
Functional Concepts Functions Working with Types Examples Brainfuck

Curry time - Learn you a Haskell

Cameron Reuschel - Vincent Truchseß

Functional Concepts Functions Working with Types Examples Brainfuck

Functional Concepts Functions Working with Types Examples Brainfuck

A pure functional Programming Language

Everything is immutable
Everything is lazy
Everything is a function
Everything is awesome

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

Subsection 1

Getting started

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

History - The Inspiration

Figure 1: James Haskell - 2010

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

History - The Creator

Figure 2: Philip Wadler aka Lambda Man

Functional Concepts Functions Working with Types Examples Brainfuck

Section 1

Functional Concepts

Functional Concepts Functions Working with Types Examples Brainfuck

Purity

Subsection 1

Purity

Functional Concepts Functions Working with Types Examples Brainfuck

Purity

What is a Side Effect?

Any operation which modifies the
state of the computer or which
interacts with the outside world

variable assignment
displaying something
printing to console
writing to disk
accessing a database

Figure 3: XKCD on Side Effects

Functional Concepts Functions Working with Types Examples Brainfuck

Purity

Purity: No Side Effects

Haskell is pure - no side effects
= is mathematical equality
Purity leads to referential
transparency: for every x = expr
you can replace x with expr
without changing semantics
An expression f x is pure if it is
referentially transparent for every
referentially transparent x

Functional Concepts Functions Working with Types Examples Brainfuck

Purity

Referential Transparency - Example

Not referentially transparent:
Successive calls to count() return different values.

int counter = 0;
int count() { return ++counter; }

int x = count();

int a, b;
a = x; b = x; // a == b == 1
a = count(); b = count(); // a == 2, b == 3

Pure functions do not modify any state.
They always return the same result given the same input.

Functional Concepts Functions Working with Types Examples Brainfuck

Lazyness

Subsection 2

Lazyness

Functional Concepts Functions Working with Types Examples Brainfuck

Lazyness

Lazyness

. . . not today

Functional Concepts Functions Working with Types Examples Brainfuck

Lazyness

Lazyness

Eager evaluation: expression is evaluated as soon as it is used
Lazy evaluation: expression is only evaluated when it is needed

int counter = 0;
private int count() { return ++counter; }

// Eager: foo == 1337; counter == 1;
int foo = Optional.of(1337).orElse(count());

// Lazy: foo == 1337; counter == 0;
int foo = Optional.of(1337).orElseGet(() -> count());

Everything in Haskell is evaluated lazily.

Functional Concepts Functions Working with Types Examples Brainfuck

Section 2

Functions

Functional Concepts Functions Working with Types Examples Brainfuck

Basic Syntax

sum :: Num a => a -> a -> a
sum x y = x + y

-- type declarations can be omitted
times2 a = a `sum` a

abs :: (Num a, Ord a) => a -> a
abs x = if x < 0 then -x else x

compareTo :: (Num a, Ord a1) => a1 -> a1 -> a
compareTo x y

| x > y = 1
| x < y = -1
| otherwise = 0

Functional Concepts Functions Working with Types Examples Brainfuck

Currying
All functions take a single argument
and return a single value

sum :: Num a => a -> a -> a
sum x y = x + y

addTwo :: Num a => a -> a
addTwo = sum 2

sum is a curried function: it takes an x
and returns a function that takes a y
that returns the sum of x and y

-- (x +) :: a -> a
sum' :: Num a => a -> a -> a
sum' x = (x +)

Figure 4: James Haskell
Eating Curry

Functional Concepts Functions Working with Types Examples Brainfuck

Higher order Functions & Lambdas

A higher order function is a function that takes another
function as an argument
A lambda expression is an anonymous closure with syntax
\arg arg2 ... -> expression

flip :: (a -> b -> c) -> (b -> a -> c)
flip f = \x y -> f y x

negate :: (a -> Bool) -> (a -> Bool)
negate p = not . p

Functional Concepts Functions Working with Types Examples Brainfuck

Section 3

Working with Types

Functional Concepts Functions Working with Types Examples Brainfuck

Basic Types

Besides the usual Number types (Integers, Floats, Fractions, . . .)
Haskell also includes:

