

Computational Geometry

Voronoi Diagrams or The Post-Office Problem Lecture #7

[Comp. Geom A&A : Chapter 7]

Steven Chaplick

Winter Semester 2019/20

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

 $\begin{bmatrix} Voronoi \ cell \end{bmatrix} \\ \mathcal{V}(\{p\}) =$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) =$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

[Voronoi cell]

 $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \right\}$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \end{array} Vor(P) \end{array}$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[Voronoi edge] $\mathcal{V}(\{p, p'\}) =$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p' & \\ & p' & p'' \end{array} Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[*Voronoi edge*] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \end{array} Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[Voronoi edge] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$ $= \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p' & \\ & p' & p'' \end{array} Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[*Voronoi edge*] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$ $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[*Voronoi edge*] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$ $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[Voronoi edge] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$ = rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$ (w/o the endpts)

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[*Voronoi edge*] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$ $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$

[Voronoi vertex] $\mathcal{V}(\{p,p',p''\})$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[*Voronoi edge*] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$ $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$

[Voronoi vertex] $\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[*Voronoi edge*] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$ $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$

 $\begin{bmatrix} Voronoi \ vertex \end{bmatrix} \\ \mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'') \\ = \{x \colon |xp| = |xp'| = |xp''| \text{ and } |xp| \le |xq| \ \forall q \} \end{bmatrix}$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \end{array} Vor(P)$$

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[*Voronoi edge*] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| \le |xq| \ \forall q \neq p, p'\}$ $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$

[Voronoi vertex] $\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$ $= \{x : |xp| = |xp'| = |xp''| \text{ and } |xp| \leq |xq| \quad \forall q\}$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[Voronoi edge] $= \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$ $\mathcal{V}(\{p,p'\})$ = rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$ (w/o the endpts)

[Voronoi vertex] $\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$ $= \{x: |xp| = |xp'| = |xp''| \text{ and } |xp| \le |xq| \ \forall q\}$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[*Voronoi diagram*] $p''_{p''}$ Vor(P) subdivision of \mathbb{R}^2

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[Voronoi edge] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$ = rel-int($\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')$) (w/o the endpts)

[Voronoi vertex] $\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$ $= \{x: |xp| = |xp'| = |xp''| \text{ and } |xp| \le |xq| \ \forall q\}$

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.

[*Voronoi diagram*] p' p p'' Vor(*P*) subdivision of \mathbb{R}^2 geometric graph

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[Voronoi edge] $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$ = rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$ (w/o the endpts)

[Voronoi vertex] $\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$ $= \{x: |xp| = |xp'| = |xp''| \text{ and } |xp| \le |xq| \ \forall q\}$

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.	•	
	•	

Theorem. Let $P \subset \mathbb{R}^2$ be a set of n pts (called *sites*).If all sites are collinear, Vor(P) consists of n - 1parallel lines. Otherwise, Vor(P) is connectedand its edges are line segments or half-lines.*Proof.*Assume that P is not collinear.

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p, q).

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p,q).

Let $r \in P$ be not collinear with p and q.

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p,q).

Let $r \in P$ be not collinear with p and q. Then e' = b(q, r) is not parallel to e.

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p,q).

Let $r \in P$ be not collinear with p and q. Then e' = b(q, r) is not parallel to e. $\Rightarrow e \cap h(r, q)$ is closer to r than to p or q.

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p,q).

Let $r \in P$ be not collinear with p and q. Then e' = b(q, r) is not parallel to e. $\Rightarrow e \cap h(r, q)$ is closer to r than to p or q. $\Rightarrow e$ is bounded on at least one side.

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Task:

Construct a set *P* of point sites such that Vor(*P*) has a cell of linear complexity!

Task:

Construct a set *P* of point sites such that Vor(*P*) has a cell of linear complexity!

Task:

Construct a set *P* of point sites such that Vor(*P*) has a cell of linear complexity!

Task:Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most vertices and edges.

