Computational Geometry

Voronoi Diagrams

or
The Post-Office Problem

Lecture \#7
[Comp. Geom A\&A : Chapter 7]

The Post-Office Problem

The Post-Office Problem

$\substack{h(p, q) \\ =\{x:\|x p\|<\|x q\|\}}$
$h(q, p)$

The Post-Office Problem

$(p, q) /=\left\{x \in \mathbb{R}^{2}:|x p|=|x q|\right\}$

$h(p, q)$
$=\{x:\|x p\|<\|x q\|\}$
:---
$=\{x:\|x q\|<\|x p\|\}$

The Post-Office Problem

The Post-Office Problem

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}
$$

The Post-Office Problem

The Post-Office Problem

Tasks: 1) Define Voronoi cells, edges and vertices!
2) Are Voronoi cells convex?

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\mathcal{V}(\{p\})=$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]

[Voronoi cell]
$\mathcal{V}(\{p\})=\mathcal{V}(p)=$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.

[Voronoi diagram]

[Voronoi cell]

$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]
$\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right)$
$=$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]
$\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right)=\left\{x:|x p|=\left|x p^{\prime}\right|\right.$ and $\left.|x p|<|x q| \forall q \neq p, p^{\prime}\right\}$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\quad \partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)
\end{aligned}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel-int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right)
\end{aligned}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel}-\operatorname{int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel}-\operatorname{int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel-int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

[Voronoi vertex]
$\mathcal{V}\left(\left\{p, p^{\prime}, p^{\prime \prime}\right\}\right)$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel}-\operatorname{int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

[Voronoi vertex]
$\mathcal{V}\left(\left\{p, p^{\prime}, p^{\prime \prime}\right\}\right)=\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right) \cap \partial \mathcal{V}\left(p^{\prime \prime}\right)$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel-int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

[Voronoi vertex]
$\mathcal{V}\left(\left\{p, p^{\prime}, p^{\prime \prime}\right\}\right)=\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right) \cap \partial \mathcal{V}\left(p^{\prime \prime}\right)$

$$
=\left\{x:|x p|=\left|x p^{\prime}\right|=\left|x p^{\prime \prime}\right| \text { and }|x p| \leq|x q| \forall q\right\}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P)$
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel-int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad \text { (w/o the endpts) }
\end{aligned}
$$

[Voronoi vertex]
$\mathcal{V}\left(\left\{p, p^{\prime}, p^{\prime \prime}\right\}\right)=\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right) \cap \partial \mathcal{V}\left(p^{\prime \prime}\right)$

$$
=\left\{x:|x p|=\left|x p^{\prime}\right|=\left|x p^{\prime \prime}\right| \text { and }|x p| \leq|x q| \forall q\right\}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel}-\operatorname{int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

[Voronoi vertex]
$\mathcal{V}\left(\left\{p, p^{\prime}, p^{\prime \prime}\right\}\right)=\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right) \cap \partial \mathcal{V}\left(p^{\prime \prime}\right)$

$$
=\left\{x:|x p|=\left|x p^{\prime}\right|=\left|x p^{\prime \prime}\right| \text { and }|x p| \leq|x q| \forall q\right\}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.

[Voronoi diagram]

[Voronoi cell]

$\operatorname{Vor}(P) \longmapsto$ subdivision of \mathbb{R}^{2}
$\mathcal{V}(\{p\})=\mathcal{V}(p)=\left\{x \in \mathbb{R}^{2}:|x p|<|x q|\right.$ for all $\left.q \in P \backslash\{p\}\right\}$

$$
=\bigcap_{q \neq p} h(p, q)
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel-int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

[Voronoi vertex]
$\mathcal{V}\left(\left\{p, p^{\prime}, p^{\prime \prime}\right\}\right)=\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right) \cap \partial \mathcal{V}\left(p^{\prime \prime}\right)$

$$
=\left\{x:|x p|=\left|x p^{\prime}\right|=\left|x p^{\prime \prime}\right| \text { and }|x p| \leq|x q| \forall q\right\}
$$

