Julius-Maximilians- Chair for X .
UNIVERSITAT INFORMATICS | I|||I | fl
WURZBURG Efficient Algorithms and

Knowledge-Based Systems Institute for Informatics

Computational Geometry

Voronol Diagrams

The Post-Office Problem

Lecture #7
[Comp. Geom A&A : Chapter 7]

Steven Chaplick Winter Semester 2019/20

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

The Post-Office Problem

Vor(P) =
Voronoi diagram
o of P

The Post-Office Problem

Vor(P) =
Voronoi diagram
o of P

The Post-Office Problem

Vor(P) =
Voronoi diagram
o of P

The Post-Office Problem

Tasks: 1) Defme Voron01 cells, edges and vertices!

N

&

3

y o

§

2

The Post-Office Problem

I \ /

Tasks: 1) Define Voronoi cells, edges and vertices!

2) Are Voronoi cells convex?

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V(ipr}) =

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({r}) =V(p) =

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}
= Ngzp 1P, 9)

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}
= Ngzp 1P, 9)

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

V{p.p'}) =

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]
V({p}) =V(p) = {x € R*: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)
| Voronoi edge]
VHp,p'}) = {x:|xpl = |xp'| and |xp| < |xq| Vq # p,p'}

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]
V({p}) =V(p) = {x € R*: |xp| < |xq| forallg € P\ {p}}

= Ngzp 1P, 9)
| Voronoi edge]
VHp.r'}) = A{x:|xpl=|xp'| and |xp| < |xq| Vg #p,p'}
dV(p) NaV(p')

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]
V({p}) =V(p) = {x € R*: |xp| < |xq| forallg € P\ {p}}

= Ngzp 1P, 9)
| Voronoi edge]
VHp.r'}) = A{x:|xpl=|xp'| and |xp| < |xq| Vg #p,p'}
rel—int(BV(p) N BV(p’))

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p.r. r"})

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

[Voronoi diagram] Vor(P)

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V({p, v, p"}) =V(p)NaV(p')NaV(p")

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.
/
[Voronoi diagram] P Vor(P)

/!

p

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.
/
[Voronoi diagram] P Vor(P)

/!

p

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VHp,r'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

Vor (P) i
| Voronoi cell]

V({p}) =V(p)= {x € R*: |xp| < |xq| forallg € P\ {p}}
= Ngzp 1P, 9)

| Voronoi diagram]

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

/

p

[Voronoi diagram] Vor(P) i subdivision of R2

/!

p

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}

The Voronoi diagram

Let P be a set of points in the plane and let p, p’, p” € P.

/

p

[Voronoi diagram] Vor(P) i subdivision of R2

/!

p

geometric graph

| Voronoi cell]

V({p}) =V(p) = {x € R®: |xp| < |xq| forall g € P\ {p}}
= Ngzp 1P, 9)

| Voronoi edge]

VH{pr'}) ={x:|xp|=|xp'| and |xp| < |xq| Vq # p,p'}
rel-int(0V(p) NoV(p')) (w/o the endpts)

| Voronoi vertex]

V{{p, v, v'}) =V(p)noV(p') NaV(p"”)
= {x: |xp|=|xp'|=|xp"| and |xp| < |xq| Vq}

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof.

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. ¢

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p,).

/
2 q

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p,).

p
e .

Let » € P be not collinear with p and g.

o

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p,).

p
e .
Let » € P be not collinear with p and g.
Then ¢’ = b(g,r) is not parallel to e.

o

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p,).

p
e .q
Let » € P be not collinear with p and g.

Then ¢’ = b(g,r) is not parallel to e.
= eNh(r,q) is closer to r than to p or g.

o

Overall Shape of Vor(P)

Theorem. Let P C IR? be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n — 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.
— Assume that Vor(P) contains an edge ¢
that is a full line, say, ¢ = b(p,).

p
e .q
Let » € P be not collinear with p and g.

Then ¢’ = b(g,r) is not parallel to e.
= eNh(r,q) is closer to r than to p or g.

o

= ¢ 1is bounded on at least one side.