Task:Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Euler

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof. Problem: unbounded edges! Euler

Task:Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of n sites, Vor(P) consists of
at most 2n - 5 vertices and 3n - 6 edges.*Proof.Problem:* unbounded edges!
 \Rightarrow can't apply Euler directly, but...

Task:Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

0

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

$$|F| = n$$

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

$$|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$$

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree 3

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

 $|F| = n \Rightarrow (|V|+1) - |E| + n = 2$ min. degree 3 $\Rightarrow 2|E| \ge 3(|V|+1)$

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree $3 \Rightarrow 2|E| \ge 3(|V| + 1)$ $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n \le 2$

Complexity

Task:Construct a set P of point sitessuch that Vor(P) has a cell oflinear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree $3 \Rightarrow 2|E| \ge 3(|V| + 1)$ $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n \le 2$ $\Rightarrow \frac{1}{2}(|V| + 1) \le n - 2$

Complexity

Task:Construct a set P of point sites
such that Vor(P) has a cell of
linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

Proof.

Problem: unbounded edges! \Rightarrow can't apply Euler directly, but...

 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree $3 \Rightarrow 2|E| \ge 3(|V| + 1)$ $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n \le 2$ $\Rightarrow \frac{1}{2}(|V| + 1) \le n - 2$

 $C_P(x) :=$ largest circle centered at x w/o sites in its interior

 $C_P(x) :=$ largest circle centered at x w/o sites in its interior

 $C_P(x) :=$ largest circle centered at x w/o sites in its interior

Theorem: (i) *x* Voronoi vtx \Leftrightarrow

 $C_P(x) :=$ largest circle centered at $x \le x/o$ sites in its interior

Theorem: (i) *x* Voronoi vtx $\Leftrightarrow |C_P(x) \cap P| \ge 3$

 $C_P(x) :=$ largest circle centered at $x \le x/o$ sites in its interior

Theorem: (i) *x* Voronoi vtx $\Leftrightarrow |C_P(x) \cap P| \ge 3$ (ii) b(p, p') contains a Voronoi edge \Leftrightarrow

 $C_P(x) :=$ largest circle centered at $x \le x/o$ sites in its interior

Theorem: (i) *x* Voronoi vtx $\Leftrightarrow |C_P(x) \cap P| \ge 3$ (ii) b(p, p') contains a Voronoi edge $\Leftrightarrow \exists x \in b(p, p') : C_P(x) \cap P = \{p, p'\}$

Brute force:

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$.

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$.

[Ch. 2, map-overlay / line-segment alg]

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$. [Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection]

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p,p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p,p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

in total: $O(n^2 \log n)$ time

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

in total: $O(n^2 \log n)$ time – but the complexity of Vor(P) is *linear!*

Sweep?

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

in total: $O(n^2 \log n)$ time – but the complexity of Vor(P) is *linear!*

Sweep?

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p,p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

Sweep?

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$.

[Ch. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Ch. 4, half-plane intersection] $O(n \log n)$ time

p

Which part of the plane above ℓ is fixed by what we've seen?

l

Which part of the plane above ℓ is fixed by what we've seen?

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

 f_p^{ℓ} is the parabola with focus *p* and directrix ℓ .

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

 f_p^{ℓ} is the parabola with focus *p* and directrix ℓ .

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

 f_p^{ℓ} is the parabola with focus *p* and directrix ℓ .

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

 f_p^{ℓ} is the parabola with focus *p* and directrix ℓ .

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

 f_p^{ℓ} is the parabola with focus *p* and directrix ℓ .

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Which part of the plane above ℓ is fixed by what we've seen?

Solution:

 f_p^{ℓ} is the parabola with focus *p* and directrix ℓ .

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Definition. *beachline* $\beta \equiv$ lower envelope of $(f_p^{\ell})_{p \in P \cap \ell^+}$ **Observation.** β is *x*-monotone.

Question: What does β have to do with Vor(*P*)?

Question: What does β have to do with Vor(*P*)?

Question: What does β have to do with Vor(*P*)?

Answer: "Breakpoints" of β trace out the Voronoi edges!

