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The Post-Office Problem

I \ /

Tasks: 1) Define Voronoi cells, edges and vertices!

2) Are Voronoi cells convex?




The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)




The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)




The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V(ipr}) =




The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({r}) =V(p) =



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}
= Ngzp 1P, 9)



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}
= Ngzp 1P, 9)



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

V{p.p'}) =



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]
V({p}) =V(p) = {x € R*: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)
| Voronoi edge]
VHp,p'}) = {x:|xpl = |xp'| and |xp| < |xq| Vq # p,p'}



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]
V({p}) =V(p) = {x € R*: |xp| < |xq| forallg € P\ {p}}

= Ngzp 1P, 9)
| Voronoi edge]
VHp.r'}) = A{x:|xpl=|xp'| and |xp| < |xq| Vg #p,p'}
dV(p) NaV(p')



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]
V({p}) =V(p) = {x € R*: |xp| < |xq| forallg € P\ {p}}

= Ngzp 1P, 9)
| Voronoi edge]
VHp.r'}) = A{x:|xpl=|xp'| and |xp| < |xq| Vg #p,p'}
rel—int(BV(p) N BV(p’))



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p.r. r"})



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V({p, v, p"}) =V(p)NaV(p')NaV(p")



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.
/
[Voronoi diagram] P Vor(P)

/!

p

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.
/
[Voronoi diagram] P Vor(P)

/!

p

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VHp,r'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

Vor (P) i
| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}
= Ngzp 1P, 9)

| Voronoi diagram]

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

/

p

[Voronoi diagram] Vor(P) i subdivision of R2

/!

p

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}



The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

/

p

[Voronoi diagram] Vor(P) i subdivision of R2

/!

p

geometric graph

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'})  ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}



Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.



Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof.



Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. ¢




Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.



Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p, ).

/
2 q




Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p, ).

p
e .

Let » € P be not collinear with p and g.

o




Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p, ).

p
e .
Let » € P be not collinear with p and g.
Then ¢’ = b(g,r) is not parallel to e.

o




Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p, ).

p
e .q
Let » € P be not collinear with p and g.

Then ¢’ = b(g,r) is not parallel to e.
= eNh(r,q) is closer to r than to p or g.

o




Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p, ).

p
e .q
Let » € P be not collinear with p and g.

Then ¢’ = b(g,r) is not parallel to e.
= eNh(r,q) is closer to r than to p or g.

o

= ¢ 1is bounded on at least one side.
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Characterization of Voronoi vtc and edges

Cp(x) := largest circle centered at x w/o sites in its interior
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Theorem: (i) x Voronoi vtx < |[Cp(x)NP| >3

(ii) b(p,p’) contains a Voronoi edge <
Jx € b(p,p'): Cp(x) NP ={p,p'}
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The beachline B

Question: What does 8 have to do with Vor(P)?

Answer:  “Breakpoints” of § trace out the Voronoi edges!

Lemma.  New arcs on  only appear through site events,
that is, whenever /¢ hits a new site.

Corollary. B consists of at most 2n — 1 arcs.

Definition. Circle event: £ reaches lowest pt of a circle
through three sites above ¢ whose arcs are
consecutive on .

Lemma.  Arcs disappear from 8 only at circle events.

Lemma.  The Voronoi vtc correspond 1:1 to circle events.
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Fortune’s Sweep

VoronoiDiagram(P C IR?)
Q <+ new PriorityQueue(P)
T < new BalancedBinarySearchTree()
D < new DCEL()
while not Q.empty() do
p < Q.ExtractMax()
if p site event then
| HandleSiteEvent(p)
else
a <— arc on 3 that will disappear
L HandleCircleEvent ()

treat remaining int. nodes of 7 (= unbnd. edges of Vor(P))
return D
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HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.

If « has pointer to circle event in O, delete this event. break-

® Split « into ag and «s.
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Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—»
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts KXleft

® Delete all circle events involving « from Q.

® Add Vor-vix[@ef N &righd and Vor-edge (et “right>‘ to DCEL.

® Check (-, Ajeft, Aright) and (&jef, Aright, *) for circle events.
Running time? O(logn) per event...
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Running Time?

VoronoiDiagram(P C IR?)
Q <+ new PriorityQueue(P)
T < new BalancedBinarySearchTree()
D < new DCEL()
while not Q.empty() do
p < Q.ExtractMax()

if p site event then
| HandleSiteEvent(p) exactly n such events

else
a <— arc on 3 that will disappear
HandleCircleEvent(«) at most 2n — 5 such events

treat remaining int. nodes of 7 (= unbnd. edges of Vor(P))
return D
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Theorem. Given a set P of n pts in the plane,
Fortune’s sweep computes Vor(P)
in O(nlogn) time and O(n) space.

Steven Fortune
Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams.
Proc. 2nd Annual ACM Symposium on Computational Geometry.
Yorktown Heights, NY, pp. 313-322. 1986.
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