
Shell 101 and Unixy Utils

Alexander Gehrke
May 8, 2019

1

Worum geht’s eigentlich?

Shell a.k.a. Kommandozeile / Terminal / CLI ...
das Programm, das im Terminal Befehle verarbeitet

”Unixy” Unix-Prinzip: kleine Programme, die man kombinieren kann

2

Shell 101

Shells

diverse Shells zur Auswahl

• bekannteste: bash
• beliebte Alternative: zsh
• kleinster gemeinsamer Nenner: POSIX sh
• diverse Shells mit anderer Syntax

Im Basics-Teil dieses Vortrags: nur Syntax, die in allen POSIX-Shells gehen sollte.

3

Befehle aufrufen

$ ls

doc.pdf

file1.txt

file2.txt

fileX.txt

script.sh

4

Befehle aufrufen

$ ls -l

total 0

-rw-r--r-- 1 crater2150 crater2150 0 Apr 20 21:11 doc.pdf

-rw-r--r-- 1 crater2150 crater2150 0 Apr 20 21:11 file1.txt

-rw-r--r-- 1 crater2150 crater2150 0 Apr 20 21:11 file2.txt

-rw-r--r-- 1 crater2150 crater2150 0 Apr 21 13:21 fileX.txt

-rwxr-xr-x 1 crater2150 crater2150 0 Apr 20 21:11 script.sh

5

Globbing

Globbing = Dateinamen nach Muster suchen

$ ls file*

file1.txt

file2.txt

fileX.txt

$ ls *.pdf

doc.pdf

$ ls file[0-9]* # keine Regexes!

file1.txt

file2.txt

6

Globbing — rekursiv

$ mkdir -p foo/bar/baz foo/bar/qux

$ touch foo/bar/baz/baz.txt foo/bar/qux/qux.txt

$ ls */*

baz

qux

7

Globbing — rekursiv

$ ls **/*

doc.pdf

file1.txt

file2.txt

fileX.txt

foo/bar/baz/baz.txt

foo/bar/qux/qux.txt

script.sh

foo:

bar

foo/bar:

baz

qux

foo/bar/baz:

baz.txt

foo/bar/qux:

qux.txt

8

Globbing — rekursiv

$ echo **/*

doc.pdf file1.txt file2.txt fileX.txt foo foo/bar foo/bar/baz

foo/bar/baz/baz.txt foo/bar/qux foo/bar/qux/qux.txt script.sh↪→

9

Variablen

• Variablen in Befehlen werden ersetzt, signalisiert durch Dollar: $VAR_NAME .
• Setzen einer Variable mit VAR_NAME="wert" — hier kein Dollar!
• Ersetzung auch in Strings mit "double quotes" , nicht in 'single quotes'

$ myvar="World"

$ echo "Hello, $myvar."

Hello, World.

10

Schleifen — while

Übliche Schleifenarten: For und While.

While-Syntax:

$ while condition; do commands; done

#example:

$ while ! ping -c 1 -q heise.de; do

echo "Waiting for internet"

sleep 5

done; wget https://example.com/file.zip

Bedingung ist beliebiges Programm. Ausschlaggebend ist Exit Code des
Programms.

11

Schleifen — for

For-Syntax:

$ for name in elements; do commands; done

#example

$ for i in *.jpg; do convert $i $i.bmp; done

• ”name” ist beliebiger Variablenname
• ein Schleifendurchlauf pro Element, Element wird der Variable zugewiesen
• Elemente sind häufig Globbing-Muster, aber auch Programm-Output oder
Text möglich. Separiert wird in letzteren Fällen immer an Whitespace (im
Zweifelsfall escapen)

12

Unix-Prinzip: IO

Unix-Prinzip = kombinieren von Programmen. Auf der Shell meist über
Standardein- und ausgabe.

Dafür gibt es verschiedene Möglichkeiten:

• Ausgabe eines Programms in Befehl einfügen
• Aus Dateien lesen und in diese schreiben
• Ausgabe eines Programms als Eingabe des nächsten Programms nutzen

13

IO: Command Substitution

Möglichkeit 1: Ausgabe vom Programm in anderen Befehl einfügen.