- **Question:** What does β have to do with Vor(*P*)?
- **Answer:** "Breakpoints" of β trace out the Voronoi edges!
- **Lemma.** New arcs on β only appear through *site events*

- **Question:** What does β have to do with Vor(*P*)?
- **Answer:** "Breakpoints" of β trace out the Voronoi edges!
- **Lemma.** New arcs on β only appear through *site events,* that is, whenever ℓ hits a new site.

- **Question:** What does β have to do with Vor(*P*)?
- **Answer:** "Breakpoints" of β trace out the Voronoi edges!
- **Lemma.** New arcs on β only appear through *site events,* that is, whenever ℓ hits a new site.
- **Corollary.** β consists of at most 2n 1 arcs.

- **Question:** What does β have to do with Vor(*P*)?
- **Answer:** "Breakpoints" of β trace out the Voronoi edges!
- **Lemma.** New arcs on β only appear through *site events,* that is, whenever ℓ hits a new site.
- **Corollary.** β consists of at most 2n 1 arcs.
- **Definition.** *Circle event:* ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β .

- **Question:** What does β have to do with Vor(*P*)?
- **Answer:** "Breakpoints" of β trace out the Voronoi edges!
- **Lemma.** New arcs on β only appear through *site events,* that is, whenever ℓ hits a new site.
- **Corollary.** β consists of at most 2n 1 arcs.
- **Definition.** *Circle event:* ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β .
- **Lemma.** Arcs disappear from β only at circle events.

- **Question:** What does β have to do with Vor(*P*)?
- **Answer:** "Breakpoints" of β trace out the Voronoi edges!
- **Lemma.** New arcs on β only appear through *site events,* that is, whenever ℓ hits a new site.
- **Corollary.** β consists of at most 2n 1 arcs.
- **Definition.** *Circle event:* ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β .
- **Lemma.** Arcs disappear from β only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.

Fortune's Sweep

VoronoiDiagram($P \subset \mathbb{R}^2$) $\mathcal{Q} \leftarrow$ new PriorityQueue(P) // site events sorted by *y*-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β) $\mathcal{D} \leftarrow$ new DCEL() // to-be Vor(P) while not \mathcal{Q} .empty() do

treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P)) **return** \mathcal{D}

Fortune's Sweep

```
VoronoiDiagram(P \subset \mathbb{R}^2)
\mathcal{Q} \leftarrow new PriorityQueue(P) // site events sorted by y-coord.
\mathcal{T} \leftarrow new BalancedBinarySearchTree() // sweep status (\beta)
\mathcal{D} \leftarrow \text{new DCEL}() // to-be Vor(P)
while not Q.empty() do
    p \leftarrow Q.ExtractMax()
    if p site event then
        HandleSiteEvent(p)
    else
         \alpha \leftarrow \text{arc on } \beta that will disappear
         HandleCircleEvent(\alpha)
treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P))
return \mathcal{D}
```

HandleSiteEvent(point *p*)

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.
- Split α into α_0 and α_2 . Let α_1 be the new arc of p.

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.
- Split α into α_0 and α_2 . Let α_1 be the new arc of p.

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.
- Split α into α_0 and α_2 . Let α_1 be the new arc of p.

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.
- Split α into α_0 and α_2 . Let α_1 be the new arc of p.

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.
- Split α into α_0 and α_2 . Let α_1 be the new arc of p.

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split *α* into *α*₀ and *α*₂.
 Let *α*₁ be the new arc of *p*.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.

break-

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

HandleCircleEvent(arc α)

break-

points

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

HandleCircleEvent(arc α)

• \mathcal{T} .delete(α); update breakpts

(q, p

break-

points

(p,q)

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

HandleCircleEvent(arc α)

- \mathcal{T} .delete(α); update breakpts
- Delete all circle events involving α from Q.

 $\langle q, p \rangle$

break-

points

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

- \mathcal{T} .delete(α); update breakpts
- Delete all circle events involving α from Q.
- Add Vor-vtx $\alpha_{\text{left}} \cap \alpha_{\text{right}}$ and Vor-edge $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ to DCEL.