Chars: 'a', 'b', 'c', ...
Strings: "hello" = ['h', 'e', 'l', 'l', 'o']
Tuples: (1, "hello", (\a -> a * 42))

Functional Concepts Functions Working with Types Examples Brainfuck

Lists

Subsection 1

Lists

Functional Concepts Functions Working with Types Examples Brainfuck

Lists

Creating Lists

favoritePrimes :: [Int]
favoritePrimes = [3,7,9,11]

evenNumbers = [x | x <- [0..50], x `mod` 2 == 0]
evenNumbers' = [0,2..50]
evenNumbersAndOne = 1 : evenNumbers

alphabet = ['a'..'z'] ++ ['A'..'Z']

Functional Concepts Functions Working with Types Examples Brainfuck

Lists

Basic list functions

head [1, 2, 3] -- > 1
tail [1, 2, 3] -- > [2, 3]
init [1, 2, 3] -- > [1, 2]
last [1, 2, 3] -- > 3

take 2 [1, 2, 3] -- > [1, 2]
takeWhile (< 3) [1, 2, 3] -- > [1, 2]

drop 2 [1, 2, 3] -- > [3]
dropWhile (< 3) [1, 2, 3] -- > [3]

Functional Concepts Functions Working with Types Examples Brainfuck

Lists

More on Lists

zip ['a', 'b'] [1..] -- > [('a',1), ('b', 2)]
zipWith (+) [1, 2, 3] [4, 5, 6] -- > [5, 7, 9]

map abs [-1, -2, 3] -- > [1, 2, 3]
filter even [1, 2, 3, 4] -- > [2, 4]
any even [3, 5, 7] -- > False

cycle [1, 2, 3] -- > [1, 2, 3, 1, 2, 3, ...]
repeat 'g' -- > "ggggggggggggggggggg..."

Due to lazy evaluation we can have infinite lists.
Don’t run length on this. It takes forever.

Functional Concepts Functions Working with Types Examples Brainfuck

Lists

Folds - Formally known as Reducers

foldl accumulates a sequence into a value left to right

foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldl (+) 0 [1..5]

foldl (+) (0 + 1) [2..5]
foldl (+) ((0 + 1) + 2) [3..5]
foldl (+) (((0 + 1) + 2) + 3) [4, 5]
foldl (+) ((((0 + 1) + 2) + 3) + 4) [5]
foldl (+) (((((0 + 1) + 2) + 3) + 4) + 5) []

Functional Concepts Functions Working with Types Examples Brainfuck

Lists

Folds - Formally known as Reducers

foldr accumulates a sequence into a value right to left

foldr :: Foldable t => (b -> b -> a) -> b -> t a -> b
foldr (+) 0 [1..5]

(1 + (foldr (+) 0 [2..5]))
(1 + (2 + (foldr (+) 0 [3..5])))
(1 + (2 + (3 + (foldr (+) 0 [4, 5]))))
(1 + (2 + (3 + (4 + (foldr (+) 0 [5])))))
(1 + (2 + (3 + (4 + (5 + (foldr (+) 0 []))))))

Functional Concepts Functions Working with Types Examples Brainfuck

Custom Data Types

Subsection 2

Custom Data Types

Functional Concepts Functions Working with Types Examples Brainfuck

Custom Data Types

Sum Types

Sum types are essentially represented as enums in C-like languages

data BracketValidationResult
= TooManyOpen
| TooManyClosed
| Fine
| NoCode

Functional Concepts Functions Working with Types Examples Brainfuck

Custom Data Types

Product Types

Product types are essentially structs in C

data Tape = Tape [Int] Int [Int]
tape = Tape [1, 2] 3 [4]
left (Tape l _ _) = l
right (Tape _ _ r) = r
curr (Tape _ c _) = c

-- record syntax
data Tape = Tape

{ left :: [Int], curr :: Int, right :: [Int] }
tape = Tape [1, 2] 3 [4]
tape' = Tape {left = [1, 2], curr = 3, right = [4]}