$ for i in $(seq 1 10); do

echo $i

done

seq gibt Zahlenreihen aus (z.B. für indexbasierte Schleifen)

14

IO: File redirection

Möglichkeit 2: Dateien lesen und schreiben

< file Aus Datei lesen
> file In Datei schreiben (ersetzt Inhalt)

>> file An Datei anhängen

$ grep '^###' < ../shell.md > headlines.txt

$ cat headlines.txt

Shells

Befehle aufrufen

Globbing

Input / Output

```

15



IO: Piping

Möglichkeit 3: Ausgabe eines Programms an ein anderes Programm weitergeben

$ my_great_log_program | grep 'Error' | less

• my_great_log_program gibt Logs aus
• grep sucht nach ”Error”, behält nur Zeilen mit Match
• less ist ein Pager: macht Ausgabe scroll- und durchsuchbar

16



If-then-else

$ if condition; then

something;

elif other-condition; then

something-else

else

something-completely-different

fi

17



Conditions

Bedingung in if und while sind Programme. Einige Programme sind speziell
für die Verwendung als Bedingung gedacht.

• true und false geben immer 0 bzw. 1 zurück
• test ist Standardbefehl für Bedingungen. Beispiele

• Stringvergleich: test $var = str

• Zahlenvergleich: test $var -gt 5 (-gt = greater than)
• Prüfen ob Datei existiert: test -e file.txt

Kann auch als eckige Klammern geschrieben werden: [ $var -gt 5 ]

Bei modernen Shells üblicherweise built-in, teilweise erweiterte oder geänderte
Syntax.

18



Short conditions

Ähnlich wie bei anderen Sprachen können Bedingungen mit && und ||

verknüpft werden.

Da Bedingung = Programm, kann man das zur Fehlerbehandlung oder für
verkürzte ifs nutzen:

$ run_some_job || \

printf "Subject: Job failed\n\nFailed at $(date)" \

| sendmail admin@example.com

$ compile_program && run_program

19



Unixy utils



Outline

Shell 101

Unixy utils

Basic unixy utils

Weniger bekannte Utilities

20



Disclaimer

Es gibt viele Programme, die unter ”basic” fallen können (175 Programme schreibt
der POSIX Standard für eine konforme shell vor). Hier also eine kleine Auswahl

Die Zeit reicht auch für die wenigen nicht, um sie alle genau durchzugehen. Wer
zu einem Programm mehr wissen will, einfach melden.

21



Man

Auf den folgenden Folien wird nur noch selten stehen, wie man die Programme
genau benutzt. Praktischerweise liefern sie alle Manuals mit.

$ man $befehl

# optional section, wenn mehrere Manpages mit dem Namen

$ man 1 $befehl

22



Text verarbeiten

grep Suchen nach Regexen
head/tail Nur gewisse Anzahl Zeilen vom Anfang / Ende behalten
sort / uniq Sortieren, doppelte Zeilen filtern, Vorkommen zählen

wc Steht für word count, zählt aber auch Zeilen oder Zeichen

23



Dateisystem

cd change directory, Arbeitsverzeichnis wechseln
ls Dateien auflisten

rm / rmdir Löschen von Dateien / Verzeichnissen
touch / mkdir Erstellen von leeren Dateien / Verzeichnissen
chmod / chown Berechtigung und Besitzer ändern

24



Dateisystem – Fortsetzung

ln Dateisystem-Links erstellen
find Nach Dateien und Verzeichnissen suchen
file Infos über Datei (z.B. Typ, Encoding, etc.)
diff Unterschiede zwischen Dateien anzeigen

25



Programme, die einen eigenen Talk füllen würden

awk Die Manpage beschreibt es als ”pattern scanning and processing
language”. Ideal zum Verarbeiten tabellarischer Daten (z.B. CSV).
Verarbeitet Input zeilen- und spaltenweise.

