Shell 101 and Unixy Utils

Alexander Gehrke
May 8, 2019

Worum geht’s eigentlich?

Shell a.k.a. Kommandozeile / Terminal / CLI ...
das Programm, das im Terminal Befehle verarbeitet

"Unixy” Unix-Prinzip: kleine Programme, die man kombinieren kann

Shell 101

N EIS

diverse Shells zur Auswahl

- bekannteste: bash
- beliebte Alternative: zsh
- kleinster gemeinsamer Nenner: POSIX sh

- diverse Shells mit anderer Syntax

Im Basics-Teil dieses Vortrags: nur Syntax, die in allen POSIX-Shells gehen sollte.

Befehle aufrufen

$ 1s
doc.pdf
filel.txt
file2.txt
fileX.txt
script.sh

Befehle aufrufen

$ 1s -1

total ©

—-rw-r—-r—— 1 crater2150 crater2150 0 Apr 20 21:11 doc.pdf
—-rw—r—-r—— 1 crater2150 crater2150 0 Apr 20 21:11 filel.txt
—-rw—r——-r— 1 crater2150 crater2150 0 Apr 20 21:11 file2.txt
—-rw-r——-r—— 1 crater2150 crater2150 0 Apr 21 13:21 fileX.txt
—-Twxr-xr-x 1 crater2150 crater2150 0 Apr 20 21:11 script.sh

Globbing

Globbing = Dateinamen nach Muster suchen

$ 1s filex

filel.txt

file2.txt

fileX.txt

$ 1s x.pdf

doc.pdf

$ 1s file[0-9]x # keine Regexes!
filel.txt

file2.txt

Globbing — rekursiv

$ mkdir -p foo/bar/baz foo/bar/qux

$ touch foo/bar/baz/baz.txt foo/bar/qux/qux.txt
$ 1s *x/x

baz

qux

Globbing — rekursiv

$ Is xx/*

doc.pdf

filel.txt

file2.txt

fileX.txt
foo/bar/baz/baz.txt
foo/bar/qux/qux.txt
script.sh

foo:
bar

foo/bar:
baz
qux

foo/bar/baz:
baz.txt

foo/bar/qux:
qux.txt

Globbing — rekursiv

$ echo *xx/x

doc.pdf filel.txt file2.txt fileX.txt foo foo/bar foo/bar/baz

“* foo/bar/baz/baz.txt foo/bar/qux foo/bar/qux/qux.txt script.sh

- Variablen in Befehlen werden ersetzt, signalisiert durch Dollar: $VAR_NAME .
- Setzen einer Variable mit VAR_NAME="wert" — hier kein Dollar!

- Ersetzung auch in Strings mit "double quotes" , nichtin 'single quotes'

$ myvar="World"
$ echo "Hello, $myvar."
Hello, World.

10

Schleifen — while

Ubliche Schleifenarten: For und While.
While-Syntax:

$ while condition; do commands; done

#example:
$ while ! ping -c¢ 1 —-q heise.de; do
echo "Waiting for internet™

sleep 5
done; wget https://example.com/file.zip

Bedingung ist beliebiges Programm. Ausschlaggebend ist Exit Code des

Programms.
i

Schleifen — for

For-Syntax:

$ for name in elements; do commands; done
#example
$ for i in x.jpg; do convert $i $i.bmp; done

- "name” ist beliebiger Variablenname

- ein Schleifendurchlauf pro Element, Element wird der Variable zugewiesen

- Elemente sind haufig Globbing-Muster, aber auch Programm-Output oder
Text moglich. Separiert wird in letzteren Fallen immer an Whitespace (im
Zweifelsfall escapen)

12

Unix-Prinzip: 10

Unix-Prinzip = kombinieren von Programmen. Auf der Shell meist uber
Standardein- und ausgabe.

