The OpenGL Rendering Pipeline

Michael Kreuzer

November 28, 2018

penGL.

OpenGL® and the oval logo are trademarks or registered trademarks of Hewlett Packard Enterprise in the
United States and/or other countries worldwide.

Michael Kreuzer
OpenGL




Overview

What is OpenGL?

Basic Concepts

Shading Pipeline

Model View Transformation

Vulkan

Michael Kreuzer



What is OpenGL?
©00

From the Documentation

OpenGL (for “Open Graphics Library”) is a software interface to
graphics hardware. The interface consists of a set of several
hundred procedures and functions that allow a programmer to
specify the objects and operations involved in producing
high-quality graphical images, specifically color images of
three-dimensional objects.[1]

Michael Kreuzer



What is OpenGL?
000

Design

Abstract Specification for drawing 2D or 3D graphics
Can be implemented in software or hardware (— driver)
Plattform independent

vvyyy

Language independent (Although C-ish style functions are
used)

Bindings for many languages (C, JavaScript, Java, ...)

v

Michael Kreuzer



What is OpenGL?
[elel)

What not?

> Windowing

» Audio

» Input

» = Frameworks like GLFW, SDL, ...

Michael Kreuzer



Basic Concepts
€000

Goal

Render a 3D Object onto a 2D Plane (our Screen)

https://commons.wikimedia.org/wiki/File:Utah_teapot_simple_2.png

Michael Kreuzer



The OpenGL Coordinate System

OpenGL uses a right handed coordinate system

+Y

+Z

https://learnopengl.com/Getting-started /Coordinate-Systems

Michael Kreuzer



Basic Concepts
0000

Mesh

» Represented by a set of vertices in
3D space

» Vertices form triangle faces (in our
case)

» Vertex data: position, normals,
texture coordinates, lighting, ...

Michael Kreuzer



Basic Concepts
000e®

API Design

» One big state machine

» Tons of functions that manipulate that state machine

Michael Kreuzer



Shading Pipeline
@®000000000

Shading Pipeline

Michael Kreuzer



Vertex Storage

» Vertex data is stored in Vertex Buffer Objects in graphic card
memory

» Vertex Array Objects are used to index these Buffers
» Buffers must always be bound before they can be used

VAO 1 REOIC
attribute pointer 0 pos[0] posi1] pos[2] pos[3] .
attribute pointer 1
attribute pointer 2
attribute pointer 15 VBO 2
pos[0] col[0] pos[1] colll] . colln]

VAO 2
attribute pointer 0

attribute pointer 1
attribute pointer 2

attribute pointer 15

Michael Kreuzer



Shading Pipeline
[e]e] Jelelelelele]e]

Shader

» Code executed on the graphics card
» Written in GLSL

» Different types: VertexShader, FragmentShader,
GeometryShader, TesselationShader

Michael Kreuzer



Shading Pipeline

VERTEX DATA[]

Shading Pipeline
[e]e]e] lelelelele]e]

VERTEX SHADER

GEOMETRY SHADER

@ ™ - ™ @ ™
L]
L]
L
A o p vy p oy
s @ D —
A
In|
11
Oy
| §
g vy b _/ w ~

FRAGMENT SHADER

Figure: A simplified diagram of the rendering pipeline !

1
https://learnopengl.com /img/getting-started/pipeline.png

Michael Kreuzer
OpenGL




Shading Pipeline
[e]e]e]e] Jelelele]e]

Shader

VertexShader
» Executeted for each vertex

» Sets the vertex position

FragmentShader
» Executed for each fragment (pixel)

» Sets the final color of each fragment

Michael Kreuzer



Shading Pipeline
[e]e]e]ele] lelele]e]

Demo

Example 01 & 02

Michael Kreuzer



Shading Pipeline
[e]e]e]e]e]e] lele]e]

Uniforms

» Variables inside the shader code that can be set from outside

» Efficient method for modifying how models are displayed
without the need for changing the raw vertex data

