)

{x : |xp|=|xp′|=|xp′′| and |xp| ≤ |xq| ∀q}=

The Voronoi diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

subdivision of R2

geometric graph

(w/o the endpts)

V(p)

{x : |xp|=|xp′|=|xp′′| and |xp| ≤ |xq| ∀q}=

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof.

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof.

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

p

qe

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

Let r ∈ P be not collinear with p and q.

p

q re

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

Let r ∈ P be not collinear with p and q.

p

q re

Then e′ = b(q, r) is not parallel to e.

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

Let r ∈ P be not collinear with p and q.

p

q re

Then e′ = b(q, r) is not parallel to e.
⇒ e ∩ h(r, q) is closer to r than to p or q.

Overall Shape of Vor(P)
Theorem. Let P ⊂ R2 be a set of n pts (called sites).

If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

Let r ∈ P be not collinear with p and q.

p

q re

Then e′ = b(q, r) is not parallel to e.
⇒ e ∩ h(r, q) is closer to r than to p or q.
⇒ e is bounded on at least one side. �

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Proof.
Euler

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!Proof.
Euler

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2
min. degree 3

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2
⇒ 2|E| ≥ 3(|V|+ 1)min. degree 3

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2
⇒ 2|E| ≥ 3(|V|+ 1)min. degree 3

⇒ (|V|+ 1)− 3
2 (|V|+ 1) + n ≤ 2

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2
⇒ 2|E| ≥ 3(|V|+ 1)min. degree 3

⇒ (|V|+ 1)− 3
2 (|V|+ 1) + n ≤ 2

⇒ 1
2 (|V|+ 1) ≤ n− 2

Complexity
Task: Construct a set P of point sites

such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2
⇒ 2|E| ≥ 3(|V|+ 1)min. degree 3

⇒ (|V|+ 1)− 3
2 (|V|+ 1) + n ≤ 2

⇒ 1
2 (|V|+ 1) ≤ n− 2

Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P

Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Theorem: (i) x Voronoi vtx ⇔

Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Theorem: (i) x Voronoi vtx ⇔ |CP(x) ∩ P| ≥ 3

Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Theorem: (i) x Voronoi vtx ⇔
(ii)

|CP(x) ∩ P| ≥ 3

b(p, p′) contains a Voronoi edge⇔

Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Theorem: (i) x Voronoi vtx ⇔

∃x ∈ b(p, p′) : CP(x) ∩ P = {p, p′}
(ii)

|CP(x) ∩ P| ≥ 3

b(p, p′) contains a Voronoi edge⇔

Computation
Brute force:

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time [Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time

[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

`

[Ch. 4, half-plane intersection]
O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

`

[Ch. 4, half-plane intersection]

Problem: We don’t know
all defining sites yet :(

O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

`

[Ch. 4, half-plane intersection]

Problem: We don’t know
all defining sites yet :(

O(n log2 n) time[Ch. 2, map-overlay / line-segment alg]

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`

p

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`

d

d

p

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`

d

d

f `p
p

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p
p

(x, f `p(x))

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

p

(x, f `p(x))

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

p

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

lower envelope of (f `p)p∈P∩`+

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

lower envelope of (f `p)p∈P∩`+

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

`

lower envelope of (f `p)p∈P∩`+

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

`

lower envelope of (f `p)p∈P∩`+

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

`

β

lower envelope of (f `p)p∈P∩`+

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

`

β

lower envelope of (f `p)p∈P∩`+

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

Observation.

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

`

β

β is x-monotone.

lower envelope of (f `p)p∈P∩`+

The beachline β

Question: What does β have to do with Vor(P)?

`

β

The beachline β

Question: What does β have to do with Vor(P)?

`

β

The beachline β

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

`

β

The beachline β

Lemma. New arcs on β only appear through site events

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

`

β

The beachline β

Lemma. New arcs on β only appear through site events

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

that is, whenever ` hits a new site.
,

`

β

The beachline β

Lemma. New arcs on β only appear through site events

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

that is, whenever ` hits a new site.
,

Corollary. β consists of at most 2n− 1 arcs.

`

β

The beachline β

Lemma. New arcs on β only appear through site events

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

that is, whenever ` hits a new site.
,

Corollary. β consists of at most 2n− 1 arcs.

Definition. Circle event: ` reaches lowest pt of a circle
through three sites above ` whose arcs are
consecutive on β.

`

β

The beachline β

Lemma. New arcs on β only appear through site events

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

that is, whenever ` hits a new site.
,

Corollary. β consists of at most 2n− 1 arcs.

Lemma. Arcs disappear from β only at circle events.

Definition. Circle event: ` reaches lowest pt of a circle
through three sites above ` whose arcs are
consecutive on β.

The beachline β

Lemma. New arcs on β only appear through site events

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

that is, whenever ` hits a new site.
,

Corollary. β consists of at most 2n− 1 arcs.

Lemma. Arcs disappear from β only at circle events.

Definition. Circle event: ` reaches lowest pt of a circle
through three sites above ` whose arcs are
consecutive on β.

Lemma. The Voronoi vtc correspond 1:1 to circle events.

Fortune’s Sweep

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

Fortune’s Sweep

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

p

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

p

α

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

p

α
q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q
α

p

α
q

In T :

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q
α

p

α
q

In T :

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

break-
points

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

break-
points

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

break-
points

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

break-
points

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

• Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

• Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

• Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

• Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.
• Check 〈·, αleft, αright〉 and 〈αleft, αright, ·〉 for circle events.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

• Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.
• Check 〈·, αleft, αright〉 and 〈αleft, αright, ·〉 for circle events.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

Running time?

q

p q

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

• Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

• Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

• Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

• Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

• T .delete(α); update breakpts

break-
points

• Delete all circle events involving α from Q.

• Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.
• Check 〈·, αleft, αright〉 and 〈αleft, αright, ·〉 for circle events.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

Running time? O(log n) per event. . .

q

p q

Running Time?

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

Running Time?

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

exactly n such events

Running Time?

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

exactly n such events

at most 2n− 5 such events

Summary
Theorem. Given a set P of n pts in the plane,

Fortune’s sweep computes Vor(P)
in O(n log n) time and O(n) space.

Summary

Steven Fortune
Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams.
Proc. 2nd Annual ACM Symposium on Computational Geometry.
Yorktown Heights, NY, pp. 313–322. 1986.

Theorem. Given a set P of n pts in the plane,
Fortune’s sweep computes Vor(P)
in O(n log n) time and O(n) space.

	Titel
	The Post-Office Problem
	The Voronoi diagram
	Overall Shape of Vor(P)
	Complexity
	Characterization of Voronoi vtc and edges
	Computation
	Sweep?
	The beachline β
	Fortune's Sweep
	Handling Events
	Running Time?
	Summary