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most vertices and edges.

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Proof.
Euler

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Proof. Problem: unbounded edges!
Euler

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Proof. Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Proof. Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Proof. Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Complexity

Task: Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set P C IR? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Proof. Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Fl =mn

Complexity

Task:

Theorem.

Proof.

Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Given a set P C R? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Problem: unbounded edges!
= can’t apply Euler directly, but. ..

F|=n= (|V|+1)—|E|+n=2

Complexity

Task:

Theorem.

Proof.

Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Given a set P C R? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Fl=n= (|V|+1)—|E|+n=2
min. degree 3

Complexity

Task:

Theorem.

Proof.

Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Given a set P C R? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Fl=n= (|V|+1)—|E|+n=2
min. degree 3 = 2|E| > 3(|V|+1)

Complexity

Task:

Theorem.

Proof.

Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Given a set P C R? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Fl=n= (|V|+1)—|E|+n=2
min. degree 3 = 2|E| > 3(|V|+1)
= ([VI+1) = 3(|]V|+1)+n <2

Complexity

Task:

Theorem.

Proof.

Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Given a set P C R? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Fl=n= (|V|+1)—|E|+n=2
min. degree 3 = 2|E| > 3(|V|+1)
= ([VI+1) = 3(|]V|+1)+n <2
= (V| +1) <n—2

Complexity

Task:

Theorem.

Proof.

Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Given a set P C R? of n sites, Vor(P) consists of
at most 2n — 5 vertices and 3n — 6 edges.

Problem: unbounded edges!
= can’t apply Euler directly, but. ..

Fl=n= (|V|+1)—|E|+n=2
min. degree 3 = 2|E| > 3(|V|+1)
= ([VI+1) = 3(|]V|+1)+n <2
= (V| +1) <n—2

Characterization of Voronoi vtc and edges

Cp(x) := largest circle centered at x w/o sites in its interior

Characterization of Voronoi vtc and edges

Cp(x) := largest circle centered at x w/o sites in its interior

o cp
Cp(x) ’

Characterization of Voronoi vtc and edges

Cp(x) := largest circle centered at x w/o sites in its interior

o cp
Cp(x) ’

Theorem: (i) x Voronoi vtx <

Characterization of Voronoi vtc and edges

Cp(x) := largest circle centered at x w/o sites in its interior

o cp
Cp(x) ’

Theorem: (i) x Voronoi vtx < |[Cp(x)NP| >3

Characterization of Voronoi vtc and edges

Cp(x) := largest circle centered at x w/o sites in its interior

o cp
Cp(x) ’

Theorem: (i) x Voronoi vtx < |[Cp(x)NP| >3

(ii) b(p,p’) contains a Voronoi edge <

Characterization of Voronoi vtc and edges

Cp(x) := largest circle centered at x w/o sites in its interior

OB
Cp(x) ’

Theorem: (i) x Voronoi vtx < |[Cp(x)NP| >3

(ii) b(p,p’) contains a Voronoi edge <
Jx € b(p,p'): Cp(x) NP ={p,p'}

Computation

Brute force:

Computation

Brute force: For each p € P, compute V(p) =,y h(p, p')-

Computation

Brute force: For each p € P, compute V(p) =,y h(p, p')-
[Ch. 2, map-overlay / line-segment alg]

Computation

Brute force: For each p € P, compute V(p) = ,y., h(p, p')-
[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time

Computation

Brute force: For each p € P, compute V(p) = ,y., h(p, p')-
N

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[Ch. 4, half-plane intersection]

Computation

Brute force: For each p € P, compute V(p) = ,y., h(p, p')-
N

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-seement ale] O(nlog?n) time
p y & & &
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time
— but the complexity of Vor(P) is linear!

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time
— but the complexity of Vor(P) is linear!

Sweep?

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time
— but the complexity of Vor(P) is linear!

Sweep?

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time
— but the complexity of Vor(P) is linear!

Sweep?

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time
— but the complexity of Vor(P) is linear!

Sweep?

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time
— but the complexity of Vor(P) is linear!