Dafur gibt es verschiedene Moglichkeiten:

- Ausgabe eines Programms in Befehl einflugen
- Aus Dateien lesen und in diese schreiben

- Ausgabe eines Programms als Eingabe des nachsten Programms nutzen

13

10: Command Substitution

Moglichkeit 1: Ausgabe vom Programm in anderen Befehl einfugen.
$ for i in $(seq 1 10); do

echo $i
done

seq gibt Zahlenreihen aus (z.B. fiir indexbasierte Schleifen)

10: File redirection

Moglichkeit 2: Dateien lesen und schreiben

<« file Aus Datei lesen
> file In Datei schreiben (ersetzt Inhalt)
>> file An Datei anhangen

$ grep 'Mss' < ../shell.md > headlines.txt
$ cat headlines.txt

Shells

Befehle aufrufen

Globbing

Input / Output

15

|0: Piping

Moglichkeit 3: Ausgabe eines Programms an ein anderes Programm weitergeben

$ my_great_log_program | grep 'Error' | less

- my_great_log_program gibt Logs aus
- grep suchtnach "Error”, behalt nur Zeilen mit Match

less ist ein Pager: macht Ausgabe scroll- und durchsuchbar

If-then-else

$ if condition; then
something;
elif other-condition; then
something-else
else
something-completely-different
fi

Bedingungin if und while sind Programme. Einige Programme sind speziell
fur die Verwendung als Bedingung gedacht.

- true und false geben immer 0 bzw. 1 zurick

- test ist Standardbefehl fur Bedingungen. Beispiele
- Stringvergleich: test $var = str
- Zahlenvergleich: test $var —gt 5 (-gt = greater than)
- Prufen ob Datei existiert: test -e file.txt

Kann auch als eckige Klammern geschrieben werden: [$var -gt 5]

Bei modernen Shells ublicherweise built-in, teilweise erweiterte oder geanderte
Syntax.

Short conditions

Ahnlich wie bei anderen Sprachen konnen Bedingungen mit && und ||
verknupft werden.

Da Bedingung = Programm, kann man das zur Fehlerbehandlung oder fur

verkurzte ifs nutzen:

$ run_some_job || \
printf "Subject: Job failed\n\nFailed at $(date)" \
| sendmail admin@example.com

$ compile_program && run_program

Unixy utils

Unixy utils

Basic unixy utils

20

Disclaimer

Es gibt viele Programme, die unter "basic” fallen kdnnen (175 Programme schreibt
der POSIX Standard fiir eine konforme shell vor). Hier also eine kleine Auswahl

Die Zeit reicht auch fur die wenigen nicht, um sie alle genau durchzugehen. Wer
zu einem Programm mehr wissen will, einfach melden.

21

Auf den folgenden Folien wird nur noch selten stehen, wie man die Programme
genau benutzt. Praktischerweise liefern sie alle Manuals mit.

$ man $befehl

optional section, wenn mehrere Manpages mit dem Namen
$ man 1 $befehl

22

Text verarbeiten

grep Suchen nach Regexen
head/tail Nur gewisse Anzahl Zeilen vom Anfang / Ende behalten
sort / uniq Sortieren, doppelte Zeilen filtern, Vorkommen zahlen

wc Steht fur word count, zahlt aber auch Zeilen oder Zeichen

23

Dateisystem

cd change directory, Arbeitsverzeichnis wechseln
s Dateien auflisten

rm / rmdir Loschen von Dateien / Verzeichnissen

touch / mkdir Erstellen von leeren Dateien / Verzeichnissen

chmod / chown Berechtigung und Besitzer andern

24

Dateisystem - Fortsetzung

In Dateisystem-Links erstellen
find Nach Dateien und Verzeichnissen suchen
file Infos Uber Datei (z.B. Typ, Encoding, etc.)
diff Unterschiede zwischen Dateien anzeigen

25

Programme, die einen eigenen Talk fiillen wiirden

awk Die Manpage beschreibt es als "pattern scanning and processing
language”. Ideal zum Verarbeiten tabellarischer Daten (z.B. CSV).
Verarbeitet Input zeilen- und spaltenweise.

sed Steht fur Stream Editor. Auch eine eigene Scriptsprache mit Fokus
auf Textverarbeitung. Haufigster Anwendungsfall: Suchen und
ersetzen mit Regex.

