Konvergenz: Übungsaufgabe 3

Seien $a, b \in \mathbb{R}$ mit a < b und sei $f : [a; b] \to [a; b]$ eine monoton wachsende Funktion. Für ein gegebenes $x_1 \in [a;b]$ definieren wir die Folge $(x_n)_{n \in \mathbb{N}}$ rekursiv durch

$$x_{n+1} = f(x_n)$$
 für alle $n \ge 1$

Zeigen Sie:

- a) Die Folge $(x_n)_{n\in\mathbb{N}_0}$ ist monoton.
- b) Die Folge $(x_n)_{n\in\mathbb{N}_0}$ konvergiert.
- c) Ist f zudem stetig, dann ist der Grenzwert x der Folge $(x_n)_{n\in\mathbb{N}}$ ein Fixpunkt von f.

Lösung:

Wir unterscheiden zwei Fälle - je nachdem, welcher Ungleichung die ersten zwei Folgenglieder genügen.

<u>1. Fall:</u> $x_1 \le x_2$.

Behauptung: Dann ist die Folge $(x_n)_{n\in\mathbb{N}}$ monoton steigend.

Beweis per Induktion nach n.

Induktionsanfang: $x_1 \leq x_2$.

Induktionsbehauptung: Für ein festes $n \in \mathbb{N}$ gilt: $x_n \leq x_{n+1}$

Induktionsschritt: $n \to n+1$

$$x_n \le x_{n+1} \stackrel{(*)}{\Rightarrow} f(x_n) \le f(x_{n+1}) \Rightarrow x_{n+1} \le x_{n+2}$$

2. Fall: $x_1 \ge x_2$.

Behauptung: Dann ist die Folge $(x_n)_{n\in\mathbb{N}}$ monoton fallend.

Beweis per Induktion nach n.

Induktionsanfang: $x_1 \geq x_2$.

Induktionsbehauptung: Für ein festes $n \in \mathbb{N}$ gilt: $x_n \geq x_{n+1}$

Induktionsschritt: $n \to n+1$

$$x_n \ge x_{n+1} \stackrel{(*)}{\Rightarrow} f(x_n) \ge f(x_{n+1}) \Rightarrow x_{n+1} \ge x_{n+2}$$

(zu (*): Da die Funktion f nach Voraussetzung monoton wachsend ist, bleibt das Ungleichheitszeichen erhalten.)

b) Da nach Voraussetzung für alle $x_n \in [a; b]$ gilt, dass auch $f(x_n) \in [a; b]$, ist die Folge $(x_n)_{n \in \mathbb{N}}$ durch a nach unten und durch b nach oben beschränkt.

(Insbesondere ist durch diese Voraussetzung die Wohldefiniertheit der Folge garantiert.)

<u>1. Fall:</u> Die Folge $(x_n)_{n\in\mathbb{N}}$ ist monoton steigend und nach oben beschränkt.

Dann ist die Folge $(x_n)_{n\in\mathbb{N}}$ konvergent.

<u>2. Fall:</u> Die Folge $(x_n)_{n\in\mathbb{N}}$ ist monoton fallend und nach unten beschränkt.

Dann ist die Folge $(x_n)_{n\in\mathbb{N}}$ konvergent.

c) Da die Folge in beiden Fällen konvergiert, gibt es stets ein $x \in \mathbb{R}$: $x = \lim x_n$ Bei stetiger Funktion f ist es möglich, die Reihenfolge von Funktionswertbildung und Grenzwertberechnung zu tauschen (**), deshalb gilt:

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) \stackrel{\text{(**)}}{=} f(\lim_{n \to \infty} x_n) = f(x).$$

Somit ist der Grenzwert x ein Fixpunkt von f .

Man überzeuge sich, dass beide Fälle aus a) eintreten können.

Beispiel:

$$f: \left\{ \begin{array}{ccc} [0;1] & \to & [0;1] \\ x & \mapsto & 0,5x+0,5 \end{array} \right. \quad x_1 = 0 \text{ oder } g: \left\{ \begin{array}{ccc} [0;1] & \to & [0;1] \\ x & \mapsto & 0,5x \end{array} \right. \quad x_1 = 0,5$$