Sweep?

Problem: We don’t know
all defining sites yet :(

Computation

Brute force: For each p € P, compute V(p) = N, h(p, p).

[Ch. 2, map-overlay / line-segment alg] O(nlog”n) time
[(Ch. 4, half-plane intersection] O(nlogn) time

\ - 4
-~

in total: O(n?logn) time
— but the complexity of Vor(P) is linear!

Sweep?

-

Problem: We don’t know
all defining sites yet :(

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

p

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

e

d

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A
(1o
& (5, f4()
0 d
R ‘

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A
/ 1o
& (5, ()
0 d
AR ‘

Task: Compute f;f for p =(0,1) and ¢: y = —1!

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A
£ 1oF d Solution:
" (x, f 5 (%)) flf is the parabola with
0 d ~ focus p and directrix /.
N
— ¢

Task: Compute f;f for p =(0,1) and ¢: y = —1!

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A
£ 1eF d Solution:
g (x, f ,5 (x)) f;f is the parabola with
0 d ~ focus p and directrix /.
N
— ¢
Task: Compute f;f for p =(0,1) and ¢: y = —1!

Definition. beachline B = lower envelope of (flf) pepne+

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A a
£ 1oF d Solution:
- (x, f 5 (x)) f;f is the parabola with
0 d ~ focus p and directrix /.
N
— ¢
Task: Compute f;f for p =(0,1) and ¢: y = —1!

Definition. beachline B = lower envelope of (flf) pe P

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A a
£ 1oF d Solution:
’ (%, f 5 (%)) flf is the parabola with
0 d ~ focus p and directrix /.
N
1 0
Task: Compute f;f for p =(0,1) and ¢: y = —1!
Definition. beachline B = lower envelope of (flf) pe P

Sweep?

Which part of the plane above /¢ is fixed by what we’ve seen?

A a
/ 1eF d Solution:
fp 14 /0 - :

(2, fp(x)) fp is\the parabola with
0 d \ focus p and directrix ¢.

g :

1 ‘

Task: Compute f;f for p

Definition. beachline B =\ lowe

Sweep?

Which part of the plane above /¢ is fixed by what we’ve seen?

A a
/ 1eF d Solution:
fp 14 /0 - :

(2, fp(x)) fp is\the parabola with
0 d \ focus p and directrix ¢.

g :

1 ‘

Task: Compute f]f for p

Definition. beachline B =\ lowe

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A a
£ 1oF d Solution:
’ (%, f 5 (%)) flf is the parabola with
0 d ~ focus p and directrix /.
N
1 0
Task: Compute f;f for p =(0,1) and ¢: y = —1!
Definition. beachline B = lower envelope of (flf) pe P

NN e O

14

Sweep?

Which part of the plane above / is fixed by what we’ve seen?

A a
£ 1oF d Solution:
’ (%, f 5 (%)) flf is the parabola with
0 d ~ focus p and directrix /.
N
1 0
Task: Compute f;f for p =(0,1) and ¢: y = —1!
Definition. beachline B = lower envelope of (flf) pe P

p
Observation. fis x—monotone.\/\/\/\/

14

The beachline B

Question: What does 8 have to do with Vor(P)?

The beachline B

Question: What does 8 have to do with Vor(P)?

The beachline B

Question: What does 8 have to do with Vor(P)?

Answer: “Breakpoints” of B trace out the Voronoi edges!

The beachline

Question: What does 8 have to do with Vor(P)?

Answer: “Breakpoints” of B trace out the Voronoi edges!

Lemma. New arcs on f only appear through site events

The beachline B

Question: What does 8 have to do with Vor(P)?

Answer: “Breakpoints” of B trace out the Voronoi edges!

Lemma. New arcs on only appear through site events,
that is, whenever /¢ hits a new site.

The beachline B

Question: What does 8 have to do with Vor(P)?

Answer: “Breakpoints” of B trace out the Voronoi edges!

Lemma. New arcs on only appear through site events,
that is, whenever /¢ hits a new site.