The Voronoi diagram

Let P be a set of points in the plane and let $p, p^{\prime}, p^{\prime \prime} \in P$.
[Voronoi diagram]
[Voronoi cell]

$\operatorname{Vor}(P) \longmapsto$ subdivision of \mathbb{R}^{2} geometric graph

$$
\begin{aligned}
\mathcal{V}(\{p\})=\mathcal{V}(p) & =\left\{x \in \mathbb{R}^{2}:|x p|<|x q| \text { for all } q \in P \backslash\{p\}\right\} \\
& =\bigcap_{q \neq p} h(p, q)
\end{aligned}
$$

[Voronoi edge]

$$
\begin{aligned}
\mathcal{V}\left(\left\{p, p^{\prime}\right\}\right) & =\left\{x:|x p|=\left|x p^{\prime}\right| \text { and }|x p|<|x q| \forall q \neq p, p^{\prime}\right\} \\
& =\operatorname{rel-int}\left(\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right)\right) \quad(\mathrm{w} / \mathrm{o} \text { the endpts) }
\end{aligned}
$$

[Voronoi vertex]
$\mathcal{V}\left(\left\{p, p^{\prime}, p^{\prime \prime}\right\}\right)=\partial \mathcal{V}(p) \cap \partial \mathcal{V}\left(p^{\prime}\right) \cap \partial \mathcal{V}\left(p^{\prime \prime}\right)$

$$
=\left\{x:|x p|=\left|x p^{\prime}\right|=\left|x p^{\prime \prime}\right| \text { and }|x p| \leq|x q| \forall q\right\}
$$

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof. Assume that P is not collinear.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof. Assume that P is not collinear. - Assume that $\operatorname{Vor}(P)$ contains an edge e that is a full line, say, $e=b(p, q)$.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof. Assume that P is not collinear. - Assume that $\operatorname{Vor}(P)$ contains an edge e that is a full line, say, $e=b(p, q)$.

Let $r \in P$ be not collinear with p and q.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof. Assume that P is not collinear. - Assume that $\operatorname{Vor}(P)$ contains an edge e that is a full line, say, $e=b(p, q)$.

Let $r \in P$ be not collinear with p and q. Then $e^{\prime}=b(q, r)$ is not parallel to e.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof. Assume that P is not collinear.

- Assume that $\operatorname{Vor}(P)$ contains an edge e that is a full line, say, $e=b(p, q)$.

Let $r \in P$ be not collinear with p and q. Then $e^{\prime}=b(q, r)$ is not parallel to e.
$\Rightarrow e \cap h(r, q)$ is closer to r than to p or q.

Overall Shape of $\operatorname{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^{2}$ be a set of n pts (called sites). If all sites are collinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines. Otherwise, $\operatorname{Vor}(P)$ is connected and its edges are line segments or half-lines.
Proof. Assume that P is not collinear.

- Assume that $\operatorname{Vor}(P)$ contains an edge e that is a full line, say, $e=b(p, q)$.

Let $r \in P$ be not collinear with p and q. Then $e^{\prime}=b(q, r)$ is not parallel to e.
$\Rightarrow e \cap h(r, q)$ is closer to r than to p or q. $\Rightarrow e$ is bounded on at least one side.

Complexity

$\begin{array}{ll}\text { Task: } & \text { Construct a set } P \text { of point sites } \\ & \text { such that } \operatorname{Vor}(P) \text { has a cell of } \\ & \text { linear complexity! }\end{array}$

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Complexity

Task: Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Complexity

Task: Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most vertices and edges.

Complexity

Task: Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.

Proof.
Euler

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.

Proof. Problem: unbounded edges!
Euler

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.

Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

$$
|F|=n \Rightarrow(|V|+1)-|E|+n=2
$$

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

$$
|F|=n \Rightarrow(|V|+1)-|E|+n=2
$$ min. degree 3

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

$$
\begin{aligned}
& |F|=n \Rightarrow(|V|+1)-|E|+n=2 \\
& \text { min. degree } 3 \Rightarrow 2|E| \geq 3(|V|+1)
\end{aligned}
$$

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

$$
\begin{aligned}
& |F|=n \Rightarrow(|V|+1)-|E|+n=2 \\
& \text { min. degree } 3 \Rightarrow 2|E| \geq 3(|V|+1) \\
& \Rightarrow(|V|+1)-\frac{3}{2}(|V|+1)+n \leq 2
\end{aligned}
$$

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

$$
\begin{aligned}
& |F|=n \Rightarrow(|V|+1)-|E|+n=2 \\
& \text { min. degree } 3 \Rightarrow 2|E| \geq 3(|V|+1) \\
& \Rightarrow(|V|+1)-\frac{3}{2}(|V|+1)+n \leq 2 \\
& \Rightarrow \frac{1}{2}(|V|+1) \leq n-2
\end{aligned}
$$

Complexity

Task: \quad Construct a set P of point sites such that $\operatorname{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^{2}$ of n sites, $\operatorname{Vor}(P)$ consists of at most $2 n-5$ vertices and $3 n-6$ edges.
Proof. Problem: unbounded edges!
\Rightarrow can't apply Euler directly, but...

Characterization of Voronoi vtc and edges

 $C_{P}(x):=$ largest circle centered at $x \mathrm{w} / \mathrm{o}$ sites in its interior

Characterization of Voronoi vtc and edges

 $C_{P}(x):=$ largest circle centered at $x \mathrm{w} / \mathrm{o}$ sites in its interior

Characterization of Voronoi vtc and edges

 $C_{P}(x):=$ largest circle centered at $x \mathrm{w} / \mathrm{o}$ sites in its interior

Theorem: (i) x Voronoi vtx \Leftrightarrow

Characterization of Voronoi vtc and edges

 $C_{P}(x):=$ largest circle centered at $x \mathrm{w} / \mathrm{o}$ sites in its interior

Theorem: (i) x Voronoi vtx $\Leftrightarrow\left|C_{P}(x) \cap P\right| \geq 3$

Characterization of Voronoi vtc and edges

 $C_{P}(x):=$ largest circle centered at $x \mathrm{w} / \mathrm{o}$ sites in its interior

Theorem: (i) x Voronoi vtx $\Leftrightarrow\left|C_{P}(x) \cap P\right| \geq 3$
(ii) $b\left(p, p^{\prime}\right)$ contains a Voronoi edge \Leftrightarrow

Characterization of Voronoi vtc and edges

 $C_{P}(x):=$ largest circle centered at $x \mathrm{w} / \mathrm{o}$ sites in its interior

Theorem: (i) x Voronoi vtx $\Leftrightarrow\left|C_{P}(x) \cap P\right| \geq 3$
(ii) $b\left(p, p^{\prime}\right)$ contains a Voronoi edge \Leftrightarrow

$$
\exists x \in b\left(p, p^{\prime}\right): C_{P}(x) \cap P=\left\{p, p^{\prime}\right\}
$$

Computation

Brute force:

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p)=\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right)$.

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p)=\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right)$.
[Ch. 2, map-overlay / line-segment alg]

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.})$.
 [Ch. 2, map-overlay / line-segment alg] $O\left(n \log ^{2} n\right)$ time

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{=\bigcap_{p^{\prime} \neq p} h\left(p \log ^{2} n\right) \text { time }}_{\text {[Ch. 2, map-overlay / line-segment alg] }}$. [Ch. 4, half-plane intersection]

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{=\bigcap_{p^{\prime} \neq p} h\left(p \log ^{2} n\right) \text { time }}_{\quad \text { [Ch. 2, map-overlay / line-segment alg] }}$. [Ch. 4, half-plane intersection] $O(n \log n)$ time

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.}_{O\left(n \log ^{2} n\right) \text { time }})$. [Ch. 4, half-plane intersection] $O(n \log n)$ time

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.}_{O\left(n \log ^{2} n\right) \text { time }})$. [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.}_{O\left(n \log ^{2} n\right) \text { time }})$. [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time

- but the complexity of $\operatorname{Vor}(P)$ is linear!

