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What is OpenGL?
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From the Documentation

OpenGL (for “Open Graphics Library”) is a software interface to
graphics hardware. The interface consists of a set of several
hundred procedures and functions that allow a programmer to
specify the objects and operations involved in producing
high-quality graphical images, specifically color images of
three-dimensional objects.[1]
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What is OpenGL?
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Design

Abstract Specification for drawing 2D or 3D graphics
Can be implemented in software or hardware (— driver)
Plattform independent
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Language independent (Although C-ish style functions are
used)

Bindings for many languages (C, JavaScript, Java, ...)
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What is OpenGL?
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What not?

> Windowing

» Audio

» Input

» = Frameworks like GLFW, SDL, ...
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Basic Concepts
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Goal

Render a 3D Object onto a 2D Plane (our Screen)

https://commons.wikimedia.org/wiki/File:Utah_teapot_simple_2.png
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The OpenGL Coordinate System

OpenGL uses a right handed coordinate system
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+Z

https://learnopengl.com/Getting-started /Coordinate-Systems
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Basic Concepts
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Mesh

» Represented by a set of vertices in
3D space

» Vertices form triangle faces (in our
case)

» Vertex data: position, normals,
texture coordinates, lighting, ...
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Basic Concepts
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API Design

» One big state machine

» Tons of functions that manipulate that state machine
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Shading Pipeline
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Shading Pipeline
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Vertex Storage

» Vertex data is stored in Vertex Buffer Objects in graphic card
memory

» Vertex Array Objects are used to index these Buffers
» Buffers must always be bound before they can be used

VAO 1 REOIC
attribute pointer 0 pos[0] posi1] pos[2] pos[3] .
attribute pointer 1
attribute pointer 2
attribute pointer 15 VBO 2
pos[0] col[0] pos[1] colll] . colln]

VAO 2
attribute pointer 0

attribute pointer 1
attribute pointer 2

attribute pointer 15
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Shading Pipeline
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Shader

» Code executed on the graphics card
» Written in GLSL

» Different types: VertexShader, FragmentShader,
GeometryShader, TesselationShader
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Shading Pipeline

VERTEX DATA[]

Shading Pipeline
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Figure: A simplified diagram of the rendering pipeline !
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https://learnopengl.com /img/getting-started/pipeline.png
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Shading Pipeline
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Shader

VertexShader
» Executeted for each vertex

» Sets the vertex position

FragmentShader
» Executed for each fragment (pixel)

» Sets the final color of each fragment
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Shading Pipeline
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Demo

Example 01 & 02
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Shading Pipeline
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Uniforms

» Variables inside the shader code that can be set from outside

» Efficient method for modifying how models are displayed
without the need for changing the raw vertex data

» used for nearly anything (e.g. translation, coloring, lighting)
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Shading Pipeline
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Demo

Example 03
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Shading Pipeline
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Element Buffers

> A vertex can be part of many triangles
» We don't want to store vertex data more than once

» Solution: use an Element Buffer to store which indices of the
vertices in the VBO correspond to which triangles
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Shading Pipeline
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Demo

Example 04
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Model View Transformation
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Goal

Render a 3D Object onto a 2D Plane (our Screen)

https://commons.wikimedia.org/wiki/File:Utah_teapot_simple_2.png
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Model View Transformation
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Vectors

P> Vertex position represented by a 4D vector

» "Homogeneous coordinates”

X
y . 1 for location vectors
> with w = o
z 0 for direction vectors
w

» Allows us to do all kinds of transformations with 4x4 Matrices
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Model View Transformation
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Matrices
10
» Translation: 8 é
0 0
sx 0 O
0 sy O
> .

Scale: 0 0 sz
0 0 O
X 0
0 cosd

> ion:
Rotation: 0 sind
0 0
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The OpenGL Coordinate System

OpenGL uses a right handed coordinate system
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https://learnopengl.com/Getting-started /Coordinate-Systems
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Model View Transformation
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From a 3D model to a 2D image

- ———-]

s MODEL MATRIX VIEW MATRIX

1. LOCAL SPACE

VIEWPORT TRANSFORM

PROJIECTION MATRIX I

3. VIEW SPACE 4. CLIP SPACE 5. SCREEN SPACE

https://learnopengl.com/Getting-started /Coordinate-Systems
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Model View Transformation
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From a 3D model to a 2D image

> Model: Object position relative to world origin

» View: Camera position

» Projection: Project 3D scene onto a 2D image

» Clipping: All vertices not within [—1.0...1.0] will be discarded
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Model View Transformation
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Demo

Example Ox
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Vulkan
[ Jele}

What is Vulkan?

» Vulkan is a "next-gen” graphics API
» Developed by the same people as OpenGL (Khronos Group)
» Will not replace OpenGL in the near future

» Orientated around a command buffer / command pipeline
structure
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Vulkan
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Advantages

» Far more low level than OpenGL
» Thread and memory management left to application
P sophisticated validation and diagnostic layers

» similar APIl between mobile and desktop
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Vulkan
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Disadvantages

» Far more low level than OpenGL
» No thread and memory management

> A lot more boilerplate to set up
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The End
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References

@ OpenGL Specification

The OpenGL © Graphics System: A Specification (Version 4.0 (Core
Profile) - March 11, 2010)

https://www.khronos.org/registry /OpenGL /specs/gl/glspec40.core.pdf

@ Learn OpenGL
A good tutorial to ge started with OpenGL
https://learnopengl.com/
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