sed Steht für Stream Editor. Auch eine eigene Scriptsprache mit Fokus
auf Textverarbeitung. Häufigster Anwendungsfall: Suchen und
ersetzen mit Regex.

26



Just for fun: häufigste Aufrufe

awk '{print $1}' $HISTFILE \ # mit awk nur erste spalte der history

| sort | uniq -c \ # sortieren und dann gleiche zeilen

zählen↪→

| sort -nr \ # numerisch sortieren, absteigend

(reverse)↪→

| head -n 10 # nur erste 10 Zeilen

27



Just for fun: häufigste Aufrufe

8245 ll # Alias für `ls -l`

6672 vim

5825 git

4352 cd

3607 gst # Alias für `git status`

2537 fg # Prozess aus Hintergrund vorholen

1966 ag # Textsuche, sehen wir gleich noch

1372 rm

1296 ssh # Remote Shell

1258 gap # Alias für `git add --patch`

Also unter Beachtung der Aliases ist eigentlich Git der häufigste Befehl :-)

28



Weniger bekannte Utilities



Moreutils

Utilities, die zum POSIX-Standard gehören könnten, wenn damals jemand dran
gedacht hätte.

chronic Programmoutput unterdrücken, außer es failed (exitcode nicht 0)
combine Boolsche Operationen für zwei Dateien (z.B. alle Zeilen die in A

vorkommen, aber nicht in B)
ts jede Zeile mit Timestamp versehen a.k.a. Logfiles für Arme

pee wie eine Pipe, aber leitet Output an mehrere Befehle
sponge Braucht man, wenn man eine Datei überschreiben will, die man

gleichzeitig als Input in der gleichen Kommandozeile benutzt
vidir Verzeichnisse mit Texteditor bearbeiten
vipe Pipe mit Texteditor bearbeiten
...

29



Suchen für Ungeduldige und Tippfaule — Text

Wir haben schon grep kennengelernt. Damit kann man auch ganze
Verzeichnisbäume durchsuchen:

$ time grep -r class

...

#viel output

...

grep -r class 0.30s user 0.26s system 43% cpu 1.302 total

30



Suchen für Ungeduldige und Tippfaule — Text

Gleiche Suche, gleicher Ordner, aber mit ag

$ time ag class

...

# weniger output, dafür bunt

...

ag class 0.05s user 0.07s system 186% cpu 0.061 total

Faktor 20 schneller ^^^^^

Außerdem: ignoriert Dinge aus Ignorefiles, Suche in bestimmtem Dateityp,
allgemein angenehmeres Interface.

Wer unbedingt etwas in einer bestimmen Programmiersprache geschriebenes
will oder sehr performancebewusst ist: ack , rg , pt , ucg , ...

31



Suchen für Ungeduldige und Tippfaule — Dateien

Posix-Standard: find . Z.B. Suche nach allen PDFs im aktuellen Ordner:

$ find . -iname '*.pdf'

Oder allen Dateien mit foo im Namen:

$ find . -iname '*foo*'

find kann noch viel mehr, aber für häufigste Anwendungsfälle dadurch
umständliche Syntax.

32



Suchen für Ungeduldige und Tippfaule — Dateien

Für Alltagsgebrauch: fd . Äquivalente Befehle zu eben:

$ fd -e pdf

$ fd foo

Bonus Features: ignoriert per Default versteckte und durch ignorefiles
ausgeschlossene Dateien. Mehr Farbe. Schneller, selbst ohne alle Ignoreoptionen.

33



TODO

fzf, exa, jq, rsync, pass, pv, tmux, thefuck...

htop, mutt (+ offlineimap), vim, khal/khard (+vdirsyncer), mpv, mpd, ledger,
ranger, ncdu...

xorg interop: xclip, dmenu/rofi, dragon, screen-message...

34



///////TODO Live Demo

fzf, exa, jq, rsync, pass, pv, tmux, thefuck...

htop, mutt (+ offlineimap), vim, khal/khard (+vdirsyncer), mpv, mpd, ledger,
ranger, ncdu...

xorg interop: xclip, dmenu/rofi, dragon, screen-message...

35


	Shell 101
	Unixy utils
	Basic unixy utils

	Weniger bekannte Utilities