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.}_{O\left(n \log ^{2} n\right) \text { time }})$.
\quad [Ch. 2, map-overlay / line-segment alg] [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time

- but the complexity of $\operatorname{Vor}(P)$ is linear!

Sweep?

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.})$.
[Ch. 2, map-overlay / line-segment alg] $O\left(n \log ^{2} n\right)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time

- but the complexity of $\operatorname{Vor}(P)$ is linear!

Sweep?

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.})$.
[Ch. 2, map-overlay / line-segment alg] $O\left(n \log ^{2} n\right)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time

- but the complexity of $\operatorname{Vor}(P)$ is linear!

Sweep?

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.})$.
[Ch. 2, map-overlay / line-segment alg] $O\left(n \log ^{2} n\right)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time - but the complexity of $\operatorname{Vor}(P)$ is linear!

Sweep?

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.})$.
[Ch. 2, map-overlay / line-segment alg] $O\left(n \log ^{2} n\right)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time - but the complexity of $\operatorname{Vor}(P)$ is linear!

Sweep?

Computation

Brute force: For each $p \in P$, compute $\mathcal{V}(p) \underbrace{\bigcap_{p^{\prime} \neq p} h\left(p, p^{\prime}\right.})$.
[Ch. 2, map-overlay / line-segment alg] $O\left(n \log ^{2} n\right)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time
in total: $O\left(n^{2} \log n\right)$ time - but the complexity of $\operatorname{Vor}(P)$ is linear!

Sweep?

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

$$
{ }^{p}
$$

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Task:
Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$!

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:
Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$!

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:
Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$!
Definition. beachline $\beta \equiv$ lower envelope of $\left(f_{p}^{\ell}\right)_{p \in P \cap \ell^{+}}$

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:

Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$!
Definition. beachline $\beta \equiv$ lower envelope of $\left(f_{p}^{\ell}\right)_{p \in P \cap \ell^{+}}$

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:

Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$!
Definition. beachline $\beta \equiv$ lower envelope of $\left(f_{p}^{\ell}\right)_{p \in P \cap \ell^{+}}$

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:

Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$.
Definition. beachline $\beta \equiv$ lower envelope of $\left(f_{p}^{\ell}\right)_{p \in P r \ell_{e^{+}}}$

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:

Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$.
Definition. beachline $\beta \equiv$ lower envelope of $\left(f_{p}^{\ell}\right)_{p \in P}$ 俚

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:

Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$!
Definition. beachline $\beta \equiv$ lower envelope of $\left(f_{p}^{\ell}\right)_{p \in P \cap \ell^{+}}$

Sweep?

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

f_{p}^{ℓ} is the parabola with focus p and directrix ℓ.

Task:

Compute f_{p}^{ℓ} for $p=(0,1)$ and $\ell: y=-1$!
Definition. beachline $\beta \equiv$ lower envelope of $\left(f_{p}^{\ell}\right)_{p \in P \cap \ell^{+}}$
Observation. β is x-monotone.

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?
Answer: "Breakpoints" of β trace out the Voronoi edges!

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?
Answer: "Breakpoints" of β trace out the Voronoi edges!
Lemma. New arcs on β only appear through site events

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?
Answer: "Breakpoints" of β trace out the Voronoi edges!
Lemma. New arcs on β only appear through site events, that is, whenever ℓ hits a new site.

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?
Answer: "Breakpoints" of β trace out the Voronoi edges!
Lemma. New arcs on β only appear through site events, that is, whenever ℓ hits a new site.

