Punktfolge: kurz nachgedacht 1

Beweisen Sie per Definition, dass die Punktfolge $(a_n)_{n\in\mathbb{N}}$ mit $a_n = \frac{3n+4}{5n+6}$ gegen $a = \frac{3}{5}$ konvergiert.

Lösung:

Nach Definition gilt es zu zeigen:

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > N_{\varepsilon} : |a_n - a| < \varepsilon.$$

Wir vereinfachen den Term $|a_n - a|$ algebraisch:

$$|a_n - a| = \left| \frac{3n+4}{5n+6} - \frac{3}{5} \right|$$

$$= \left| \frac{(3n+4) \cdot 5 - 3 \cdot (5n+6)}{5 \cdot (5n+6)} \right|$$

$$= \left| \frac{15n+20-15n-18}{5 \cdot (5n+6)} \right|$$

$$= \left| \frac{2}{5 \cdot (5n+6)} \right|$$

$$= \frac{2}{5 \cdot (5n+6)}$$

Nun versuchen wir von der Ungleichung $|a_n - a| < \varepsilon$ auf das passende N_{ε} zu schließen.

$$|a_n - a| < \varepsilon$$

$$\Leftrightarrow \frac{2}{5 \cdot (5n + 6)} < \varepsilon$$

$$\Leftrightarrow \frac{2}{5 \cdot (5n + 6)} < \varepsilon$$

$$\Leftrightarrow \frac{2}{\varepsilon} < 25n + 30$$

$$\Leftrightarrow \frac{1}{25} \cdot (\frac{2}{\varepsilon} - 30) < n$$

Da wir nur Äquivalenzumformungen durchgeführt hatten, können wir folgern:

Bei fest vorgegebenem $\varepsilon>0$ wählen wir $N_{\varepsilon}:=\max(\lfloor\frac{1}{25}\cdot(\frac{2}{\varepsilon}-30)\rfloor+1;1).$

Dann gilt für alle $n > N_{\varepsilon} > \frac{1}{25} \cdot (\frac{2}{\varepsilon} - 30)$: $|a_n - a| < \varepsilon$.

(zu (1): Hier liegt eine Äquivalenzumformung vor, da sowohl $\varepsilon > 0$ als auch 25n + 30 > 0 für alle $n \in \mathbb{N}$.)