Functional Concepts Functions Working with Types Examples Brainfuck

Custom Data Types

Mix and Match

data Point = Point Float Float

data Shape
= Circle Point Float
| Rectangle

{ upperLeft :: Point
, lowerRight :: Point }

Figure 5: James
Haskell is in shape

Functional Concepts Functions Working with Types Examples Brainfuck

Type Classes

Subsection 3

Type Classes

Functional Concepts Functions Working with Types Examples Brainfuck

Type Classes

Type Clases 1

Type classes are used to ‘implement’ an interface for a type:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

Implementing Eq for a type T makes the type magically
work for every function that expects an instance of Eq

instance Eq Tape where
x == y =

left x == left y
&& curr x == curr y
&& right x == right y

Functional Concepts Functions Working with Types Examples Brainfuck

Type Classes

Type Classes 2

Type class instances can be derived from a type:

data Tape = Tape [Int] Int [Int] deriving (Eq, Show)

Type classes itself can derive from other type classes:

class (Eq a) => Num a where ...

Builtin useful type classes:

Eq, Show, Read, Ord, Bounded, Enum
Num, Integral, Real, Fractional
Foldable, Functor, Monad

Functional Concepts Functions Working with Types Examples Brainfuck

Type Classes

Overview - Type Class Hierarchy

Figure 6: Standard Haskell Classes
https://www.haskell.org/onlinereport/basic.html

Functional Concepts Functions Working with Types Examples Brainfuck

Pattern matching

Subsection 4

Pattern matching

Functional Concepts Functions Working with Types Examples Brainfuck

Pattern matching

Pattern matching: Simple case

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib n = case n of
0 -> 1
1 -> 1
n -> fib (n-1) + fib (n-2)

Functional Concepts Functions Working with Types Examples Brainfuck

Pattern matching

Pattern Matching: Deconstruction

quicksort [] = []
quicksort (p:xs) = (quicksort lesser)

++ [p] ++ (quicksort greater)
where (lesser, greater) = partition (< p) xs

partition :: (a -> Bool) -> [a] -> ([a], [a])

Functional Concepts Functions Working with Types Examples Brainfuck

Pattern matching

Pattern Matching: Deconstruction

-- with overflow handling
increment :: Tape -> Tape

data Tape = Tape [Int] Int [Int]
increment (Tape left curr right) =

Tape left ((curr + 1) `mod` 256) right

data Tape =
Tape { left :: [Int], curr :: Int, right :: [Int] }

increment Tape
{ left = l
, curr = c
, right = r
} = Tape l ((c + 1) `mod` 256) r

Functional Concepts Functions Working with Types Examples Brainfuck

Section 4

Examples

Functional Concepts Functions Working with Types Examples Brainfuck

An Example - FizzBuzz

fizzBuzz = zipWith stringify [1..] fizzBuzzes
where

stringify num "" = show num
stringify _ str = str
-- > stringify [(1, ""), (2, ""), (3, "Fizz")]
-- > ["1", "2", "Fizz"]
fizzBuzzes = zipWith (++) fizzes buzzes
-- > ["", "", "Fizz", "", "Buzz", "Fizz",...]
fizzes = cycle ["", "", "Fizz"]
buzzes = cycle ["", "", "", "", "Buzz"]

["1","2","Fizz","4","Buzz","Fizz","7","8","Fizz"...]

Functional Concepts Functions Working with Types Examples Brainfuck

Another Example - The Fibonnacci Sequence

A naive implementation

fib 0 = 1
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)

A less naive implementation

fib = 1:1:(zipWith (+) fib (tail fib))

1:1:(zipWith (+) 1:1:[...] 1:[...])
1:1:2:(zipWith (+) 1:2:[...] 2:[...])
1:1:2:3:(zipWith (+) 2:3:[...] 3:[...])
1:1:2:3:5:(zipWith (+) 3:5:[...] 5:[...])

Functional Concepts Functions Working with Types Examples Brainfuck

Another Example - Prime Numbers

An implementation of the Sieve of Eratosthenes

indexIsPrime = go 1 False : repeat True
where

go i (True : xs) = True : go (i + 1) sieve
where

mask = replicate (i - 1) True ++ [False]
sieve = zipWith (&&) xs (cycle mask)

go i (False : xs) = False : go (i + 1) xs

primes = map fst $ filter snd $ zip [1..] indexIsPrime

Functional Concepts Functions Working with Types Examples Brainfuck

Section 5

Brainfuck

Functional Concepts Functions Working with Types Examples Brainfuck

What is Brainfuck?