Corollary. β consists of at most $2 n-1$ arcs.

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?
Answer: "Breakpoints" of β trace out the Voronoi edges!
Lemma. New arcs on β only appear through site events, that is, whenever ℓ hits a new site.

Corollary. β consists of at most $2 n-1$ arcs.
Definition. Circle event: ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β.

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?
Answer: "Breakpoints" of β trace out the Voronoi edges!
Lemma. New arcs on β only appear through site events, that is, whenever ℓ hits a new site.

Corollary. β consists of at most $2 n-1$ arcs.
Definition. Circle event: ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β.

Lemma. Arcs disappear from β only at circle events.

The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?
Answer: "Breakpoints" of β trace out the Voronoi edges!
Lemma. New arcs on β only appear through site events, that is, whenever ℓ hits a new site.

Corollary. β consists of at most $2 n-1$ arcs.
Definition. Circle event: ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β.

Lemma. Arcs disappear from β only at circle events.
Lemma. The Voronoi vtc correspond 1:1 to circle events.

Fortune's Sweep

VoronoiDiagram $\left(P \subset \mathbb{R}^{2}\right)$
$\mathcal{Q} \leftarrow$ new PriorityQueue $(P) \quad / /$ site events sorted by y-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β) $\mathcal{D} \leftarrow$ new $\operatorname{DCEL}() \quad / /$ to-be $\operatorname{Vor}(P)$ while not \mathcal{Q}.empty() do

treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of $\operatorname{Vor}(P)$) return \mathcal{D}

Fortune's Sweep

VoronoiDiagram $\left(P \subset \mathbb{R}^{2}\right)$
$\mathcal{Q} \leftarrow$ new PriorityQueue $(P) \quad / /$ site events sorted by y-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β)
$\mathcal{D} \leftarrow$ new $\operatorname{DCEL}() \quad / /$ to-be $\operatorname{Vor}(P)$
while not \mathcal{Q}. empty() do
$p \leftarrow \mathcal{Q}$.ExtractMax()
if p site event then
HandleSiteEvent (p)
else
$\alpha \leftarrow \operatorname{arc}$ on β that will disappear HandleCircleEvent (α)
treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of $\operatorname{Vor}(P)$) return \mathcal{D}

Handling Events

HandleSiteEvent(point p)

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}.

Let α_{1} be the new arc of p.

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. Let α_{1} be the new arc of p. In \mathcal{T} :

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. Let α_{1} be the new arc of p. In \mathcal{T} :

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. Let α_{1} be the new arc of p. In \mathcal{T} :

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
break-
- Split α into α_{0} and α_{2}. Let α_{1} be the new arc of p. In \mathcal{T} :

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
break-
- Split α into α_{0} and α_{2}. In \mathcal{T} :

Let α_{1} be the new arc of p.

- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
break-
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T.delete (α); update breakpts

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T.delete (α); update breakpts
- Delete all circle events involving α from \mathcal{Q}.

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T.delete (α); update breakpts
- Delete all circle events involving α from \mathcal{Q}.

- Add Vor-vtx $\alpha_{\text {left }} \cap \alpha_{\text {right }}$ and Vor-edge $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ to DCEL.

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T.delete (α); update breakpts
- Delete all circle events involving α from \mathcal{Q}.

- Add Vor-vtx $\alpha_{\text {left }} \cap \alpha_{\text {right }}$ and Vor-edge $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ to DCEL.

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T.delete (α); update breakpts
- Delete all circle events involving α from \mathcal{Q}.

- Add Vor-vtx $\alpha_{\text {left }} \cap \alpha_{\text {right }}$ and Vor-edge $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ to DCEL.

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.

- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T. delete (α); update breakpts
- Delete all circle events involving α from \mathcal{Q}.

- Add Vor-vtx $\alpha_{\text {left }} \cap \alpha_{\text {right }}$ and Vor-edge $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ and $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }} \cdot\right\rangle$ for circle events.