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

- \mathcal{T} .delete(α); update breakpts
- Delete all circle events involving α from Q.
- Add Vor-vtx $\alpha_{\text{left}} \cap \alpha_{\text{right}}$ and Vor-edge $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ to DCEL.

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

- \mathcal{T} .delete(α); update breakpts
- Delete all circle events involving α from Q.
- Add Vor-vtx $\alpha_{\text{left}} \cap \alpha_{\text{right}}$ and Vor-edge $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ to DCEL.

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

- \mathcal{T} .delete(α); update breakpts
- Delete all circle events involving α from Q.
- Add Vor-vtx $\alpha_{\text{left}} \cap \alpha_{\text{right}}$ and Vor-edge $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ and $\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle$ for circle events.

HandleSiteEvent(point p)

• Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.

In \mathcal{T} :

- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

- \mathcal{T} .delete(α); update breakpts
- Delete all circle events involving α from Q.
- Add Vor-vtx $\alpha_{\text{left}} \cap \alpha_{\text{right}}$ and Vor-edge $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ and $\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle$ for circle events. **Running time?**

HandleSiteEvent(point p)

- Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event.
- Split α into α_0 and α_2 . Let α_1 be the new arc of p.
- Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

HandleCircleEvent(arc α)

- \mathcal{T} .delete(α); update breakpts
- Delete all circle events involving α from Q.
- Add Vor-vtx $\alpha_{\text{left}} \cap \alpha_{\text{right}}$ and Vor-edge $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ and $\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle$ for circle events. **Running time?** $O(\log n)$ per event...

In \mathcal{T} :

Running Time?

```
VoronoiDiagram(P \subset \mathbb{R}^2)
\mathcal{Q} \leftarrow new PriorityQueue(P) // site events sorted by y-coord.
\mathcal{T} \leftarrow new BalancedBinarySearchTree() // sweep status (\beta)
\mathcal{D} \leftarrow \text{new DCEL}() // to-be Vor(P)
while not Q.empty() do
    p \leftarrow Q.ExtractMax()
    if p site event then
        HandleSiteEvent(p)
    else
         \alpha \leftarrow \text{arc on } \beta that will disappear
         HandleCircleEvent(\alpha)
treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P))
return \mathcal{D}
```

Running Time?

VoronoiDiagram($P \subset \mathbb{R}^2$) $\mathcal{Q} \leftarrow$ new PriorityQueue(*P*) // site events sorted by *y*-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β) $\mathcal{D} \leftarrow \text{new DCEL}()$ // to-be Vor(*P*) while not Q.empty() do $p \leftarrow Q$.ExtractMax() if *p* site event then HandleSiteEvent(*p*) exactly *n* such events else $\alpha \leftarrow \operatorname{arc} \operatorname{on} \beta$ that will disappear HandleCircleEvent(α) treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P)) return \mathcal{D}

Running Time?

VoronoiDiagram($P \subset \mathbb{R}^2$) $\mathcal{Q} \leftarrow$ new PriorityQueue(*P*) // site events sorted by *y*-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β) $\mathcal{D} \leftarrow \text{new DCEL}()$ // to-be Vor(*P*) while not Q.empty() do $p \leftarrow Q$.ExtractMax() if *p* site event then HandleSiteEvent(*p*) exactly *n* such events else $\alpha \leftarrow \text{arc on } \beta$ that will disappear HandleCircleEvent(α) at most 2n - 5 such events treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P)) return \mathcal{D}

Summary

Theorem. Given a set *P* of *n* pts in the plane, Fortune's sweep computes Vor(P)in $O(n \log n)$ time and O(n) space.

Summary

Theorem. Given a set *P* of *n* pts in the plane, Fortune's sweep computes Vor(P)in $O(n \log n)$ time and O(n) space.

Steven Fortune Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams. *Proc. 2nd Annual ACM Symposium on Computational Geometry.* Yorktown Heights, NY, pp. 313–322. 1986.