Tape with cells holding a single byte each
A pointer to a cell can be moved left and right
The value of the cell can be incremented and decremented

Comment Description

> Move the pointer to the right
< Move the pointer to the left
+ Increment the memory cell under the pointer
- Decrement the memory cell under the pointer
. Output the character signified by the cell at the pointer
, Input a character and store it in the cell at the pointer
[Jump past the matching] if the cell is 0
] Jump back to the matching [if the cell is nonzero

Functional Concepts Functions Working with Types Examples Brainfuck

The Idea

Build an interpreter for Brainfuck in Haskell
Code and input through stdin separated by !
Do not use any side effects

Find the whole program including tests at
https://github.com/XDracam/brainfuck-haskell

https://github.com/XDracam/brainfuck-haskell

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

Subsection 1

Getting started

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

Defining the Tape

data Tape = Tape
{ left :: [Int]
, curr :: Int
, right :: [Int]
} deriving (Eq)

emptyTape :: Tape
emptyTape = Tape [] 0 []

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

Printing the Tape

import Data.List (intercalate, intersperse)

instance Show Tape where
show (Tape l c r) =

show $ "[" ++ l'
++ "|>>" ++ show c ++ "<<|"
++ r' ++ "]"

where
l' = intersperse '|'

$ intercalate ""
$ show <$> reverse l

r' = intersperse '|'
$ intercalate ""
$ show <$> r

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

Moving the tape

moveLeft :: Tape -> Tape
moveLeft Tape [] rh r = Tape [] 0 (rh : r)
moveLeft Tape (c:l) rh r = Tape l c (rh : r)

moveRight :: Tape -> Tape
moveRight Tape l lh [] = Tape (lh : l) 0 []
moveRight Tape l lh (c:r) = Tape (lh : l) c r

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

Incrementing and Decrementing

increment :: Tape -> Tape
increment t = t {curr = (curr t + 1) `mod` 256}

decrement :: Tape -> Tape
decrement t = t {curr = (curr t - 1) `mod` 256}

Functional Concepts Functions Working with Types Examples Brainfuck

Getting started

Reading and Writing

readChar :: Tape -> Char
readChar Tape {curr = c} = chr c

writeChar :: Tape -> Char -> Tape
writeChar t c = t {curr = ord c}

Note: writeChar returns a function that yields a new tape after
taking a char to write. The actual IO is performed in the IO layer.

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with Input

Subsection 2

Dealing with Input

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with Input

Handle the Raw Input

extractCode :: String -> String
extractCode =

filter (`elem` validChars) . takeWhile (/= '!')
where

validChars = "<>[],.+-"

parseInput :: [String] -> (String, String)
parseInput codeLines = (extractCode code, tail input)

where
codeWithLines = intercalate "\n" codeLines
(code, input) = span (/= '!') codeWithLines

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with Input

Validate Brackets

data ValidationResult
= TooManyOpen | TooManyClosed | Fine | NoCode
deriving (Eq, Show)

validateBrackets :: String -> ValidationResult
validateBrackets code

| null code = NoCode
| count > 0 = TooManyOpen
| count < 0 = TooManyClosed
| otherwise = Fine
where

count sum '[' = sum + 1
count sum ']' = sum - 1
count sum _ = sum
count = foldl count 0 code

Functional Concepts Functions Working with Types Examples Brainfuck

Interpreting the Code

Subsection 3

Interpreting the Code

Functional Concepts Functions Working with Types Examples Brainfuck

Interpreting the Code

Defining the Basics

handleChar :: Char -> Tape -> Tape
handleChar '>' = moveRight
handleChar '<' = moveLeft
handleChar '+' = increment
handleChar '-' = decrement
handleChar other = error $ "Unexpected char: " ++ [other]

data InterpreterState = InterpreterState
{ code :: String
, seen :: String
, input :: String
, output :: String
, tape :: Tape
}

Functional Concepts Functions Working with Types Examples Brainfuck

Interpreting the Code

Running the code

interpretCode :: String -> String -> (Tape, String)
interpretCode code input =

go (InterpreterState code "" input "" emptyTape)
where

go :: InterpreterState -> (Tape, String)
go (InterpreterState "" _ _ out t) = (t, reverse out)
go s@(InterpreterState (c:code) seen inp out t) =