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.
- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T.delete (α); update breakpts
- Delete all circle events involving α from \mathcal{Q}.

- Add Vor-vtx $\alpha_{\text {left }} \cap \alpha_{\text {right }}$ and Vor-edge $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ and $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}, \cdot\right\rangle$ for circle events.

Handling Events

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q}, delete this event.
- Split α into α_{0} and α_{2}. In \mathcal{T} : Let α_{1} be the new arc of p.

- Add Vor-edges $\langle q, p\rangle$ and $\langle p, q\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{0}, \alpha_{1}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \cdot\right\rangle$ for circle events.

HandleCircleEvent(arc α)

- T. delete (α); update breakpts
- Delete all circle events involving α from \mathcal{Q}.

- Add Vor-vtx $\alpha_{\text {left }} \cap \alpha_{\text {right }}$ and Vor-edge $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ to DCEL.
- Check $\left\langle\cdot, \alpha_{\text {left }}, \alpha_{\text {right }}\right\rangle$ and $\left\langle\alpha_{\text {left }}, \alpha_{\text {right }}, \cdot\right\rangle$ for circle events.

Running Time?

VoronoiDiagram $\left(P \subset \mathbb{R}^{2}\right)$
$\mathcal{Q} \leftarrow$ new PriorityQueue $(P) \quad / /$ site events sorted by y-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β)
$\mathcal{D} \leftarrow$ new $\operatorname{DCEL}() \quad / /$ to-be $\operatorname{Vor}(P)$
while not \mathcal{Q}. empty() do $p \leftarrow \mathcal{Q}$.ExtractMax()
if p site event then
HandleSiteEvent (p)
else
$\alpha \leftarrow \operatorname{arc}$ on β that will disappear HandleCircleEvent (α)
treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of $\operatorname{Vor}(P)$) return \mathcal{D}

Running Time?

VoronoiDiagram $\left(P \subset \mathbb{R}^{2}\right)$
$\mathcal{Q} \leftarrow$ new PriorityQueue $(P) \quad / /$ site events sorted by y-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β)
$\mathcal{D} \leftarrow$ new $\operatorname{DCEL}() \quad / /$ to-be $\operatorname{Vor}(P)$
while not \mathcal{Q}. empty() do $p \leftarrow \mathcal{Q}$.ExtractMax()
if p site event then
HandleSiteEvent (p) exactly n such events else
$\alpha \leftarrow \operatorname{arc}$ on β that will disappear HandleCircleEvent (α)
treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of $\operatorname{Vor}(P)$) return \mathcal{D}

Running Time?

VoronoiDiagram $\left(P \subset \mathbb{R}^{2}\right)$
$\mathcal{Q} \leftarrow$ new PriorityQueue $(P) \quad / /$ site events sorted by y-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β)
$\mathcal{D} \leftarrow$ new $\operatorname{DCEL}() \quad / /$ to-be $\operatorname{Vor}(P)$
while not \mathcal{Q}. empty() do $p \leftarrow \mathcal{Q}$.ExtractMax()
if p site event then
HandleSiteEvent (p) exactly n such events else
$\alpha \leftarrow \operatorname{arc}$ on β that will disappear HandleCircleEvent (α) at most $2 n-5$ such events
treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of $\operatorname{Vor}(P)$) return \mathcal{D}

Summary

Theorem. Given a set P of n pts in the plane, Fortune's sweep computes $\operatorname{Vor}(P)$ in $O(n \log n)$ time and $O(n)$ space.

Summary

Theorem. Given a set P of n pts in the plane, Fortune's sweep computes $\operatorname{Vor}(P)$ in $O(n \log n)$ time and $O(n)$ space.

Steven Fortune Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams.
Proc. 2nd Annual ACM Symposium on Computational Geometry. Yorktown Heights, NY, pp. 313-322. 1986.