26

Just for fun: haufigste Aufrufe

awk '{print $1}' $HISTFILE \ # mit awk nur erste spalte der history

| sort | unig -c \ # sortieren und dann gleiche zeilen
7 z&hlen
| sort -nr \ # numerisch sortieren, absteigend

" (reverse)
| head -n 10 # nur erste 10 Zeilen

27

Just for fun: haufigste Aufrufe

8245
6672
5825
4352
3607
2537
1966
1372
1296
1258

11
vim
git
cd
gst
fg
ag
rm
ssh

gap

#

O#

O#

Alias fir “1ls -1°

Alias fur “git status®
Prozess aus Hintergrund vorholen
Textsuche, sehen wir gleich noch

Remote Shell
Alias fur “git add —--patch”

Also unter Beachtung der Aliases ist eigentlich Git der haufigste Befehl :-)

28

Weniger bekannte Utilities

Utilities, die zum POSIX-Standard gehoren konnten, wenn damals jemand dran
gedacht hatte.

chronic Programmoutput unterdriicken, auBer es failed (exitcode nicht 0)
combine Boolsche Operationen fiir zwei Dateien (z.B. alle Zeilen die in A
vorkommen, aber nicht in B)
ts jede Zeile mit Timestamp versehen a.k.a. Logfiles fur Arme
pee wie eine Pipe, aber leitet Output an mehrere Befehle
sponge Braucht man, wenn man eine Datei uberschreiben will, die man
gleichzeitig als Input in der gleichen Kommandozeile benutzt
vidir Verzeichnisse mit Texteditor bearbeiten
vipe Pipe mit Texteditor bearbeiten

29

ur Ungeduldige und Tippfaule — Text

Wir haben schon grep kennengelernt. Damit kann man auch ganze
Verzeichnisbaume durchsuchen:

$ time grep -r class
#viel output

grep -r class 0.30s user 0.26s system 43% cpu 1.302 total

30

ur Ungeduldige und Tippfaule — Text

Gleiche Suche, gleicher Ordner, aber mit ag
$ time ag class
weniger output, daflir bunt

ag class 0.05s user 0.07s system 186% cpu 0.061 total
Faktor 20 schneller AAAAA

AuBerdem: ignoriert Dinge aus Ignorefiles, Suche in bestimmtem Dateityp,
allgemein angenehmeres Interface.

Wer unbedingt etwas in einer bestimmen Programmiersprache geschriebenes
will oder sehr performancebewusst ist: ack , rg, pt, ucg, ..
31

Suchen fiir Ungeduldige und Tippfaule — Dateien

Posix-Standard: find . Z.B. Suche nach allen PDFs im aktuellen Ordner:

$ find . —iname 'x.pdf'

Oder allen Dateien mit foo im Namen:

$ find . —iname 'xfoox'

find kann noch viel mehr, aber fur haufigste Anwendungsfalle dadurch
umstandliche Syntax.

32

Suchen fiir Ungeduldige und Tippfaule — Dateien

FUr Alltagsgebrauch: fd . Aquivalente Befehle zu eben:

$ fd —e pdf
$ fd foo

Bonus Features: ignoriert per Default versteckte und durch ignorefiles
ausgeschlossene Dateien. Mehr Farbe. Schneller, selbst ohne alle Ignoreoptionen.

33

TODO

fzf, exa, jq, rsync, pass, pv, tmux, thefuck...

htop, mutt (+ offlineimap), vim, khal/khard (+vdirsyncer), mpv, mpd, ledger,
ranger, ncdu...

xorg interop: xclip, dmenu/rofi, dragon, screen-message...

34

fzf, exa, jq, rsync, pass, pv, tmux, thefuck...

htop, mutt (+ offlineimap), vim, khal/khard (+vdirsyncer), mpv, mpd, ledger,
ranger, ncdu...

xorg interop: xclip, dmenu/rofi, dragon, screen-message...

35

	Shell 101
	Unixy utils
	Basic unixy utils

	Weniger bekannte Utilities