Corollary. B consists of at most 2n — 1 arcs.

The beachline B

Question: What does 8 have to do with Vor(P)?

Answer: “Breakpoints” of § trace out the Voronoi edges!

Lemma. New arcs on only appear through site events,
that is, whenever /¢ hits a new site.

Corollary. B consists of at most 2n — 1 arcs.

Definition. Circle event: £ reaches lowest pt of a circle
through three sites above ¢ whose arcs are
consecutive on .

The beachline B

Question: What does 8 have to do with Vor(P)?

Answer: “Breakpoints” of § trace out the Voronoi edges!

Lemma. New arcs on only appear through site events,
that is, whenever /¢ hits a new site.

Corollary. B consists of at most 2n — 1 arcs.

Definition. Circle event: £ reaches lowest pt of a circle
through three sites above ¢ whose arcs are
consecutive on .

Lemma. Arcs disappear from 8 only at circle events.

The beachline B

Question: What does 8 have to do with Vor(P)?

Answer: “Breakpoints” of § trace out the Voronoi edges!

Lemma. New arcs on only appear through site events,
that is, whenever /¢ hits a new site.

Corollary. B consists of at most 2n — 1 arcs.

Definition. Circle event: £ reaches lowest pt of a circle
through three sites above ¢ whose arcs are
consecutive on .

Lemma. Arcs disappear from 8 only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.

Fortune’s Sweep

VoronoiDiagram(P C IR?)
Q <+ new PriorityQueue(P)
T < new BalancedBinarySearchTree()
D < new DCEL()
while not Q.empty() do

treat remaining int. nodes of 7 (= unbnd. edges of Vor(P))
return D

Fortune’s Sweep

VoronoiDiagram(P C IR?)
Q <+ new PriorityQueue(P)
T < new BalancedBinarySearchTree()
D < new DCEL()
while not Q.empty() do
p < Q.ExtractMax()
if p site event then
| HandleSiteEvent(p)
else
a <— arc on 3 that will disappear
L HandleCircleEvent ()

treat remaining int. nodes of 7 (= unbnd. edges of Vor(P))
return D

Handling Events

HandleSiteEvent(point p)

HandleCircleEvent(arc «)

X

Handling Events \
!

HandleSiteEvent(point p) p

® Search in 7 for the arc « vertically above p.
If & has pointer to circle event in O, delete this event.

HandleCircleEvent(arc)

Handling Events \ T
!

HandleSiteEvent(point p) p

® Search in 7 for the arc « vertically above p.
If & has pointer to circle event in O, delete this event.

® Split « into ag and «s.
Let a1 be the new arc of p.

HandleCircleEvent(arc)

Handling Events \ T
!

HandleSiteEvent(point p) p

® Search in 7 for the arc « vertically above p.
If & has pointer to circle event in O, delete this event.

® Split « into ag and «s. In T
Let a1 be the new arc of p.

q

X

HandleCircleEvent(arc)

Handling Events \ T

HandleSiteEvent(point p) oo

® Search in 7 for the arc « vertically above p.
If & has pointer to circle event in O, delete this event.

® Split « into ag and «s. In T

Let a1 be the new arc of p. =

X

HandleCircleEvent(arc)

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event.

® Split « into ag and «s. In T

Let a1 be the new arc of p. =

X

HandleCircleEvent(arc «)

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T

Let a1 be the new arc of p. =

X

HandleCircleEvent(arc «)

Handling Events

HandleSiteEvent(point p)

® Search in 7 for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—»
X

HandleCircleEvent(arc)

Handling Events

HandleSiteEvent(point p)

® Search in 7 for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—»
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc)

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—»
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)

Kleft

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—e
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts KXleft

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—e
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts KXleft

® Delete all circle events involving « from Q.

Handling Events

HandleSiteEvent(point p)

® Search in 7 for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—e
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc)
e T.delete(«); update breakpts KXleft

® Delete all circle events involving « from Q.

® Add Vor-vix ajet N drigh and Vor-edge (aefs, Aright) tO DCEL

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.