•••

Functional Concepts Functions Working with Types Examples Brainfuck

Interpreting the Code

Handling Read and Write

go s@(InterpreterState (c:code) seen inp out t) =
case c of

'.' -> go s { code = code, seen = '.' : seen
, output = readChar t : out}

',' ->
if null inp

then error "Error: No input left."
else go s {code = code, seen = seen'

, input = inp', tape = tape'}
where ci:inp' = inp

tape' = writeChar t ci
seen' = ',' : seen

-- LOOP HANDLING GOES HERE --
c -> go s {code = code, seen = c : seen

, tape = handleChar c t}

Functional Concepts Functions Working with Types Examples Brainfuck

Interpreting the Code

Find Corresponding Brackets

partitionByFinding :: Char -> String -> (String, String)
partitionByFinding c toView = go c toView "" 0

where
go :: Char -> String -> String -> Int -> (String, String)
go c [] found _ =

error $
"Unexpected error: Failure to find a " ++
[c] ++ " after finding " ++ found

go c (h:toView) found 0
| c == h = (c : found, toView)

go c (h:toView) found open =
case h of

'[' -> go c toView ('[' : found) (open + 1)
']' -> go c toView (']' : found) (open - 1)
other -> go c toView (other : found) open

Functional Concepts Functions Working with Types Examples Brainfuck

Interpreting the Code

Handling Loops

go s@(InterpreterState (c:code) seen inp out t) =
-- READ/WRITE HANDLING GOES HERE --
'[' ->

if curr t == 0 -- skip loop?
then go s {code = todo, seen = loop ++ ('[' : seen)}
else go s {code = code, seen = '[' : seen}

where (loop, todo) = partitionByFinding ']' code
']' ->

if curr t == 0 -- exit loop?
then go s {code = code, seen = ']' : seen}
else go s {code = loop ++ (']' : code), seen = rem}

where (loop, rem) = partitionByFinding '[' seen
c -> go s {code = code, seen = c : seen

, tape = handleChar c t}

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with IO and Side Effects

Subsection 4

Dealing with IO and Side Effects

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with IO and Side Effects

Dealing with Side Effects

Haskell is pure: There are no side effects
But every program interacts with its environment in some way
The IO monad describes an interaction with the environment
Descriptions can be composed through the bind operator >>=
The main function in Haskell returns an IO () which describes
the sum of all side effects to be executed by the Haskell runtime

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with IO and Side Effects

Simulating imperative programming

putStrLn :: String -> IO ()
getLine :: IO String

getLine >>= (\firstLine ->
getLine >>= (\secondLine ->

putStrLine (firstLine ++ secondLine)
>> putStrLine "Done."))

is equivalent to:

do
firstLine <- getLine
secondLine <- getLine
putStrLine $ firstLine ++ secondLine
putStrLine "Done."

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with IO and Side Effects

IO - Example

getLine yields an IO String which describes how to later yield a
string by executing controlled side effects:

takeLinesUntil :: (String -> Bool) -> IO [String]
takeLinesUntil predicate = go predicate []

where
go predicate lines = do

line <- getLine
if predicate line

then return $ reverse lines
else go predicate $ line : lines

Functional Concepts Functions Working with Types Examples Brainfuck

Dealing with IO and Side Effects

main :: IO ()
main = do

args <- getArgs
putStrLn "\nEnter code and input:\n"
codeLines <- takeLinesUntil null
let (code, input) = parseInput codeLines
case validateBrackets code of

TooManyOpen -> putStrLn tooManyOpenError
TooManyClosed -> putStrLn tooManyClosedError
NoCode -> putStrLn noCodeError
Fine -> do

let (out, _) = interpretCode code input
putStrLn "Output:\n"
putStrLn out

	Getting started
	Functional Concepts
	Purity
	Lazyness

	Functions
	Working with Types
	Lists
	Custom Data Types
	Type Classes
	Pattern matching

	Examples
	Brainfuck
	Getting started
	Dealing with Input
	Interpreting the Code
	Dealing with IO and Side Effects