» used for nearly anything (e.g. translation, coloring, lighting)

Michael Kreuzer



Shading Pipeline
[e]e]e]e]e]ele] le]e]

Demo

Example 03

Michael Kreuzer



Shading Pipeline
[e]e]e]e]e]elele] Jo]

Element Buffers

> A vertex can be part of many triangles
» We don't want to store vertex data more than once

» Solution: use an Element Buffer to store which indices of the
vertices in the VBO correspond to which triangles

Michael Kreuzer



Shading Pipeline
[e]e]e]e]e]elele]le]

Demo

Example 04

Michael Kreuzer



Model View Transformation
@000000

Goal

Render a 3D Object onto a 2D Plane (our Screen)

https://commons.wikimedia.org/wiki/File:Utah_teapot_simple_2.png

Michael Kreuzer



Model View Transformation
[o] Jelelele]e]

Vectors

P> Vertex position represented by a 4D vector

» "Homogeneous coordinates”

X
y . 1 for location vectors
> with w = o
z 0 for direction vectors
w

» Allows us to do all kinds of transformations with 4x4 Matrices

Michael Kreuzer



Model View Transformation
[e]e] le]ele]e]

Matrices
10
» Translation: 8 é
0 0
sx 0 O
0 sy O
> .

Scale: 0 0 sz
0 0 O
X 0
0 cosd

> ion:
Rotation: 0 sind
0 0

Michael Kreuzer

H O OO Oor OO

dx

dz

=N < X

0
—sinf
—cosf

0

X X+ dx
y| _ |y+dy
z z+dz
1 1

X % SX
_|yxsy
| zxsz

1

0 X X
0 L] — cosfy — sin 0z
0 z sinfy + cos 0z
1 1 1



The OpenGL Coordinate System

OpenGL uses a right handed coordinate system

+Y

+Z

https://learnopengl.com/Getting-started /Coordinate-Systems

Michael Kreuzer



Model View Transformation

[e]e]e]e] Jele]

From a 3D model to a 2D image

- ———-]

s MODEL MATRIX VIEW MATRIX

1. LOCAL SPACE

VIEWPORT TRANSFORM

PROJIECTION MATRIX I

3. VIEW SPACE 4. CLIP SPACE 5. SCREEN SPACE

https://learnopengl.com/Getting-started /Coordinate-Systems

Michael Kreuzer

Open



Model View Transformation
[e]e]e]e]e] o]

From a 3D model to a 2D image

> Model: Object position relative to world origin

» View: Camera position

» Projection: Project 3D scene onto a 2D image

» Clipping: All vertices not within [—1.0...1.0] will be discarded

Michael Kreuzer



Model View Transformation
[e]e]e]e]e]e]

Demo

Example Ox

Michael Kreuzer



Vulkan
[ Jele}

What is Vulkan?

» Vulkan is a "next-gen” graphics API
» Developed by the same people as OpenGL (Khronos Group)
» Will not replace OpenGL in the near future

» Orientated around a command buffer / command pipeline
structure

Michael Kreuzer



Vulkan
(o] le}

Advantages

» Far more low level than OpenGL
» Thread and memory management left to application
P sophisticated validation and diagnostic layers

» similar APIl between mobile and desktop

Michael Kreuzer



Vulkan
[e]e] ]

Disadvantages

» Far more low level than OpenGL
» No thread and memory management

> A lot more boilerplate to set up

Michael Kreuzer



The End
[ J

References

@ OpenGL Specification

The OpenGL © Graphics System: A Specification (Version 4.0 (Core
Profile) - March 11, 2010)

https://www.khronos.org/registry /OpenGL /specs/gl/glspec40.core.pdf

@ Learn OpenGL
A good tutorial to ge started with OpenGL
https://learnopengl.com/

Michael Kreuzer



	What is OpenGL?
	Basic Concepts
	Shading Pipeline
	Model View Transformation
	Vulkan
	The End