If « has pointer to circle event in O, delete this event. break-

® Split « into ag and «s.

Let a1 be the new arc of p.

In T: q

X

e Add Vor-edges (g, p) and (p,q) to DCEL.

—

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts

® Delete all circle events involving « from Q.

e Add Vor-vtx

Kleft a ‘Xright

and Vor-edge (&jeft, Aright) tO DCEL

Kleft

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.

If « has pointer to circle event in O, delete this event. break-

® Split « into ag and «s.
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

In 7T

q

X

—

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts

® Delete all circle events involving « from Q.
<0‘left/ “right>‘ to DCEL.

e Add Vor-vtx

Nleft [Kright

and Vor-edge

Kleft

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—»
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts KXleft

® Delete all circle events involving « from Q.

® Add Vor-vix[@ef N &righd and Vor-edge (et ocright>‘ to DCEL.

® Check (-, Ajeft, Aright) and (&jef, Aright, *) for circle events.

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—»
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts KXleft

® Delete all circle events involving « from Q.

® Add Vor-vix[@ef N &righd and Vor-edge (et “right>‘ to DCEL.

® Check (-, Ajeft, Aright) and (&jef, Aright, *) for circle events.
Running time?

Handling Events

HandleSiteEvent(point p)

® Search in T for the arc « vertically above p.
If & has pointer to circle event in O, delete this event. break-

® Split « into ag and «s. In T
Let a1 be the new arc of p.

e Add Vor-edges (g, p) and (p,q) to DCEL.

q)|—»
X

® Check (-, a9, 1) and (a1, a, -) for circle events.

HandleCircleEvent(arc «)
e T.delete(«); update breakpts KXleft

® Delete all circle events involving « from Q.

® Add Vor-vix[@ef N &righd and Vor-edge (et “right>‘ to DCEL.

® Check (-, Ajeft, Aright) and (&jef, Aright, *) for circle events.
Running time? O(logn) per event...

Running Time?

VoronoiDiagram(P C IR?)
Q <+ new PriorityQueue(P)
T < new BalancedBinarySearchTree()
D < new DCEL()
while not Q.empty() do
p < Q.ExtractMax()
if p site event then
| HandleSiteEvent(p)
else
a <— arc on 3 that will disappear
L HandleCircleEvent ()

treat remaining int. nodes of 7 (= unbnd. edges of Vor(P))
return D

Running Time?

VoronoiDiagram(P C IR?)
Q <+ new PriorityQueue(P)
T < new BalancedBinarySearchTree()
D < new DCEL()
while not Q.empty() do
p < Q.ExtractMax()
if p site event then
| HandleSiteEvent(p) exactly n such events
else
a <— arc on 3 that will disappear
L HandleCircleEvent ()

treat remaining int. nodes of 7 (= unbnd. edges of Vor(P))
return D

Running Time?

VoronoiDiagram(P C IR?)
Q <+ new PriorityQueue(P)
T < new BalancedBinarySearchTree()
D < new DCEL()
while not Q.empty() do
p < Q.ExtractMax()

if p site event then
| HandleSiteEvent(p) exactly n such events

else
a <— arc on 3 that will disappear
HandleCircleEvent(«) at most 2n — 5 such events

treat remaining int. nodes of 7 (= unbnd. edges of Vor(P))
return D

Summary

Theorem. Given a set P of n pts in the plane,
Fortune’s sweep computes Vor(P)
in O(nlogn) time and O(n) space.

Summary

Theorem. Given a set P of n pts in the plane,
Fortune’s sweep computes Vor(P)
in O(nlogn) time and O(n) space.

Steven Fortune
Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams.
Proc. 2nd Annual ACM Symposium on Computational Geometry.
Yorktown Heights, NY, pp. 313-322. 1986.

	Titel
	The Post-Office Problem
	The Voronoi diagram
	Overall Shape of Vor(P)
	Complexity
	Characterization of Voronoi vtc and edges
	Computation
	Sweep?
	The beachline β
	Fortune's Sweep
	Handling Events
	Running Time?
	Summary

